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Abstract—In contrast to machine recognizers that rely on
training with large handwriting data, humans can recognize
handwriting accurately on learning from few samples, and
can even generalize to handwritten characters from printed
samples. Simulating this ability in machine recognition is
important to alleviate the burden of labeling large handwriting
data, especially for large category set as in Chinese text. In
this paper, inspired by human learning, we propose a cross-
modal prototype learning (CMPL) method for zero-shot on-
line handwritten character recognition: for unseen categories,
handwritten characters can be recognized without learning
from handwritten samples, but instead from printed characters.
Particularly, the printed characters (one for each class) are
embedded into a convolutional neural network (CNN) feature
space to obtain prototypes representing each class, while the
online handwriting trajectories are embedded with a recurrent
neural network (RNN). Via cross-modal joint learning, hand-
written characters can be recognized according to the printed
prototypes. For unseen categories, handwritten characters can
be recognized by only feeding a printed sample per category.
Experiments on a benchmark Chinese handwriting database
have shown the effectiveness and potential of the proposed
method for zero-shot handwriting recognition.

Keywords-printed character; handwritten character; cross-
modal; prototype learning; zero-shot

I. INTRODUCTION

Handwritten Chinese character recognition (HCCR) has

been studied for more than fifty years [1] and is widely

used to evaluate different pattern recognition techniques. The

accuracies on both online and offline HCCR have been con-

stantly improved in recent years [2]. The first reason comes

from improved architectures and training strategies in deep

neural networks. Another important reason is due to the big

data collection for covering all character classes and different

handwriting styles. Training with big data is essential for

the success of deep learning. However, this is significantly

different from the human learning process which relies only

on small and even incomplete data. Humans are good at

recognizing handwritten characters by reading text books

containing only regular and fixed-shape printed characters.

Even for characters that we never saw them in handwritten

format, we can still recognize them, due to the pre-learned

knowledge in matching printed and handwritten characters.

This is actually a kind of learning-to-learn or meta-learning

ability in our human brain for generalizing to new situations

that never shown in training stage.

Under special circumstances, there exists no data but

semantic descriptions in some classes, which is known as

zero-shot learning [3]. In this problem, the main challenge

is that the model should be generalized to identify novel

object categories which are unseen in training [4]. To achieve

zero-shot HCCR and motivated by the cooperated learning

between printed and handwritten characters in human brain,

we use two modalities in a joint learning process: the printed

character image and the online handwriting trajectory. These

two modalities are hard to fuse at raw data level due to

heterogenous data format. Therefore, we propose a new

model called cross-modal prototype learning (CMPL) to

fuse two modalities in a deep neural network transformed

semantic space. Particularly, for each character class, there

is a single fixed printed character image, and these images

are transformed with a convolutional neural network (CNN)

to get class-specific prototypes representing different classes.

The online handwriting trajectory of each character sample is

transformed by a recurrent neural network (RNN) to extract

feature representation. To make joint training, the handwrit-

ten samples in RNN transformed space are classified with

the nearest prototype rule by defining the prototypes as the

printed characters in CNN transformed space. A multi-class

classification loss function is then defined to learn these two

networks simultaneously.

By learning with both printed and handwritten characters,

CMPL can be applied for zero-shot handwriting recognition.

In the training stage, the samples of handwriting data are not

needed to cover all classes. It is possible to train on only a

subset of the character classes, and then generalize to other

unseen character classes, because the prototypes are not

explicitly learned but implicitly produced by applying the

CNN on printed character images. For a 3755-class HCCR

problem, we show that by training with only 500 classes,

CMPL can achieve near 50% accuracy on all 3755 classes,

although more than 85% (3255/3755) of the characters are

unseen in training stage. With more classes involved in

training, the performance can be further improved: training

with 1000, 1500, 2000 classes leads to nearly 75%, 85%,

90% test accuracies on 3755 classes, showing the potential
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of CMPL for zero-shot handwriting recognition.

Previous studies have shown that the printed information

is helpful for handwriting analysis. For example, the ad-

versarial feature learning [5] seeks a feature representation

that is indistinguishable between printed and handwritten

characters, thus making the learned features to be writer-

independent and more close to standard printed charac-

ters for improving performance. Similar idea is also used

for mathematical expression recognition [6] where printed

templates are used to guide the recognition of handwritten

expressions in an adversarial manner.

The cross-modal learning between printed and hand-

written characters is also closely related to the template

matching [7] approaches which are widely used in structural

pattern recognition. We find a recent work similar to our

approach named deep template matching [8] which adopts

a deep Siamese neural network to match offline handwritten

characters and printed character templates. However, we

consider a much more difficult task of cross-modal learning

between printed image and online handwriting trajectory,

and the final decision-making is a multi-class nearest pro-

totype classification rather than a binary matching. Besides

handwriting recognition, the proposed CMPL can hopefully

be extended to other pattern recognition tasks.

II. RELATED WORKS

1) Handwritten Chinese Character Recognition: Tradi-

tional approaches for handwritten Chinese character recog-

nition (HCCR) usually contain multiple stages [9]. Recently,

a dominant trend is using end-to-end learning ability of

deep neural networks to learn the feature representations and

classifiers simultaneously from raw data. The convolutional

neural network is widely used for offline HCCR [2] due to

its powerful ability in dealing with image-like data, while

the recurrent neural network is shown to be very effective

for online HCCR [10] owing to its efficiency and generality

in feature extraction for sequential data. Improvements on

HCCR are gradually reported like faster and more compact

models [11], higher accuracies [5], and so on.

2) Few-shot and Zero-shot Learning: The success of

deep learning relies heavily on large-enough training data.

Contrarily, humans are good at few-shot and even zero-

shot learning. The key insight for few-shot learning [12]

is that the categories we have already learned can give us

information that helps us to learn new categories with fewer

examples. In case of zero-shot learning [3] where there is no

training example for novel categories, some side information

like textual description or attribute definitions is needed to

transfer knowledge from known category to unseen category.

In this paper, we use the printed character images as an

efficient and effective side information for zero-shot HCCR.

3) Multi-modal Learning: Learning from multiple related

modalities is an important direction in machine learning.

One perspective on multi-modal learning is the fusion of

multiple modalities [13] for better decision-making. An-

other important trend is the cross-modal learning [14] for

capturing the relationship between different modalities such

as cross-modal translation (like text-to-speech generation),

cross-modal alignment (like attention mechanism in image

captioning), cross-modal retrieval (like using texts to search

images), and so on. Our work is also a kind of cross-modal

learning by using one modality as prototype to classify

another modality.

4) Open-set Recognition: Most pattern classifiers are

based on the closed-set assumption, i.e., there is a pre-

defined fixed number of classes, for example, the widely-

used softmax in deep learning. To solve this problem,

the open-set recognition [15] is widely-studied in literature

with many representative methods like sparse representation

based open set recognition [16], probability open-set mod-

els [17], open-set deep neural networks [18], and so on.

Our proposed method is also a kind of open-set recognition,

because the prototypes used for defining different classes

can be added incrementally during the test stage to enlarge

the category set.

5) Prototype Learning: Nearest neighbor model is a

well-known and widely-used classifier for solving pattern

recognition tasks, by searching nearest training samples

for decision-making. A further improvement is the nearest

prototype classifier also known as learning vector quantiza-

tion [19] which avoids saving all training samples but learns

and maintains only several prototypes of each class for clas-

sification. Prototype learning has been widely investigated

and is efficient and effective for handwritten character recog-

nition [20]. Recently, a new trend is to combine the nearest

prototype classifier with deep neural networks to improve

the robustness [21] and the few-shot learning ability [22].

Our work is also a kind of deep prototype learning with

emphasis on cross-modal prototype learning.

III. CROSS-MODAL PROTOTYPE LEARNING

The whole framework of the proposed cross-modal proto-

type learning (CMPL) is illustrated in Fig. 1, which contains

two embedding networks ϕ(·) and π(·) for the printed char-

acter image and the online handwriting trajectory. These two

networks are jointly learned to minimize the loss function

of a nearest prototype classifier.

A. Printed Character Embedding

As shown in the top of Fig. 1, for each character class,

a single and fixed printed character image with resolution

32× 32 is used for calculating the prototype representation

for this class. The data preprocessing is implemented by

projecting the value of pixel that ranges from 0 to 255

linearly into the interval of [−0.5, 0.5]. After that, a convo-

lutional neural network ϕ(·) is used to extract features from

these printed images. Considering the modality of printed

character image is simple without large variations, we use a
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Figure 1. An illustration of cross-modal prototype learning. Top: the modality for printed character images. Bottom: the modality for online handwriting
trajectory. These two modalities are learned jointly by classifying the handwritten samples using nearest prototypes from the printed characters. Once
trained, it can well generalize to novel character class which has no handwriting sample, by using only a printed character as prototype for this class.

small convolutional neural network as ϕ(·), which contains

a stack of 5 convolutional layers with 3 × 3 kernel. The

number of channels in each convolutional layer is enlarged

gradually from 50 in layer-1 to 400 in layer-5. The max-

pooling layer is also used to reduce the size of feature maps

for enlarging the receptive fields. At last, the obtained feature

maps are flattened to a vector with dimensionality 400 and

then fed into a fully-connected layer to get a compact 200

dimensional feature vector as the final representation. The

batch normalization is also applied to accelerate the training

process.

Suppose there are C classes, and for each class we have a

printed character image. Then the image set can be denoted

as {I1, I2, . . . , IC}. With the embedding network ϕ(·), the

prototype for class i is:

ϕ(Ii), i = 1, 2, . . . , C. (1)

Different from previous prototype learning [20], [21] where

the prototype is totally learned from data, the prototype here

is implicitly learned as a mapping from printed character.

B. Online Handwriting Trajectory Embedding

As shown in the bottom of Fig. 1, each online handwritten

character is actually represented as a sequential trajectory

and a recurrent neural network (RNN) π(·) is used to

embed it. We follow the method proposed in [10] by

firstly removing redundant points and applying coordinate

normalization to the trajectory, for reducing the difference

in number of sampling points and the variation in size of the

coordinates for different characters. After the preprocessing,

a deep bidirectional RNN is used to integrate the information

from both the past and the future of the trajectory. As

suggested by [10], the gated recurrent unit (GRU) is used in

the RNN other than the long-short term memory (LSTM).

Two recurrent layers are used with 100 neurons in layer-1

and 500 neurons in layer-2. After that, all the hidden states

in layer-2 of the RNN are collected and passed through a

mean pooling layer to output a fixed-length feature vector

with dimensionality 500, which is further fed into a fully-

connected layer to produce a 200 dimensional vector as the

final representation. The batch normalization is applied after

the fully-connected layer to speedup convergence.

C. Cross-modal Nearest Prototype Classifier

With the above two embedding networks ϕ(·) and π(·),
both the printed character image and online handwriting

trajectory are mapped into the same dimensional space. We

use x to represent a general online handwritten character and

y ∈ {1, 2, . . . , C} to denote its label. The embedding of this

character is π(x), and we can therefore define the distance of

this sample to each class as the Euclidean distance between

π(x) and class-specific prototype:

d(x, i) = ‖π(x)− ϕ(Ii)‖22 , i = 1, 2, . . . , C. (2)

We can further transform the distance to probability as:

P (i|x) = e−βd(x,i)

∑C
j=1 e

−βd(x,j)
, (3)

where β is a hyper-parameter controlling the hardness of

probability assignment. With this, the cross entropy loss can

591

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 21,2024 at 11:28:54 UTC from IEEE Xplore.  Restrictions apply. 



be defined as:

Loss(x, y) = − logP (y|x). (4)

Prototypes used to define the loss will be all updated during

optimization, but with an emphasis on the genuine prototype

and the competitive prototype (nearest prototype from false

classes) as shown in Fig. 1. However, directly optimizing the

cross entropy loss will usually leads to overfitting, therefore,

we also apply a regularization [21]:

Reg(x, y) =
∥∥π(x)− ϕ(Iy)

∥∥2
2
. (5)

This is to constrain each handwritten sample to be close to

the printed prototype from the same class, for making the

features of samples within the same class more compact.

The whole CMPL is optimized as

min
ϕ,π

∑

(x,y)

{
Loss(x, y) + λReg(x, y)

}
, (6)

where λ is a hyper-parameter to balance the loss and

regularization.

D. Zero-shot Handwriting Recognition

Although we call our model cross-modal prototype learn-

ing, actually, no explicit prototype is learned, and only two

embedding networks ϕ(·) and π(·) are optimized as shown

in Eq. (6). In testing stage, the decision can be made as:

x ∈ argmin
I∈P

∥∥π(x)− ϕ(I)
∥∥2
2
, (7)

where P is a gather of printed character images, which is no

longer restricted to {I1, I2, . . . , IC} used in training. In other

words, we can actually add more printed character images

into P (or delete some images from it) without need to re-

train the model. This is a very important property, because in

some cases, there is no handwritten data for some particular

characters, and it is also hard and expensive to collect large

number of samples covering all categories. However, the

printed character images are easy to obtain. Therefore, this

kind of cross-modal class incremental learning is a good

solution for zero-shot handwriting recognition.

IV. EXPERIMENTS

A. Datasets

We use a benchmark online handwritten Chinese char-

acter recognition dataset for evaluating the effectiveness of

our method. The database used for training is the CASIA

database [23] including OLHWDB1.0 and OLHWDB1.1.

The database used for testing is from the ICDAR-2013

competition [24] of online Chinese handwriting recognition.

There are totally 2,693,183 samples for training and 224,590

samples for testing. The number of character class is 3,755

(level-1 set of GB2312-80). For printed character images,

we use 3755 images (one per class) generated by font of

Microsoft XinWei, where each contains a standard white

character in the middle of image with black background.

B. Implementation Details

During training, the sequential dropout [10] is applied by

randomly removing each straight line of the trajectory with

probability 0.3. The optimization algorithm of Adam is used

in our experiment. In each step, a mini-batch of 1000 online

handwritten samples and all the printed character images

from seen classes are fed to the RNN and CNN respectively.

The initial learning rate of RNN is same as that of CNN,

which is set to be 0.001, and it drops by ×0.3 when the ac-

curacy on the training set stops improving. We implemented

experiments under the framework of Tensorflow using 4

NVIDIA Titan X 12G GPUs.

To evaluate the performance of CMPL, we only use part

of all the 3755 classes in training, and leave other unseen

classes for evaluating the performance of zero-shot learning.

In our experiments, the character classes are sorted in the

order of GB2312-80 level-1 set, and we simply select the

first N classes as seen and the remaining 3755-N classes

as unseen. Different numbers of N are evaluated in our

experiments: 500, 1000, 1500, 2000, 2500.

For the convenience of following description, we use

“A/B” here to indicate the situation where test classes are

“A” and chosen prototypes are “B”. For example, when

N = 500, “Seen/All” means 500 classes tested with all 3755

prototypes while “Unseen/Unseen” refers to the remaining

3255 classes tested with 3255 prototypes.

C. Closed-set Performance

We first evaluate the performance on the selected N seen

classes. Since they are used in both training and testing,

this is the traditional closed-set recognition. The results

are shown in the “Seen/Seen” column of Table I. It is

shown that, all performances are very high (more than

98%), indicating that using the printed character modality

as prototypes will not reduce the performance of closed-set

recognition, although more constraint is actually adopted on

the prototypes. Another important result is shown on the

“Seen/All” column which means: although only N classes

are used in training, we evaluate them with 3755 prototypes

from all classes. It is shown that: even training with only

500 classes, the “Seen/All” accuracy is still more than 96%.

This demonstrates that: the prototypes in seen classes can

be effectively separated from newly added unseen prototypes

and the distributions of handwriting data in seen classes are

intra-class compact.

D. Open-set Performance

A main advantage of the proposed CMPL is that it can be

extended to recognize new unseen classes. For the 3755-N
classes (unseen in training), the “Unseen/Unseen” column

in Table I means evaluating them with prototypes only from

unseen classes, while “Unseen/All” means evaluating with

prototypes from all classes. First of all, the performance

on unseen classes are much lower than the seen classes,
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Table I
ZERO SHOT LEARNING PERFORMANCE OF THE PROPOSED METHOD WITH DIFFERENT NUMBER OF TRAINING CLASSES.

Prototypes Seen Unseen All Common

Testing Classes Seen Unseen Seen Unseen All Common Common

N Training Classes

500 0.9902 0.4468 0.9633 0.4159 0.4887 0.4167 0.5862

1000 0.9885 0.7101 0.9671 0.6699 0.7489 0.6668 0.7938

1500 0.9852 0.8049 0.9671 0.7553 0.8399 0.7520 0.8528

2000 0.9844 0.8673 0.9695 0.8112 0.8955 0.8067 0.8888

2500 0.9822 0.9074 0.9721 0.8407 0.9282 0.8407 0.9077
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Figure 2. The accuracies on all 3755 classes.

indicating that zero-shot learning of new categories is a

difficult task due to the lack of real handwriting samples.

However, when N is increased (more classes are used in

training), the performance on unseen classes is improved

significantly, and the gap between the accuracies on seen

and unseen classes is gradually reduced. Moreover, the dif-

ference between “Unseen/Unseen” and “Unseen/All” is not

significant, indicating that the confusion of unseen classes

is from themselves rather than the seen classes.

We also give the performance of “All/All” in Table I

which indicates evaluating all classes w.r.t. all prototypes,

and its changing trend w.r.t. N in Fig. 2. Note that the upper

bound of CMPL should be the performance trained with all

the 3755 classes which is 97.76% as reported by [10]. As

shown by Fig. 2, with more classes used for training, the

performance is gradually increased to approach the upper

bound, although much less classes are used in training

compared with 3755 classes, indicating the effectiveness of

CMPL for zero-shot learning. At last, we also show the

performance of “Common/Common” and “Common/All” on

the common (last) 1255 unseen classes no matter N =
500, 1000, 1500, 2000, 2500. This is to fairly compare the

performance on unseen classes w.r.t. N by using the same

testing set. The performance trend on “Common” is coincide

with “Unseen” which again verifies our discussions.

E. Error Analysis

To know how wrong predictions are produced by CMPL

in open-set recognition, we select and exhibit a few common

failure samples appeared in two situations ( “Unseen/All”

and “Unseen/Unseen”). As shown in Fig. 3, although being

wrongly classified, in most case, the correct labels can be

found in the top-3 predictions, and the mistakes are usually

caused by the confusion between similar characters with

subtle difference in shape. Evaluation under “Unseen/All”

will cause more mistakes since more prototypes (classes)

are used, however, the difference is not significant compared

with “Unseen/Unseen”.

F. Transfer Learning from Seen to Unseen Characters

In CMPL, we have two modules: CNN embedding for

printed character and RNN embedding for online trajectory,

which are trained on a subset of the categories. Once trained

on the first 2500 classes, they can be extended to the unseen

1255 classes as discussed above. However, if we fine-tune

the networks on these 1255 classes, the performance would

be further improved. In this subsection we consider training

the RNN+Prototype network (similar to [21]) for the 1255

unseen classes in two situations: totally from scratch, and

with knowledge transferred from CMPL by copying the

RNN and CNN-embedded prototypes (from unseen printed

characters) as initialization. We also use a small percentage

of samples to evaluate training with small sample sizes. The

results are listed in Table. II. It is demonstrated that the

knowledge learned from seen classes in CMPL is helpful and

transferable to unseen classes, which can consistently and

significantly improve performance under different sampling

rates.

Figure 3. Top-3 predictions where the correct one is in red color.
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Table II
PERFORMANCE ON THE UNSEEN 1255 CLASSES.

Knowledge

Transfer?

Percentage of training samples

10% 20% 30% 100%

yes 0.9809 0.9829 0.9847 0.9872

no 0.9685 0.9768 0.9801 0.9857

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new method named cross-

modal prototype learning (CMPL) for zero-shot handwriting

recognition. The main idea is using printed character as

prototype to classify handwriting data with modality-specific

embedding networks. Experimental results have verified the

effectiveness of the proposed method in generalizing to

novel unseen classes. However, the accuracies on unseen

classes still have large distances compared with the accura-

cies on seen classes, indicating that more efforts could be

paid on finding effective training strategies to improve open

space generalization, since the regularization now is only

defined on seen classes. Moreover, besides printed character

and online trajectory, our future work will also take offline

handwritten character into consideration for joint learning

with three modalities to further improve performance.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (NSFC) Grants 61721004, 61633021,

61836014, the Beijing Science and Technology Program

Grant Z181100008918010.

REFERENCES

[1] F. Kimura, K. Takashina, S. Tsuruoka, and Y. Miyake, “Mod-
ified quadratic discriminant functions and the application to
Chinese character recognition,” IEEE Trans. Pattern Analysis
and Machine Intelligence, no. 1, pp. 149–153, 1987.

[2] X.-Y. Zhang, Y. Bengio, and C.-L. Liu, “Online and offline
handwritten Chinese character recognition: A comprehensive
study and new benchmark,” Pattern Recognition, vol. 61, pp.
348–360, 2017.

[3] C. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based
classification for zero-shot visual object categorization,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 36,
no. 3, pp. 453–465, 2014.

[4] Y. Fu, T. Xiang, Y.-G. Jiang, X. Xue, L. Sigal, and
S. Gong, “Recent advances in zero-shot recognition,”
arXiv:1710.04837, 2017.

[5] Y. Zhang, S. Liang, S. Nie, W. Liu, and S. Peng, “Robust
offline handwritten character recognition through exploring
writer-independent features under the guidance of printed
data,” Pattern Recognition Letters, vol. 106, pp. 20–26, 2018.

[6] J.-W. Wu, F. Yin, Y.-M. Zhang, X.-Y. Zhang, and C.-L. Liu,
“Image-to-markup generation via paired adversarial learning,”
in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2018, pp. 18–34.

[7] X.-H. Xiao and R.-W. Dai, “On-line handwritten Chinese
character recognition directed by components with dynamic
templates,” in Int’l Conf. Computer Processing of Oriental
Languages, 1997, pp. 89–94.

[8] Z. Li, M. Jin, Q. Wu, and H. Lu, “Deep template match-
ing for offline handwritten Chinese character recognition,”
arXiv:1811.06347, 2018.

[9] R. Dai, C. Liu, and B. Xiao, “Chinese character recognition:
history, status and prospects,” Frontiers of Computer Science
in China, vol. 1, no. 2, pp. 126–136, 2007.

[10] X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio,
“Drawing and recognizing Chinese characters with recurrent
neural network,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 849–862, 2018.

[11] X. Xiao, L. Jin, Y. Yang, W. Yang, J. Sun, and T. Chang,
“Building fast and compact convolutional neural networks for
offline handwritten Chinese character recognition,” Pattern
Recognition, vol. 72, pp. 72–81, 2017.

[12] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of
object categories,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[13] D. Ramachandram and G. Taylor, “Deep multimodal learn-
ing: A survey on recent advances and trends,” IEEE Signal
Processing Magazine, vol. 34, no. 6, pp. 96–108, 2017.
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