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ABSTRACT

Zero-shot Chinese character recognition aims to recognize unseen
characters that have never appeared in training. Recently, many
methods learn a cross-modal alignment between character samples
and auxiliary semantic data like glyph templates in training, and
directly employ it to recognize unseen characters by retrieving the
class with most similar semantics. However, these approaches suffer
from the domain shift problem, which means that the learned align-
ment shows a deviation on unseen characters. To alleviate this prob-
lem, we generate unseen character samples to calibrate the shifted
prototypes in the feature space. Specifically, we train a cross-modal
prototype classifier and a generator conditioned on glyph templates,
then use the generator to synthesize unseen character samples to cal-
ibrate the prototypes of the classifier. The calibration process does
not require any extra training. Experiments on a handwritten dataset
and a nature scene dataset show the superiority of our method and
the effectiveness of prototype calibration.

Index Terms— zero-shot, Chinese character recognition, proto-
type calibration, sample generation

1. INTRODUCTION

To create a recognizer that can identify all possible Chinese char-
acters, we usually need a large number of training samples cov-
ering over sixty thousands of character categories, which is often
impractical and expensive. Besides, the closed recognizer is inca-
pable of identifying newly found or created characters. Instead, zero-
shot Chinese character recognition (ZSCCR) [1] aims to recognize
samples of unseen characters never appeared in training with aux-
iliary semantic information describing these characters, like stroke
sequence, radical components or printed glyphs. Thus, the key of
ZSCCR is to build a cross-modal alignment between character sam-
ples and auxiliary semantic information at the class level after train-
ing on seen characters. Afterwards, the alignment is applied on un-
seen Chinese characters and zero-shot classification can be realized
by finding the character with best matching auxiliary information.

According to different forms of auxiliary information, the meth-
ods in ZSCCR can be roughly divided into three groups: radical-
based, stroke-based, and template-based. Radical-based meth-
ods [1–4] analyze radical components and spatial structures among
the components to recognize unseen characters. These methods
can give an intuitive explanation about the final classification deci-
sion but their performance are usually limited. As for stroke-based
works [5], they focus on the basic semantic units of a character and
extract the stroke sequence of an unseen character. Template-based
approaches [6–8] treat the printed character images as the templates
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Fig. 1. There is a shift between the initial prototypes and the real
distribution of unseen characters in the feature space. We alleviate
the problem by prototype calibration with synthesized unseen char-
acter samples, then the adjusted prototypes will be closer to the real
distribution of unseen categories.

for handwritten samples or nature scene instances. These images can
be obtained from any font file on the Internet, which is convenient.
These approaches can achieve higher classification accuracy due to
the smaller modality gap.

However, all above-mentioned methods suffer from the problem
of domain shift [9] which is caused by the fact that the alignment
between samples and auxiliary semantic data on seen categories is
not always consistent with that on unseen categories. As shown in
Fig. 1, a shift issue usually happens if we directly transfer the align-
ment learned on seen characters to unseen characters since the true
prototype is far from the initial one. This domain shift issue funda-
mentally limits the performance of above methods.

To alleviate the problem, besides training a classifier that regards
printed images as the character prototype, we also train a gener-
ator conditioned on printed images to synthesize unseen character
samples, then these samples are employed to calibrate the shifted
printed prototype of the classifier, as shown in Fig. 1. And the cal-
ibration strategy is simply the interpolation between the initial pro-
totype and the mean of synthesized samples in the feature space.
The reason why not directly retraining a classifier with synthesized
samples is the gap between the synthesized distribution and the real
distribution on unseen characters, as the generator is trained on seen
characters, which is shown in Fig. 1. Extensive experiments shows
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Fig. 2. The framework of our method. It includes a conditional GAN based generator and a prototype classifier. The former learns to create
character samples conditioned on printed glyph templates, and the latter learns to map the glyph template to the prototype of samples in the
feature space. During test stage, synthesized unseen character samples by the generator are used to calibrate the printed prototype in the
feature space.

that our method can achieve the state-of-the-art results and prototype
calibration with synthesized samples brings stable performance im-
provement across different sizes of training class sets. Quantitative
analysis in the feature space validates that the degree of domain shift
is significantly reduced by prototype calibration.

2. METHOD

The framework of our method in Fig. 2 contains a generator and a
prototype classifier, and the generator is used to assist the classifier
via prototype calibration during inference.

Problem formulation. We denote the training set as DS ={
(x, y) | y ∈ YS

}
, where x represents a handwritten sample and y

is its label from seen character categories YS . The auxiliary data
are in the form of printed glyph templates AS = {ay|y ∈ YS}
with one image per character category. After training on DS and
AS from seen categories YS , we aim to get a zero-shot classifier
f : X → YU , where YU ∩ YS = ∅. Note that the auxiliary data of
unseen characters AU = {ay|y ∈ YU} are available in test stage.

2.1. Cross-Modal Prototype Classifier

The classifier follows a simple idea that the glyph templates are as-
sumed as the prototypes of handwritten or scene character samples
in the feature space, which is based on the work [6]. And the classi-
fication decision is realized by the nearest prototype rule.

The character samples and the printed glyphs are encoded into a
shared feature space, and we use the convolutional neural networks
(CNN) [10] as the encoder. We denote the encoder of character sam-
ples as ϕ(·) and the encoder of glyph templates as π(·). Then we
can obtain the prototype:

py = π(ay) (1)

for the character category y, and the classifier is trained with a cross-
entropy loss:

LC = − log p(y | x) = − log
e−β∥ϕ(x)−py∥2∑

i∈YS e−β∥ϕ(x)−pi∥2
, (2)

where β is a learnable parameter and ∥ · ∥2 represents the L2 norm.
After training, the alignment between character samples and auxil-
iary glyph templates has been learned on seen characters.

2.2. Conditional GAN Based Generator

The generator aims to create character samples of accurate contents
and diverse styles given one printed image ay . We formulate the
generation process as:

x̃ = G(ay, z) (3)

where x̃ is the synthesized sample, G stands for the generator, and
z ∼ N(0, 1) indicates the Gaussian noise. After being trained on
seen character data DS , the generator will indirectly models the con-
ditional distribution p(x | y).

Our generator is inspired by BicycleGAN [11], as shown in Fig.
2. It combines a GAN [12] and a variation encoder (VAE) [13] with
shared decoder and generator to improve the generation quality.

The final objective loss of the generator is:

LG =LV AE
GAN (G,D,E) + λLV AE

1 (G,E)+

λKLLKL(E) + LGAN (G,D) + λlatentL
latent
1 (G,E),

(4)

where G is the generator/decoder, D represents the discriminator,
and E indicates the encoder. LV AE

1 (G,E) and Llatent
1 (G,E) reflect

the two cycle constraints to enhance the performance of the genera-
tor. Since the design of the generator is not the focus of this work,
detailed explanations can be found in [11].
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2.3. Prototype Calibration

We aim to use synthesized samples to calibrate the printed proto-
types of unseen characters. First, we have initial prototypes mapped
from printed glyph templates for each unseen characters:

pi = π(ai), i ∈ YU . (5)

We also have synthesized samples of each unseen categories:

{x̃i,k = G(ai, zk) | i ∈ YU , k = 1, 2, ...,K}, (6)

where zk is Gaussian sampling noise.
We further assume that the real distribution lies between the

printed prototype and the synthetic distribution, as shown in Fig. 1.
Then we choose a simple strategy that the interpolation between the
printed prototype and the mean of synthesized data serves as the cal-
ibrated prototype:

p′i = (1− α)pi + α
1

K

K∑
k=1

ϕ(x̃i,k), (7)

Where K and α are two hyperparameters. The adjusted prototype
p′i would be closer to the real distribution of the unseen character.

2.4. Zero-Shot Inference

After prototype calibration, the final decision is obtained by the near-
est prototype rule:

f(x) = argmin
i∈YU

∥ϕ(x)− p′i∥2 (8)

where f(x) is the class prediction of test sample x and ∥ · ∥2 indi-
cates the Euclidean distance.

3. EXPERIMENTS

3.1. Experimental Setup

Datasets. We conduct experiments on both a handwritten Chinese
character dataset HWDB [14, 15] and a natural scene Chinese char-
acter dataset CTW [16]. For HWDB, we take five different sizes of
seen character categories, i.e. 500, 1000, 1500, 2000, 2755 in exper-
iments, and the number of unseen characters are fixed to 1000. For
CTW, the size of seen characters are set to 500, 1000, 1500, 2000
and the number of unseen characters are fixed to 500. As for the
auxiliary glyph templates, we choose the SimKai font with a resolu-
tion of 64× 64 pixels.
Implementation Details. The input images are resized to 64 × 64
pixels. The backbone of the classifier is the same as [4]. More-
over, the generator G is resnet-6blocks like [17]. The encoder E and
the discriminator D are consistent with [11]. The prototype classi-
fier is trained with learning rate=0.005 and batch size=256 with the
Adam optimizer. As for the generator, learning rate=0.0005, batch
size=256 for HWDB and batch size=32 for CTW with the same op-
timizer. In prototype calibration, K is 30 for HWDB and 100 for
CTW, and α is set to 0.6 for HWDB and 0.2 for CTW, respectively.

3.2. Zero-Shot Handwritten Character Recognition

We compare to the state-of-the-art in zero-shot handwritten character
recognition. The results under different sizes of training characters
are reported in Table 1. We list 6 methods for comparison, where

Table 1. Comparing to the state-of-the-art on the HWDB dataset

Method
Accuracy(%)

#characters in training set
500 1000 1500 2000 2755

DenseRAN [1] 1.7 8.4 14.7 19.5 30.7
Few-shotRAN [3] 33.6 41.5 63.8 70.6 77.2

HDE [4] 33.7 53.9 66.3 73.4 81.0
OSOCR [18] 46.7 72.2 79.8 84.3 -

CMPL [6] 83.6 88.4 90.5 91.9 93.9
OpenCCD [8] 90.9 94.1 94.6 95.6 -

Ours 94.4 95.8 96.4 96.7 97.2

Table 2. Comparing to the state-of-the-art on the CTW dataset

Method
Accuracy(%)

#characters in training set
500 1000 1500 2000

DenseRAN [1] 0.1 1.5 5.0 10.1
Few-shotRAN [3] 2.4 10.5 16.6 22.0

HDE [4] 23.5 38.5 44.2 49.8
OSOCR [18] 27.9 48.2 58.6 63.8
OpenCCD [8] 58.2 68.6 74.5 77.2

Ours 66.4 72.1 76.5 78.3

DenseRAN [1], Few-shotRAN [3] and HDE [4] are radical-based,
and CMPL [6], OSOCR [18], OpenCCD [8] are template-based.

From Table 1 we can observe that our method outperforms pre-
vious state-of-the-art approaches. Compared with the second-best
results, our method achieves gains of 3.5%, 1.7%, 1.8% and 1.1%
in terms of accuracy on 500, 1000, 1500 and 2000 seen characters,
respectively. The gain in accuracy becomes more significant when
the size of seen characters is smaller, which exhibits the advantage
of our method with extremely limited data.

3.3. Zero-Shot Scene Character Recognition

We compare our method against several approaches on CTW dataset,
as reported in Table 2. The results indicate that our method achieves
the best zero-shot recognition performance across 4 different sizes of
characters in training set. Specially, it surpasses the previous state-
of-the-art model OpenCCD [8] by +8.2% on 500, +3.5% on 1000,
+2% on 1500, +1.1% on 2000 in terms of accuracy. Besides, con-
sidering that the CTW dataset is much more challenging with ex-
tremely class imbalance and many blurry or occluded samples, the
experimental results in Table 2 are poorer than that in Table 1.Yet
our method shows greater improvements than that on HWDB, which
demonstrates the great potential of our approach.

3.4. Visualizations of Synthesized Unseen Character Samples

The generated samples in Fig. 3 show satisfactory performance on
HWDB and promising results on CTW in terms of fidelity and diver-
sity. The synthesized handwritten samples of unseen characters look
similar to the real ones. Besides exhibiting accurate content, most
generated instances show diverse written styles. As for the gener-
ated scene samples of unseen characters, many of them accurately
reflect the character contents, show diverse shapes and colors, and
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Printed
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Fig. 3. Comparing the synthesized handwritten/scene samples with
the real samples on unseen character categories, after the generator
is trained on 1K characters of HWDB dataset and CTW dataset re-
spectively.

Table 3. Impact of prototype calibration on HWDB dataset and
CTW dataset. “PC” is short for prototype calibration

Dataset PC
Accuracy(%)

#characters in training set
500 1000 1500 2000 2755

HWDB No 92.1 93.7 94.6 94.7 94.8
Yes 94.4 95.8 96.4 96.7 97.2

CTW No 64.8 70.6 75.4 77.6 -
Yes 66.4 72.1 76.5 78.1 -

exhibit a certain degree of blurriness like real data. However, there
are also some poorly synthesized samples with missed local compo-
nents, wrongly placed strokes and illegible contents.

3.5. Ablation Study

Prototype calibration can improve the zero-shot recognition per-
formance. The results on HWDB and CTW are shown in Table 3.
Note that our method with no prototype calibration equals the basic
prototype classifier. The prototype calibration leads to accuracy im-
provement in both datasets. The gain by “PC” is over 2% on HWDB
across different sizes of training classes. We think that prototype
calibration reduces the degree of domain shift, then a test sample is
more likely to be assigned to the prototype of the correct category.

Prototype calibration can alleviate the degree of domain
shift through quantitative analysis. We introduce a quantitative
index, namely the score of resistance on domain shift (ScoreRDS)
in [19], which is calculated by

ScoreRDS =

∑
i∈YU ∥µi − pi∥2/|Y

U |∑
j∈YS ∥µj − pj∥2/|YS | , (9)

where µi is the mean of real samples of class i in the feature space
and pi is the prototype of class i obtained by us. A smaller Scor-
eRDS suggests that the degree of domain shift gets lower. In Table
4, with prototype calibration, the value of ScoreRDS decreases from
1.01 to around 0.6 on HWDB and from 1.02 to around 0.9 on CTW,
which suggests that the domain shift problem is alleviated by proto-
type calibration on both datasets.

Hyperparameter analysis of K and α. In Fig. 4(a), we can
see that when K is too small, the zero-shot recognition accuracy

Table 4. The degree of domain shift before and after prototype cal-
ibration. It is quantified by the metric ScoreRDS. “PC” represents
prototype calibration

Dataset PC
ScoreRDS

#characters in training set
500 1000 1500 2000

HWDB No 1.02 1.01 1.01 1.01
Yes 0.61 0.59 0.6 0.58

CTW No 1.02 1.02 1.02 1.01
Yes 0.88 0.89 0.89 0.88
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Fig. 4. Zero-shot recognition accuracies with different size K and
interpolation coefficient α on HWDB dataset.

drops, since a few samples cannot represent the whole synthesized
distribution. As K increases, the performance is improved, which
can reflect the benefit of sample generation in zero-shot recognition.
From Fig. 4(b), the best performance is achieved when α is set to
0.5 on HWDB, i.e. the calibrated prototype is located between the
initial printed prototype and the mean of synthesize samples in the
feature space. The results validate our hypothesis that in the fea-
ture space, the real distribution of unseen characters lies between the
synthesized distribution and the printed prototypes.

4. CONCLUSIONS

To alleviate the domain shift problem, we propose a method that syn-
thesizes samples to calibrate the unseen character prototypes of the
classifier. Our method trains a conditional GAN-based generator and
a prototype classifier simultaneously. Then the synthesized samples
of unseen categories are used to adjust the corresponding prototypes
via an interpolation strategy. Extensive experiments show the superi-
ority of our method. And ablation studies demonstrate the effective-
ness of prototype calibration. In the future, we will use a more pow-
erful generator [20] to create unseen character samples with stronger
fidelity and diversity, and explore more reasonable calibration strate-
gies instead of simply interpolation, which we believe can further
improve the performance of zero-shot character recognition.
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