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Abstract—In the past decade, Electroencephalogram (EEG) 

has been applied in many fields, such as Motor Imagery (MI) and 

Emotion Recognition. Traditionally, for classification tasks based 

on EEG, researchers would extract features from raw signals 

manually which is often time consuming and requires adequate 

domain knowledge.  Besides that, features manually extracted and 

selected may not generalize well due to the limitation of human.  

Convolutional Neural Networks (CNNs) plays an important role 

in the wave of deep learning and achieve amazing results in many 

areas. One of the most attractive features of deep learning for 

EEG-based tasks is the end-to-end learning. Features are learned 

from raw signals automatically and the feature extractor and 

classifier are optimized simultaneously.  There are some 

researchers applying deep learning methods to EEG analysis and 

achieving promising performances. However, supervised deep 

learning methods often require large-scale annotated dataset, 

which is almost impossible to acquire in EEG-based tasks. This 

problem limits the further improvements of deep learning models 

for classification based on EEG.  In this paper, we propose a novel 

deep learning method DMTL-BCI based on Multi-Task Learning 

framework for EEG-based classification tasks. The proposed 

model consists of three modules, the representation module, the 

reconstruction module and the classification module. Our model 

is proposed to improve the classification performance with limited 

EEG data. Experimental results on benchmark dataset, BCI 

Competition IV dataset 2a, show that our proposed method 

outperforms the state-of-the-art method by 3.0%, which 

demonstrates the effectiveness of our model.   

Keywords—EEG, Deep Learning, Multi-Task Learning  

I. INTRODUCTION 

A Brain Computer Interface (BCI)  can be defined as a 
system that uses the brain as a control center to communicate 

with external devices [1]. It does not depend on the normal 
output pathway of the brain (i.e. peripheral nerves and muscles) 
and translates the brain activity of a user into commands [2]. BCI 
technology has received much attention globally because of its 
significant meaning. It can be utilized to help  disabled people 
as a rehabilitation device [3], such as the Motor Imagery (MI) 
task [4]. MI refers to imagination  of moving the left , right hands 
or other body parts without actual movement [5]. It has been 
investigated in many BCI studies [5]. For healthy users, BCI 
systems will greatly enrich people’s entertainment as a new 
interaction method [6]. Therefore, BCI is continuing a hot topic 
that is worthy of further study. 

BCI systems control the external devices mainly by 
measuring and analyzing the Electroencephalogram (EEG) 
signals of users [7]. The reason is that the collection of EEG 
signals is non-invasive to the human body and the measurement 
method is relatively mature. EEG signals record integration of 
spontaneous electrical activities of a large number of brain cells 
from scalp, which is closely related with mental and physical 
states [8]. There are differences in terms of magnitude or 
frequency between different activities which can be utilized for 
analysis [9]. 

A complete brain computer interface system is divided into 
the following parts [10]: acquisition of EEG signals, EEG 
records pre-processing, feature extraction and selection from 
EEG signals for subsequent tasks, classification based on the 
extracted features and specific command execution. In this case, 
the classifier is a very important part which is responsible for 
transforming the features into commands of users. It determines 
whether the system is effective. Therefore, the performance of 
classification plays a decisive role in practical BCI systems [11]. 
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The mainstream methods for EEG-based classification tasks 
such as MI recognition mainly focus on the feature extraction 
and selection part. The commonly used strategy is that they 
extract hand-designed features from the time domain, frequency 
domain and time-frequency domain of EEG signals. However, 
the traditional feature extraction methods require researchers to 
have adequate domain knowledge, and the whole process is 
quite complicated. At the same time, due to the limitation of 
human, extracted features  may not be generalized well on some 
tasks [12]. 

 Deep learning has developed rapidly in recent years and 
achieved remarkable performances in many fields, such as 
computer vision [13] and speech recognition [14]. One of the 
most attractive characteristics of deep learning for EEG based 
tasks is the end-to-end learning [15]. It can directly learn from 
the raw EEG signals, also, the feature extractor and classifier are 
jointly optimized, which avoids complicated manual extraction 
process. Some researchers have applied deep learning methods 
to EEG-based classification tasks and achieve promising results 
[10]. Although the proposed methods have certain innovations, 
they are still subject to some limitations. The performance of 
EEG-based classification are not further improved [15]. 

 These limitations are mainly due to deep learning itself. The 
biggest problem of deep learning is that it requires large-scale 
annotated data for supervised learning [16]. Large-scale 
annotated EEG datasets are almost impossible to acquire 
because of the high cost of data acquisition and annotation [11]. 
In this case, limited annotated samples are not enough for 
training shallow models, let alone deep ones. The two-stage 
training method can be adopted to alleviate the problem of 
insufficient data and improve the performance of classification 
[10]. However, it still can’t meet the requirements of some tasks. 
For example, methods based on two-stage training sometimes 
requires a large amount of unlabeled data. Also the model can’t 
achieve the best performance because the whole pipeline can’t 
be optimized end-to-end. 

 To address the above challenge,  a novel deep learning 
method based on Multi-Task Learning framework (MTL) [17] 
named DMTL-BCI is proposed for EEG-based classification. 
Our model consists of three modules, the representation module, 
the classification module and the reconstruction module. The 
representation module learns features directly from raw EEG 
signals. The obtained intermediate features are then sent to the 
classification module to make prediction. Similarly, the same 
features are sent to the reconstruction module to produce the 
reconstructed input. This is the multi-task learning framework 
we propose. The three modules are trained simultaneously and 
jointly optimized in an end-to-end manner. The features 
obtained by the representation module are called shared features, 
which work as a bridge to unite the two tasks [18]. Multi-task 
learning is a well-studied framework in machine learning and 
has been applied to many fields [19]. MTL is related to transfer 
learning. But tasks under MTL interact with each other which is 
different from transfer learning [20]. Through the interaction of 
two tasks, the shared intermediate features keep both the 
reconstruction and classification ability. This enhances the 
generalization ability of the model and improves the 
performance of classification with limited data. 

 The contributions of our method are as follows: 

 A novel end-to-end deep learning model is proposed for 
EEG-based classification tasks. It can further improve 
the performance with limited annotated data. 

 The proposed model is based on Multi-Task Learning. 
Three modules of our model are trained at the same time 
and jointly optimized. Because of the interaction of two 
tasks, the generalization ability of the model is enhanced. 

 Experiments conducted on public datasets of motor 
imagery, BCI Competition IV dataset 2a [21],  show that 
our method outperforms the FBCSP [22] and state of the 
art deep learning methods. 

 The remainder of the paper is organized as follows: Section 
II introduces the related works. Our method is detailed described 
in Section III . Section IV provides the experiments setup,  
results and discussions. Conclusions are given in Section V. 

II. RELATED WORK 

A lot of works have been proposed to improve the 
performance of EEG-based classification tasks. Müller-Gerking 
et al. proposed the Common Spatial Patterns (CSP) algorithm 
for Motor Imagery task [23]. CSP extracted features of EEG 
signals that distinguish two kinds of motion imaging through a 
set of spatial filters. It has been successfully applied to many 
applications of MI [24]. Ang et al. proposed the extension of 
original CSP which is named Filter bank common spatial pattern 
(FBCSP) [22]. FBCSP performed the best in the BCI 
competition IV dataset 2a [25]. Other methods such as  
independent component analysis (ICA) [26] were also utilized 
for feature extraction. For classification, traditional classifiers 
such as Support Vector Machine (SVM) were commonly 
adopted. 

In recent years, deep learning methods for BCI classification 
have emerged. Lotte et al. provided a comprehensive review of 
classification methods for BCI tasks including recent deep 
learning based works [10].  Bozhkov et al. gave an overview of 
deep learning architectures for EEG-based tasks [27]. An et al. 
proposed a method utilizing a deep belief network (DBN) to 
perform feature extraction for MI classification [28]. Compared 
with DBN, Convolutional Neural Networks (CNNs) can learn 
the local features and patterns well [13]. Schirrmeister et al. 
explored various deep learning models for motor imagery and 
presented Shallow ConvNets, Deep ConvNets and others [15]. 
In particular, both the Shallow and Deep ConvNets 
outperformed FBCSP. Vernon et al. proposed EEGNet  which 
first introduced the Depthwise and Separable convolutions to 
EEG-based classification tasks [12]. 

Some researchers extracted features by traditional methods 
and applied deep learning models to perform classification. 
Yang et al. used CSP for feature extraction and CNN for 
classification [29]. Semi-supervised learning was also adopted 
to alleviate the overfitting problem [10]. Li et al presented a self-
training semi-supervised SVM algorithm for small training data 
[30]. Multi-task learning is relatively new to BCI tasks. Alamgir 
et al. proposed a multi-task method employing a parametric 
probabilistic approach for BCI classification [31]. To the best 
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the our knowledge, deep learning methods based on multi-task 
learning have not been introduce to BCI tasks. 

III. METHODS 

EEG-based classification task is first formularized as 
follows. The definition and notations will be used in the 
remaining sections. Then a brief introduction of input format 
and our model DMTL-BCI is given. Afterwards, the 
representation learning module , the classification module and 
the reconstruction module are described separately.  Then the 
multi-task framework for model training is given.  

A. Problem Formulation 

The recorded EEG signals are divided into several labeled 
segments which are also called trials [15]. Given an EEG input 
(a trial),  the task is to predict the label correspondingly. The 

dataset can be denoted as 𝐷𝑖 = {(𝑋1, 𝑦1) … (𝑋𝑁𝑖 , 𝑦𝑁𝑖)}, where 
𝑁𝑖 denotes the number of the trials for subject i. There are four 
categories including Hand(left), Hand(right), Feet and Tongue 
for each trial and can be denoted by 0-3 respectively. The EEG 

input of trial k, 1 ≤ k ≤ 𝑁𝑖 is denoted as 𝑋𝑘 ∈ ℝ𝑇∗𝑆, where T 
denotes the time steps recorded for each trial and S denotes the 
number of electrodes used in the experiment. 

 

Fig. 1. Overall architechture of our model.  

B. An Overview of Our Model 

Before introducing the details of the model, it is necessary to 

determine the EEG input format 𝑋𝑘 ∈ ℝ𝑇∗𝑆. Here the input is 
represented as a 2D matrix where the height of the matrix is the 
number of the time steps and the width of the matrix is the 
number of electrodes [15]. One advantage of this input format is 
that a specific convolution block is adopted to extract spatial and 
temporal features separately. Therefore, instead of using two 

dimension convolutional kernels like most deep ConvNets for 
natural images, one-dimensional convolutional kernels are 
adopted. 

Fig. 1 illustrates the overall architecture of our model 
DMTL-BCI. It consists of three modules. Given the EEG input, 
the representation module in Fig. 1 first learns the fixed-size 
representation shared by the other two modules. The detailed 
network architecture of the representation module will be 
introduced below. On the one hand, the classification module 
shown in Fig.1 makes predictions based on the learned features. 
On the other hand, the reconstruction module  shown in Fig.1 
reconstructs the input based on the learned features. The shared 
intermediate features act as a bridge to unite the two modules. 
These three modules are jointly trained in an end-to-end manner. 
Because of utilizing the shared intermediate features, the 
classification module and reconstruction module interact and 
promote each other. 

 

Fig. 2. Detailed nework architecture of the representation module. 

C. Representation Learning Module 

The representation learning module processes the EEG input 
to obtain the shared intermediate features for the downstream 
two tasks. As shown in Fig. 2, the module consists of a special 
convolutional block composed of two consecutive one-
dimension convolutions, extracting the temporal features and 
the spatial features respectively. The detailed network 
architecture is described as follows:  

 The Convolution Layer (time-specific). Since the 
temporal features are extracted separately, 1D 
convolution whose kernel size is [𝐾𝑡𝑖𝑚𝑒 , 1] is adopted 
instead of the 2D convolution kernel commonly used in 
other tasks. This layer processes the EEG input along 
with the height of the matrix resulting a more compact 

structure. 𝑋𝑘  denotes the input of the k-th trial. The 
processing can be written as follows: 
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                               ℎ𝑡𝑖𝑚𝑒
𝑘 = 𝐶𝑜𝑛𝑣𝑡𝑖𝑚𝑒(𝑋𝑘)                     (1) 

where 𝐶𝑜𝑛𝑣𝑡𝑖𝑚𝑒  is a function that transform the original 

EEG input 𝑋𝑘  into features ℎ𝑡𝑖𝑚𝑒
𝑘  using a 1D temporal 

convolution. 

 The Convolution Layer (space-specific). Targeting at 
the spatial features, 1D convolution whose kernel size 
is[1, K𝑠𝑝𝑎𝑐𝑒] is adopted. The size of our convolution 

kernel K𝑠𝑝𝑎𝑐𝑒 equals to the number of electrodes. After 

the processing of the spatial convolution layer, the width  
of EEG input becomes size 1. 

                        ℎ𝑠𝑝𝑎𝑐𝑒
𝑘 = 𝐶𝑜𝑛𝑣𝑠𝑝𝑎𝑐𝑒(ℎ𝑡𝑖𝑚𝑒

𝑘 )                    (2) 

where 𝐶𝑜𝑛𝑣𝑠𝑝𝑎𝑐𝑒  denotes the 1D spatial convolution and 

ℎ𝑠𝑝𝑎𝑐𝑒
𝑘  denotes the output features. 

 Batch Normalization [32] and Nonlinear Layer. After 
the processing of the two convolutional layers, the 
distribution of input may change and the shift of the data 
distribution would affect the training of the network 
[32]. Therefore, batch normalization is introduced to 
eliminate the influence of the distribution shift. 

                               ℎ𝐵𝑁
𝑘 = 𝐵𝑁(ℎ𝑠𝑝𝑎𝑐𝑒

𝑘 )                            (3) 

                          ℎ𝑁𝑜𝑛𝑙𝑖𝑛
𝑘 = 𝑁𝑜𝑛𝑙𝑖𝑛(ℎ𝐵𝑁

𝑘 )                        (4) 

where 𝐵𝑁 denotes the batch normalization and 𝑁𝑜𝑛𝑙𝑖𝑛 

denotes the nonlinear units applied to ℎ𝐵𝑁
𝑘 . Output 

features are denoted as ℎ𝑁𝑜𝑛𝑙𝑖𝑛
𝑘 . 

 The Average Pooling Layer. After the processing of the 
temporal convolution layer, more compact features 
along with the height of the input matrix are obtained. 
The average pooling layer is utilized to aggregate the 
features of time dimension and transform the low-level 
features to high-level features. Then. 

                      ℎ𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝑘 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(ℎ𝑁𝑜𝑛𝑙𝑖𝑛

𝑘 )                 (5) 

 where AvgPool denotes the 1D temporal pooling and  

ℎ𝑝𝑜𝑜𝑙𝑖𝑛𝑔
𝑘  denotes the output features. 

 The Dropout Layer. The dropout layer randomly discard 
a portion of the features with a certain probability to 
reduce the risk of overfitting. 

                      ℎ𝑆ℎ𝑎𝑟𝑒𝑑
𝑘 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ𝑝𝑜𝑜𝑙𝑖𝑛𝑔

𝑘 )                 (6) 

where the output of the representation learning module is 

denoted as shared intermediate features ℎ𝑠ℎ𝑎𝑟𝑒𝑑
𝑘 . 

D. Classification Module 

The classification module consists of a convolutional layer 
and a softmax classification layer as shown in Fig. 1. The 
detailed network architecture is described as follows:  

 The Convolution Layer (fully). The fully convolutional 
layer is designed to process the shared features. The size 
of the output is [1, 1]. Since there are four classes in this 
experiment, the convolution layer consists of four 

kernels leading to four channels. The output of this layer  
is the final activations of the network. 

                      ℎ𝑓𝑢𝑙𝑙𝑦
𝑘 = 𝐶𝑜𝑛𝑣𝑓𝑢𝑙𝑙𝑦(ℎ𝑆ℎ𝑎𝑟𝑒𝑑

𝑘 )                    (7) 

where 𝐶𝑜𝑛𝑣𝑓𝑢𝑙𝑙𝑦  denotes the fully convolution applied 

to shared intermediate features. ℎ𝑓𝑢𝑙𝑙𝑦
𝑘  denotes the output 

features. 

 The softmax Layer. This layer works in a fully 
connected manner. The previously obtained activations 
are sent to the softmax layer and the output is a 
probability distribution which denotes the likelihood of 
each class. 

                            �̂�𝑘 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑓𝑢𝑙𝑙𝑦
𝑘 )                       (8) 

 where �̂�𝑘  denotes the probability distribution of each 
class. 

For the classification task, we use the Cross Entropy (CE) 
loss to evaluate the model. The formulation is as follows: 

                                 Loss𝐶𝐸 =
1

𝑁
∑ loss(𝑦𝑘 , �̂�𝑘)

𝑁

𝑘=1

                     (9) 

where N denotes the number of the trials,  𝑦𝑘 is the label of the 

k-th trial and �̂�𝑘  is the output of the model correspondingly. 

loss(𝑦𝑘 , �̂�𝑘) denotes the cross entropy loss of the k-th trial. 

E. Reconstruction Module 

The shared intermediate features are sent to this module for 
reconstruction. It is a structure of autoencoder where the 
representation module is the encoder and the reconstruction 
module is the decoder as demonstrated in Fig. 1. We apply the 
deconvolution with stride (i.e., transposed convolution) to 
decode the shared feature representation as a mirroring step for 
the representation learning part [18]. Before the consecutive 
deconvolution layers, we apply upsampling as the mirror 
operation for the average pooling layer to increase the size of the 
feature. After the process of two deconvolution layers, the size 
of the feature gradually increases and the output of the 
reconstruction module has the same size of the original input. 
The detailed network architecture is described as follows:   

 The Upsampling Layer. This layer works as a mirror 
operation as the average pooling to increase the size of 
the shared intermediate features. A common 
implementation is interpolation. 

                    ℎ𝑢𝑝
𝑘 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(ℎ𝑠ℎ𝑎𝑟𝑒𝑑

𝑘 )                 (10) 

where ℎ𝑢𝑝
𝑘  denotes the outputs of upsampling layer. 

 The Deconvolution Layer (space-specific). By applying 
the deconvolution, the output size would restore to the 
same as the output of the temporal convolutional layer. 

                   ℎ𝑑𝑒𝑐𝑜𝑛𝑣1
𝑘 = 𝐷𝑒𝑐𝑜𝑛𝑣𝑠𝑝𝑎𝑐𝑒(ℎ𝑢𝑝

𝑘 )                 (11) 

where 𝐷𝑒𝑐𝑜𝑛𝑣𝑠𝑝𝑎𝑐𝑒  denotes the 1D deconvolution along 

with the space dimension and ℎ𝑑𝑒𝑐𝑜𝑛𝑣1
𝑘  denotes the 

output. 

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19781.pdf- 4 -Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 31,2024 at 03:04:27 UTC from IEEE Xplore.  Restrictions apply. 



 The Deconvolution Layer (time-specific). By applying 
this deconvolution layer, the output size would restore 
to the same as the original input. 

                      �̂�𝑘 = 𝐷𝑒𝑐𝑜𝑛𝑣𝑡𝑖𝑚𝑒(ℎ𝑑𝑒𝑐𝑜𝑛𝑣1
𝑘 )                 (12) 

where 𝐷𝑒𝑐𝑜𝑛𝑣𝑡𝑖𝑚𝑒  denotes the 1D deconvolution along 
with the time dimension and the reconstructed input is 

denoted as �̂�𝑘. 

For the reconstruction task,  we use the Mean Square Error 
(MSE) to evaluate the model. The loss is computing as follows: 

                            Loss𝑀𝑆𝐸 =
1

𝑁
∑‖𝑋𝑘 − �̂�𝑘‖

2
𝑁

𝑘=1

                     (13) 

where N denotes the number of trails, 𝑋𝑘 is the original input of 

the k-th trial and �̂�𝑘 denotes the reconstructed input of the k-th 
trial.  

F. Joint Learning Framework 

The three modules for representation,  classification and  
reconstruction for EEG-based classification tasks are introduced 
above. Instead of following the unsupervised learning paradigm 
that utilizes the encoder-decoder structure for pre-training, we 
cast the supervised task as a multi-task learning problem [18]. 
The representation learning module, the classification module 
and the reconstruction module are jointly trained.  In principle, 
the shared intermediate features learned in this joint optimizing 
framework keep both reconstruction and classification ability 
[18]. This method allows the two tasks to promote each other 
and improves the generalization ability of the model. Using Θ to 
denotes all the parameters of the model, then the training 
objective function can be written as follows:  

                      ℒ(Θ) = Loss𝐶𝐸 + 𝛼 ∙ Loss𝑀𝑆𝐸 + 𝜆‖𝛩‖2          (14) 

where  Loss𝐶𝐸 denotes the loss for the classification task which 
optimizes the model in a supervised manner. Loss𝑀𝑆𝐸 denotes 
the loss for the reconstruction task which optimizes the model in 
an unsupervised manner. The two losses are described above. 
Hyperparameter  𝛼 > 0  is utilized to balance the relative 
importance of the supervised and unsupervised loss. In practice, 
𝛼 is fixed as a prior for convenience. We apply 𝑙2 regularization 
term with coefficient to alleviate overfitting. Our task is to 
minimize ℒ(Θ) . All trainable parameters of the network are 
trained in an end-to-end manner. 

IV. EXPERIMENTS 

Eexperiments are conducted on a benchmark dataset and the 
proposed method is compared with the state-of-the-art 
approaches. We first introduce the public dataset BCI 
Competition IV dataset 2a and the baseline methods used in this 
experiment. Next, evaluation metrics and implementation 
details are explained. Two training paradigm are adopted: (1) 
One is the commonly used method on BCI Competition IV 
dataset 2a, that is, models for 9 subjects are trained and tested 
individually. (2) Another training method as a supplement is to 
train the model with the combination of all subjects’ data then 
test individually. The purpose of this experiment is to fully 

evaluated all the methods and report performances of each 
model when the amount of training data is not small. 

A. Dataset Description 

The performance of models are evaluated on a public dataset 
for motor imagery, BCI Competition IV dataset 2a. BCI 
Competition IV dataset 2a consists of EEG data from a total of 
9 subjects. There are two sessions recorded on different days for 
each subject. One is for training and the other is for testing. Each 
session includes 288 trials. The model performance is evaluated  
in a 5-fold cross validation manner. The experimental results are 
based on the second session. Each trial are recorded with 22 
EEG electrodes and 3 electrooculogram (EOG) channels. But 
only the 22 EEG channels are utilized in this experiment [21]. 
There are four type of labels in BCI Competition IV dataset 2a, 
which correspond to movements of the left hand, the right hand, 
the feet and the tongue.  

The BCI Competition Dataset IV 2a is sampled at 250Hz and 
bandpass-filtered between 0.5Hz and 100Hz [21]. In this 
experiment we low-pass filter the dataset to below 38Hz. Also, 
in our study the length of each trials is set to 4.5 seconds as the 
input to the network. It starts from 500ms before the start cue of 
each trial until the end cue [15]. To show the effectiveness of 
deep models learning from raw signals and ensure that the 
proposed method can be applied to wider range of tasks,  only 
minimum per-processing is conducted following the procedure 
described in [15]. 

B. Baseline Methods 

To show the effectiveness of our model, the state of the art 
methods on BCI Competition IV dataset 2a are chosen for 
comparison. The baseline methods are listed as follows: 

1) Filter Bank Common Spatial Patterns (FBCSP) [25]: It 

is designed to extract band power features of EEG. A classifier 

is trained to predict labels based on the features. 

2) Shallow ConvNet [15]: Inspired by FBCSP algorithm, 

Shallow ConvNet extract features in a similar way. But Shallow 

ConvNet uses convolutional neural network to do all the 

computations and all the steps are optimized in an end-to-end 

manner. 

3) Deep ConvNet [15]: It has four convolution-pooling 

blocks and is much deeper than Shallow ConvNet. 

4) EEGNet [12]: It has two convolution-pooling blocks. 

The difference between EEGNet and ConvNets introduced 

above is that EEGNet uses depthwise and separable convolution. 

C. Evalution Metric 

The overall accuracy for each subject is computed and the 
the average accuracy for each methods are reported. The overall 
accuracy is calculated as follows: 

                                       𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑐

𝐶
𝑐=1

𝑁
                        (15) 

where 𝑇𝑃𝑐  is the number of the true positive samples of class c, 
C is the number of classes which is four in this experiment and 
N is the number of the trials. 
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D. Implementation Details 

The training phase for deep learning methods is separated 
into two stages [15]. The first stage is that the model is optimized 
on the training set and updates its parameters according to the 
performance on the validation set. After training for 300 epochs, 
the model enters the second training stage. The validation set is 
added to the training set as the whole training set for the second 
stage. At last, report the performance of the model on the test set. 

The learning rate is set to 0.001 and  Adam optimizer is 
adopted whose parameters beta1 and beta2 are set to 0.9, 0.999 
respectively. The dropout rate is set to 0.5. For the batch 
normalization layer used in the experiment, a epsilon constant is 
added for numerical stability. The mean value and variance for 
the batch normalization are fixed during validation and test. The 
batch size is set to 30 

E. Results and Discussion  

As introduced above, models are trained and tested on each 
subject’s data independently following the previous works [25]. 
This section includes the performance comparison of different 
models for each subject. Besides that, performance of models 
with and without the reconstruction module are reported to 
evaluate the effectiveness of multi-task framework. We also 
reveal how the coefficient α influences performance of the 
model. At last, performance of models trained on the 
combination of all the data from 9 subjects are reported and 
analyzed. 

TABLE I.  PERFORMANCE COMPARISON OF DIFFERENT METHODS 

UNDER INDEPENDENT TRAINING PARADIGM. BEST SCORES ARE IN BOLD. 

Subject 

Accuracy % (mean ± std. dev.) 

FBCSP 
Shallow 

ConvNet 

Deep 

ConvNet 

EEGNet DMTL-

BCI  

1 - 79.0±1.1 76.5± 3.2 77.3±2.4 83.5±1.2 

2 - 49.8±4.0 50.6± 3.0 60.2±3.7 49.0±2.3 

3 - 90.9±0.7 85.0±2.1 88.6±1.1 92.7±1.0 

4 - 63.3±2.8 67.6±2.0 63.1±1.4 74.9±1.0 

5 - 70.8±2.9 72.4±1.3 69.7±1.5 71.3±3.0 

6 - 58.0±1.7 55.1±2.2 57.8±3.1 63.7±1.2 

7 - 79.7±5.4 71.7±1.0 69.2±2.0 80.8±2.5 

8 - 81.8±1.4 74.4±2.6 73.7±1.5 80.0±1.0 

9 - 77.4±1.6 79.2±3.4 72.3±4.2 81.7±1.2 

AVG 0.68 72.3±2.4 70.3±2.3 70.2±2.3 75.3±1.6 

Table I shows the performance of the different models on the 
BCI Competition IV dataset 2a. including the accuracy of the 
model on each test set and its average accuracy. The results of 
FBCSP are from [15] which does not provide results of 
individuals. Overall, all methods achieve promising 
performances. All the deep learning models in this experiment 
outperform the FBCSP method. To the best of our knowledge, 
FBCSP is the best performing traditional method on BCI 
Competition IV dataset 2a [15]. The results demonstrate the 
effectiveness and potential of deep convolutional neural 
networks for EEG-based classification tasks.  

According to the average accuracy results in Table I, our 

proposed model performs the best, reaching 75.3%， which 

exceeds the state-of-the-art methods by 3.0%. In addition to the 
final average accuracy, our model achieves the best results in 6 
subjects (1, 3, 4, 6, 7, and 9). The above results show the 
effectiveness of our method. EEGNet performs the worst among 
the deep learning models and the average accuracy is 70.2%. 
Except for the subject 2, EEGNet achieved the worst results in 
other subjects showing that deep separable convolutions may 
not help for the classification task. EEGNet may be a good 
alternative choice for online tasks because it can reduce the 
amount of computation and speed up training and testing [12]. 
The average accuracy of the Deep ConvNet is 2% lower than 
that of Shallow ConvNet. Shallow ConvNet outperforms the 
Deep in 5 subjects (1, 3, 6, 7, and 8) and the Deep performs 
better in several other subjects. The Shallow has only one 
convolution-pooling module while the Deep has four. It shows 
that in this experiment, a deeper and more complex network 
does not help improve the performance.  In contrast, it is easier 
for Deep ConvNet to overfit. The reason is that there is little 
annotated data for training. In this case, the size of the dataset 
becomes the limitation of classification task. 

 

Fig. 3. Performance comparison of models with and without reconsruction 

module. ‘w/o’ is the abbreviation of ‘without’. 

The results in Table I show that our model outperforms all 
the other methods. Then, a ablation experiment is designed to 
demonstrate that the improvement is indeed due to our proposed 
classification-reconstruction multi-task learning framework. Fig. 
3 shows the performance of models with and without the 
reconstruction module. The horizontal axis in Fig. 3 represents 
different subjects and the average accuracy. The vertical axis 
represents the corresponding accuracy. According to the average 
accuracy, the multi-task model outperforms the single-task 
model by 2.5%. Besides that, the multi-task model achieves 
better results in almost every subject (1, 3, 4, 5, 6, 7, and 9) than 
the single-task model which shows the effectiveness of our 
method. The above results and analysis show that the multi-task 
framework consisting of classification and reconstruction can 
improve the performance of the model without increasing 
training data. The reason is that due to multi-task learning,  
features obtained by the representation module keep both the 
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classification and reconstruction ability [18]. This greatly 
improve the generalization ability of our model [17].  

 

Fig. 4. Performance comparison of models trained with different weight 

coefficients (the hyperparameter α ) ranging from 0-9. The vertical axis 

corresponds to the average accuracies (%). Model achieved the best 

performance (75.3%) when α was about 2.5. 

For the multi-task learning framework, the relative 
importance of two tasks has a decisive influence on the 
performance of the model. In order to explore the relation of the 
value of weight coefficient α and the classification accuracy, an 
experiment is conducted and the results are shown in Fig. 4. The 
horizontal axis represents different values of the weight 
coefficient range from 0-9. The vertical axis corresponds to the 
average accuracies of the model with different coefficients on 
the test set. The curve in the figure shows a certain trend. When 
the coefficient is zero, only the classification task is performed. 
As the weight coefficient increases, the importance of the 
reconstruction task increases gradually, and the model achieves 
better performance. When the coefficient is greater than a certain 
value, that is, the proportion of the reconstruction task is too 
large, the performance of the model decreases rapidly. This 
result is instructive for determining the relative importance of 
two tasks in the experiment. 

The above results are based on the first training paradigm 
that models are trained on each subject’s data. This is also the 
method commonly used in previous works [25]. In this 
experiment setup, the dataset for training is small and our model 
performs the best in this case which proves the effectiveness of 
multi-task learning framework. At the last part of experimental 
section, another training paradigm is applied to evaluate each 
model. We train the model using the data from all the subjects 
and report the results on each test set. The model performance is 
evaluated  in a 5-fold cross validation manner.  As Table II 
shows,  the final results are not better than the independent 
training paradigm because of the large difference between 
subjects [16].  According to the average accuracy, Deep 
ConvNet achieves the best performance with a small advantage 
compared with our model. It can be suggested that the increase 
of annotated data boost the performance of the deeper model. 
This shows that in the previous experiment, the amount of data 
is indeed the bottleneck of deep learning methods. However, our 
proposed method still outperforms other methods with 
significant improvement. It shows that our framework can break 

this limitation to a certain extent, enhance the generalization of 
the model and improve the performance with limited data. 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT METHODS UNDER 

COMBINED TRAINING PARADIGM. BEST SCORES ARE IN BOLD. 

Subject 

Accuracy (mean ± std. dev.) 

Shallow 

ConvNet 

Deep 

ConvNet 

EEGNet DMTL-

BCI 

1 79.6±2.4 78.8±2.6 77.5±1.9 80.3±1.6 

2 52.5±1.7 51.8±0.7 60.6±4.3 50.3±1.6 

3 86.6±0.8 86.8±1.8 84.2±1.9 85.5±1.8 

4 67.5±1.9 71.6±2.6 65.7±4.3 70.6±2.0 

5 64.4±2.6 68.7±3.8 66.4±2.7 66.2±4.7 

6 59.1±2.9 64.6±2.0 58.5±1.8 60.6±1.5 

7 84.1±1.5 82.3±1.8 76.2±1.1 83.0±2.5 

8 83.5±1.5 80.9±1.7 81.5±0.8 82.8±0.9 

9 78.2±1.5 75.4±2.5 67.7±1.7 78.4±2.0 

AVG 72.8±1.9 73.4±2.2 70.9±2.3 73.1±2.0 

V. CONCLUSION 

In this paper, A deep learning method based on multi-task 
learning framework is proposed for classification based on EEG 
signals. The proposed model consists of the representation 
module, the classification module and the reconstruction module. 
Three modules are jointly optimized with multi-task learning in 
an end-to-end manner. By sharing representation between 
related tasks, the classification module and reconstruction 
module could interact and promote each other. Shared 
intermediate features keep both the classification and 
reconstruction ability and enhance the generalization ability of 
our model for the classification task. Experiments are conducted 
on the public dataset, BCI Competition IV dataset 2a.  The 
experimental results show that out model outperforms the state 
of the art methods. Furthermore,  ablation study and parameter 
analysis show the effectiveness of our model. In the future, we 
plan to combine semi-supervised learning and make full use of 
unlabeled data to improve the performance of EEG based 
classification. 
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