
PSEUDO LABELS REGULARIZATION FOR IMBALANCED PARTIAL-LABEL LEARNING

Mingyu Xu1,2 Zheng Lian1,2 Bin Liu1,2∗ Zerui Chen3 Jianhua Tao4

1 School of Artificial Intelligence, University of Chinese Academy of Sciences, 100190, China
2 Institute of Automation, Chinese Academy of Sciences, 100190, China

3 Chinese-American Joint Program of RDFZ XISHAN School, 100193, China
4 Department of Automation,Tsinghua University, 100084, China

ABSTRACT

Partial-label learning (PLL) is an important branch of weakly su-
pervised learning where the single ground truth resides in a set of
candidate labels, while the research rarely considers the label imbal-
ance. A recent study for imbalanced PLL propose that the combina-
torial challenge of partial-label learning and long-tail learning lies in
matching between a decent marginal prior distribution with drawing
the pseudo labels. However, even if the pseudo label matches the
prior distribution, the tail classes will still be difficult to learn be-
cause the total weight of tail classes is too small. Therefore, we pro-
pose a pseudo-label regularization technique specially designed for
imbalanced PLL. By punishing the pseudo labels of head classes, our
method implements state-of-art under the standardized benchmarks
compared to the previous PLL methods.

Index Terms— Partial label learning, Pseudo label, Imbalanced
learning

1. INTRODUCTION

In the real world, a large number of data are crowdsourced to non-
experts for annotation. Due to the existence of various noises, the
annotators may hesitate in some labels [1, 2, 3] and give a candidate
label set for an instance. To deal with the problem, PLL has attracted
significant attention from the community [4, 5, 6]. PLL is an impor-
tant branch of weakly supervised learning, which assumes the single
ground-truth label must be in the candidate set. A plethora of meth-
ods have been developed to tackle this problem, including average-
based method [5, 7], identification-based [8, 9, 10, 11, 12, 13].

However, existing PLL methods usually considered on the data
set of balanced category, which may not hold in practice. In many
real world scenarios, training data exhibits a long-tailed label dis-
tribution. That is, many labels occur infrequently in the training
data [14]. Unbalanced data will cause predicted values to devi-
ate from tail categories [15, 16]. The consideration of imbalanced
categories is meaningful for the wider application of partial-label
learning. Recently, researchers propose a novel framework for long-
tailed partial-label learning, called Solar [17], which proposes that
the combinatorial challenge of partial-labeling and long-tail learn-
ing lies in matching between a decent marginal prior distribution
with drawing the pseudo labels. However, we find that there is still
a good result in the case of mismatching in their experiment, which
makes us wonder whether matching is necessary. On the other hand,
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the calculation of pseudo label in Solar requires Sinkhorn-Knopp al-
gorithm [18]. It is an iterative algorithm that consumes more time
and space. More importantly, its convergence does not exist under
the setting of PLL. For this reason, Solar also needs to use the re-
laxed solution occasionally, which inspired us to propose a simpler
yet more effective algorithm.

Therefore, we propose a pseudo-label regularization technique
for imbalanced partial-label learning. We do not require the match-
ing between the pseudo labels and distribution matching and the
closed-form solution of the pseudo labels can be obtained directly by
using the Lagrange multiplier method. We comprehensively evaluate
our method on various benchmark datasets, where our method estab-
lishes state-of-the-art performance. Compared to Solar, our method
improves the average accuracy by 4.53% on the long-tailed version
of CIFAR-10 and 2.35% on the long-tailed version of CIFAR-100.

2. METHOD

2.1. Problem Setup

Let X be the input space and Y = {1, 2, · · · , c} be the label space
with c distinct categories. We consider a partially labeled dataset
D = {(xi, S(xi))}Ni=1 where N is the number of samples and
S(xi) ∈ {0, 1}c is the candidate set for the sample xi ∈ X . We
denote the jth element of S(xi) as Sj(xi). Here, Sj(xi) is equal to
1 if the label j is a candidate label for xi, and otherwise 0.

Our goal is to train a classifier f : X 7→ [0, 1]c, parameter-
ized by θ. Here, f is the softmax output of a neural network, and
fj(·) denotes the jth entry. To perform label disambiguation, we
maintain a pseudo-label w(xi) for sample xi, where wj(xi) do-
nate the jth entry. We train the classifier with the cross-entropy
loss

∑x
j=1−wj(xi)logfj(xi). For the convenience of writing, also

record wj(xi) as wij , fj(xi) as fij , Sj(xi) as Sij . And we noted
the proportion of each category as r ∈ Rc.

2.2. Motivation

PRODEN [9] is the classic way to use pseudo labels for PLL, which
does not take into account the imbalance but is able to write closed-
form solution as:

wij =
Sijfij∑c
j=1 Sijfij

(1)

Recently, researchers have proposed a method that can conduct long
tail PLL learning, named Solar[17]. Solar adopts the Sinkhorn-
Knopp algorithm to obtain pseudo labelw iteratively, which is a spe-
cial case of the dual gradient ascent method. However, it is difficult
to guarantee the convergence of Sinkhorn-Knopp algorithm when we
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Algorithm 1 Pseudo-code of Pseudo Labels Regularization for Im-
balanced Partial-Label Learning

Input: Training dataset D, classifier f , uniform marginal
r,hyperparameters λ, M .

1: for epoch = 1,2,... do
2: for step = 1,2,... do
3: Get classifier prediction fij on a mini-batch of data B.
4: Get the pseudo labels by Equaion 5.
5: Select sample with small loss in each category.
6: Calculate classification loss, consistency loss and mixup

loss.
7: Update SGD optimizer to update f .
8: end for
9: Update the marginal r with the information of the training

set.
10: end for

solve the problem. So the relaxed solution is used in Solar. In order
to avoid the discussion of convergence and save time and space, can
we propose a method that can directly write the closed-form solution
like PRODEN for imbalanced PLL? Besides, we note that in Solar,
the imprecise piror r and real r can lead to similar performance,
which indicates that even if there is no match between imprecise r
and real r, we may also achieve good results in imbalance PLL as
long as we punish the pseudo labels of head classes. Based on the
above ideas, we propose a pseudo label regularization method de-
signed for imbalanced biased label learning.

2.3. Pseudo labels regularization

In this section, we describe our novel framework for partial-label
learning. This framework will meet the two core points we men-
tioned above, one is the method that can directly write the closed-
form solution, the other is that the method can punish the pseudo
labels of head classes. We formalize our method as:

min
w,θ

N∑
i=1

c∑
j=1

(−wij logfij +
1

λ
wij logwij +

M

λ
wij logrj) (2)

s.t.wij = 0 for Sij = 0, i ∈ {1, ..., N}, j ∈ {1, ..., c} (3)
c∑

j=1

wij = 1, i ∈ {1, ..., N} (4)

where λ,M > 0. The objective function consists of three items. The
first item is the commonly used cross-entropy classification loss. The
second item is about the entropy regularization item of the pseudo
labels w to avoid overconfidence. The third item is about the regu-
larization item of the category, which will keep the pseudo labels w
away from the prior distribution r.

Similar to PRODEN, we adopt the method of alternately opti-
mizing w and θ. For constraint wij = 0 for Sij = 0, we can
delete the items related to wij in the optimization goal if Sij = 0.
Then we can calculate the Hession matrix of the optimization objec-
tive as 1

λ
diag({wij}i∈{1,...,N},j∈{1,...,c},Sij=1), which is a positive

definite matrix. This means that the objective function is a convex
optimization problem with respect tow and there is a unique optimal
solution about w in the case of fixed θ.

Using Lagrange multiplier method, we will know the optimal w
satisfy:

wij =
Sijf

λ
ijr

−M
j∑c

j=1 Sijfλ
ijr

−M
j

(5)

Besides, we use the SGD optimization to update θ.
Because we can directly write the optimal closed-form solution

of w in each iteration process, the cost of space and time is very
small. And our method is consistent with Proden under the condi-
tion of balanced PLL. This is because when r1 = r2 = ... = rc,
equation 5 degenerate to PRODEN. And when M > 0, the pseudo
label of head class is punish hardly by big r−M

j . Because head class
has many samples, being slightly punished will not affect its perfor-
mance too much. However, tail class can benefit from equation 5
whose performance will be greatly improved, so as to improve the
overall performance. M is a balance factor to balance head classes
and tail classes training in training. Another case where our method
degenerates to PRODEN is M = 0. In addition, when λ = 1 and
M = 1, our method can be degenerates to [19].

2.4. Other technologies

Pseudo labels regularization is the core component of our method.
However, in order to better conduct the long-tail PLL learning, we
also adopted the following technologies.

Estimate the prior distribution. One of the core difference
between long-tail learning and long-tail PLL in that the number of
each category is unknown, which requires us to estimate r based
on the information of training data. To estimated r, we initialize r
to be uniformly distributed [1/c, ..., 1/c], and update it by using a
moving-average strategy to ensure the stability of updating:

rj ← µrj + (1− µ) 1
n

n∑
i=1

1j=argmax1≤j≤cPij (6)

where µ ∈ [0, 1] is a preset scalar. One advantage of this estimation
method is that assuming our classifier can fully predict accurately,
the estimated r can approach the true r.

Consistency regulation. Using strong and weak data augmen-
tation is an effective method for PLL learning, which has been veri-
fied in PiCO [12], CRDPLL[20], and IRNet [21]. Therefore, we also
use consistency regulation in long-tail PLL. Specifically, we calcu-
late the cross entropy loss by using the pseudo label of weakly aug-
mented samples and the prediction of strongly augmented samples.

Mixup. Recently, mixup [22] technology has been used in PLL
to enhance the robust of PLL in PiCO+ [13] and DALI [23]. It also
shows excellent performance in the long-tail PLL in Solar [17]. In
order to improve performance, we also adopted the mixup technol-
ogy. That is to construct a new sample whose input is a linear com-
bination of two samples, and its pseudo label is also a linear combi-
nation of the two samples.

Sample selection After we get the pseudo label from equation 2,
only some pseudo are actually trustworthy. Therefore, we will select
small loss samples from each type of samples to perform consis-
tency loss and mixup, which will improve the representation ability
of our method. We first calculate the samples belonging to kth class
from the batch B: Bk = {(xi, wi) ∈ B|k = argmax1≤j≤cwij}.
Then select the small cross entropy loss sample with numbers of
min(|Bk|, [ρrk|B|]) in each Bk, where ρ ∈ [0, 1] is a threshold
hyper-parameter. Sample select can be seen as a way of curriculum
learning [24].

3. EXPERIMENTS

3.1. Setup

Datasets. We evaluate our method on Four long-tailed datasets
CIFAR10-LT, CIFAR100-LT, CIFAR100-H-LT [25, 26] and CUB200-
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Table 1: Accuracy comparisons on CIFAR10-LT and CIFAR100-LT under various flipping probability ψ and imbalance ratio γ. Bold
indicates superior results.

methods
CIFAR10-LT

ψ = 0.3 ψ = 0.5
γ = 50 γ = 100 γ = 200 γ = 50 γ = 100 γ = 200

MSE 61.13±1.08 52.59±0.48 48.09±0.45 49.61±1.42 43.90±0.77 39.52±0.70
EXP 52.93±3.44 43.59±0.16 42.56±0.44 50.62±3.00 43.69±2.72 41.07±0.62
LWS 44.51±0.03 43.60±0.12 42.33±0.58 24.62±9.67 27.33±1.84 28.74±1.86

VALEN 58.34±1.05 50.20±6.55 46.98±1.24 40.04±1.88 37.10±0.88 36.61±0.57
CC 78.76±0.27 71.86±0.78 63.38±0.79 73.09±0.40 64.88±1.03 54.41±0.85

PRODEN 81.95±0.19 71.09±0.54 63.00±0.54 66.00±3.60 62.17±3.36 54,65±1.00
PiCO 75.42±0.49 67.73±0.64 61.12±0.67 72.33±0.08 63.25±0.64 53.92±1.64
Solar 83.80±0.52 76.64±1.66 67.47±1.05 81.38±2.84 74.16±3.03 62.12±1.64
Ours 87.25±0.51 81.74±0.53 74.07±1.45 85.86±1.01 78.38±0.37 65.76±2.86

methods
CIFAR100-LT

ψ = 0.05 ψ = 0.1
γ = 10 γ = 20 γ = 50 γ = 10 γ = 20 γ = 50

MSE 49.92±0.64 43.94±0.86 37.77±0.40 42.99±0.47 37.19±0.72 31.49±0.35
EXP 25.86±0.94 24.84±0.40 23.58±0.47 24.82±1.41 21.27±1.24 19.88±0.43
LWS 48.85±2.16 35.88±1.29 19.22±8.56 6.10±2.05 7.16±2.03 5.15±0.36

VALEN 49.12±0.58 42.05±1.52 35.62±0.43 33.39±0.65 30.67±0.11 24.93±0.87
CC 60.36±0.52 54.33±0.21 45.83±0.31 57.91±0.41 51.09±0.48 41.74±0.41

PRODEN 60.31±0.50 50.39±0.96 42.29±0.44 47.32±0.60 41.82±0.55 35.11±0.08
PiCO 54.05±0.37 46.93±0.65 38.74±0.11 46.49±0.46 39.80±0.34 34.97±0.09
Solar 64.75±0.71 56.47±0.76 46.18±0.85 61.82±0.71 53.03±0.56 40.96±1.01
Ours 65.83±0.43 58.62±0.61 48.73±0.25 63.89±0.63 54.49±0.64 45.74±0.70

Table 2: Ablation results on CIFAR10-LT (ψ = 0.5, γ = 100) and
CIFAR100- LT (ψ = 0.1, γ = 20).

methods CIFAR10-LT CIFAR100-LT
Ours 78.38 54.49

Ours w/o S 64.28 51.06
Ours w/o MU 65.27 51.97
Ours w/o CR 73.45 51.61

Ours w/o MU+CR 45.97 39.83
Solar 74.16 53.03

Solar w/o S 29.61 35.80
Solar w/o MU+CR 44.83 30.88

LT[27]. The training images are randomly removed class-wise to
follow a pre-defined imbalance ratio γ = n1/nL, where nj is the
image number of the jth class. For convenience, class indices are
sorted based on the class-wise sample size, in descending order with
n1 ≥ n2 ≥ ... ≥ nL and n1/n2 = n2/n3 = ... = nL−1/nL.
We then generate partially labeled datasets by manually flipping
negative labels ŷ ̸= y to false-positive labels with probability
ψ = P (ŷ ∈ Y|ŷ ̸= y), which follows the settings in previous works
[17]. The final candidate label set is composed of the ground-truth
label and the flipped false-positive labels.

Baselines. We compare our method with seven state-of-the-art
PLL methods: 1) PiCO [12] leverages contrastive learning to disam-
biguate the candidate labels by updating the pseudo-labels with con-
trastive prototype labels. 2) PRODEN [9] is also a pseudo-labeling
method that iteratively updates the latent label distribution by re-
normalized classifier prediction. 3) VALEN [28] recovers the latent
label distributions by a Bayesian parametrization model. 4) LWS
[11] also works in a pseudo-labeling style, which weights the risk
function by considering the trade-off between losses on candidate

labels and non-candidate ones. 5) CC [29] is a classifier-consistent
method that assumes the candidate label set is uniformly sampled.
6) MSE and EXP [10] utilize mean square error and exponential loss
as the risk estimators. All the hyper-parameters are searched accord-
ing to the original papers. 7) Solar [17] is a long-tail PLL method to
match pseudo labels with prior.

Implementation details. We use an 18-layer ResNet as the fea-
ture backbone. The model is trained for 1000 epochs using a stan-
dard SGD optimizer with a momentum of 0.9. The initial learning
rate is set as 0.01, and decays by the cosine learning rate sched-
ule. The batch size is 256. These configurations are applied for
our method and all baselines for fair comparisons. We devise a pre-
estimation training stage, where we run a model for 100/20 epochs
(on CIFAR10/100-LT) respectively to obtain a coarse-grained class
prior, which is the same with the previous works [17]. After that,
we re-initialize the model weights and run with this class prior. We
use λ = 3,M = 2 for CIFAR10-LT, and λ = 1,M = 0.5 for
CIFAR100-LT. The moving-average parameter µ for class prior es-
timation is set as 0.1/0.05 in the first stage and fixed as 0.01 later.
For class-wise reliable sample selection, we linearly ramp up ρ from
0.2 to 0.5/0.6 in the first 50 epochs. For fair comparisons, we equip
all the baselines except PiCO with consistence loss and mixup. The
mix coefficient of mixup is sampled from beta(4, 4). For all ex-
periments, we report the mean and standard deviation based on 3
independent runs with different random seeds.

3.2. Main result

Our method achieves SOTA results. As shown in Table 1, our
method significantly outperforms all the rivals by a notable margin
under various settings of imbalance ratio γ and label ambiguity de-
gree ψ. Specifically, on CIFAR10-LT dataset with ψ = 0.3 and
the imbalance ratio γ = 200 we improve upon the best baseline
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Table 3: Influence of regularization coefficient λ and M on
CIFAR10-LT (ψ = 0.5, γ = 100).

M (λ = 4) All Many Medium Few
1 72.04 89.67 59.92 70.59
2 76.15 87.32 77.77 62.82
3 76.61 84.18 79.39 65.32
4 70.62 82.11 69.68 60.4

M (λ = 3) All Many Medium Few
1 73.42 88.65 67.96 65.48

1.5 77.49 87.07 78.33 66.89
2 78.38 85.11 78.75 71.16
3 68.55 79.31 71.23 54.29

M(λ = 2) All Many Medium Few
0.5 71.33 90.00 67.25 58.09
1 77.49 86.66 79.17 66.07

1.5 73.24 82.81 78.87 56.18
2 68.10 75.38 74.00 52.95

M(λ = 1) All Many Medium Few
0.25 72.94 86.74 71.11 61.59
0.5 67.24 64.99 74.38 59.93

0.75 65.44 67.28 71.00 51.91
1 61.35 56.47 68.38 54.76

Table 4: Performance comparisons of our method and Solar on the
fine-grained CUB200-LT dataset and on the CIFAR100-LT dataset
with hierarchical labels (CIFAR100-H-LT).

Methods Dataset ALL Many Medium Few
Ours CUB-200 39.98 61.19 44.31 15.79
Solar 38.96 58.93 42.44 17.18
Ours CIFAR-100-H 58.88 76.06 60.33 40.17
Solar 58.09 76.78 58.26 39.13

by 6.60%. Specifically, on CIFAR100-LT dataset with ψ = 0.5 and
the imbalance ratio γ = 50, we improve upon the best baseline by
4.00%. Our method is superior to previous methods in all cases. Es-
pecially with the increase of the imbalance rate, our method can still
show excellent performance.

Ablation Studies We do ablation experiments to illustrate the
impact of various technologies in Section 3.4, and can further ex-
plain the performance of our proposed methods. 1) Sample select
or not. Firstly, we experiment with sample select or not. As a com-
parison, we also conducted the desired ablation experiment on Solar.
w/o S means regards all examples as clean samples and does not per-
form selection. The results are shown in Table 2. We can find that
sample select has improved our method. When we do not use sample
select, our method improves by 34.67% in CIFAR10-LT and 15.26
% in CIFAR100-LT compared with Solar. Our method does not rely
too much on sample selection as solar. This also shows the power of
the pseudo label regularization technique we proposed for imbalance
PLL. 2) Consistency regularization and Mixup or Not. we ablate
the contributions of two components in representation enhancement:
mixup augmentation training and consistency regularization. w/o
MU which removing Mixup augmentation training. w/o CR means
removing consistency regularization. w/o MU+CR means removing
both Mixup and consistency. The results are shown in Table 2. We
find that all methods can benefit from consistency regularization and
mixup. But our methods and Solar benefit more.

Influence of regularization coefficient λ and M . We conduct

Table 5: The running time of one epoch on a NVIDIA V100 GPU.

CIFAR10-LT CIFAR100-LT
Solar 0.574s 0.769s
Ours 0.016s 0.023s

PRODEN 0.009s 0.011s

experiments on CIFAR10-LT with ψ = 0.5 and γ = 100. The result
are show in Table 6. We find that selecting appropriate regulariza-
tion coefficient is the key to improve the performance of Long-tail
PLL. And we find that with the increase of λ, the optimal M/λ also
increases, where M/λ is the regularization coefficient in formula 2.
In order to better understand the role of λ and M in our method,
we report accuracy on three groups of classes with different sam-
ple sizes. Recall from Section 4.1 that the class indices are sorted
based on the sample size, in descending order. We divide the classes
into three groups: many (1,..,[c/3]), few ([2c/3]+1,..., c) and medium
(rest) shots. When M is small, as M increases, the penalty for the
pseudo label of head (Many) classes increases, which in turn leads
to a decrease in the accuracy of head classes. For Medium and Few
classes, the accuracy will be promoted. When M is large, as M in-
creases, the classification accuracy of all groups will decrease. The
result of the combined force is that as M increases, the overall ac-
curacy first increases and then decreases. When λ = 1,M = 0, our
method can be PRODEN. Almost all results shown in Table 3 are
better than 62.17, which is the accuracy of PRODEN in Table 1.

Results on fine-grained partial-label learning. In practice, se-
mantically similar classes can lead to significant label ambiguity, as
exemplified in Table 4. To test the limit of our method, we follow
Solar [17] and evaluate on two fine-grained datasets: 1) CUB200-LT
[27] dataset with 200 bird species; 2) CIFAR100-LT with hierarchi-
cal labels (CIFAR100-H-LT), where the candidate labels are gener-
ated within the same superclass . We set ψ = 0.05, γ = 5 for CUB-
200-LT and ψ = 0.5, γ = 20 for CIFAR100-H-LT. These results
clearly validate the effectiveness of our method, when the dataset
presents severe label ambiguity.

Space Complexity Cost. The cost of pseudo labels regulariza-
tion isO(|B|c) in each batch, which is the same as PRODEN, where
|B| is the size of batch size, c is the num of class. While Solar is
|Q|c, where the default |Q| is set as |q||B| and q = 64, T is the
iteration number of SK algorithm with 50 as default.

Time Complexity Cost. The cost of pseudo labels regulariza-
tion isO(|B|c) in each batch, which is the same as PRODEN, where
|B| is the size of batch size, c is the num of class. While Solar
is O(T |Q|c), where the default |Q| is set as |q||B| and q = 64.
The result are shown in Table 5. Experiments have proved that our
pseudo labels calculation method is efficient. It only takes less than
2% of the whole training time.

4. CONCLUSION

In this work, we present a novel framework for the challenging im-
balanced PLL problem. We propose a pseudo labels regularization
method for PLL to keep pseudo labels away from the estimated class
prior. In order to further improve performance, we have adopted
techniques such as consistency loss, mixup, and sample selection.
Comprehensive experiments show that our method improves base-
line algorithms by a significant margin. In the future, we will ex-
plore the optimal regularization coefficient λ and M theoretically
and adjust the weights between samples.
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