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ABSTRACT
Dynamic facial expression recognition (DFER) is essential to the
development of intelligent and empathetic machines. Prior efforts
in this field mainly fall into supervised learning paradigm, which is
severely restricted by the limited labeled data in existing datasets.
Inspired by recent unprecedented success of masked autoencoders
(e.g., VideoMAE), this paper proposes MAE-DFER, a novel self-
supervised method which leverages large-scale self-supervised pre-
training on abundant unlabeled data to largely advance the develop-
ment of DFER. Since the vanilla Vision Transformer (ViT) employed
in VideoMAE requires substantial computation during fine-tuning,
MAE-DFER develops an efficient local-global interaction Trans-
former (LGI-Former) as the encoder. Moreover, in addition to the
standalone appearance content reconstruction in VideoMAE, MAE-
DFER also introduces explicit temporal facial motion modeling to
encourage LGI-Former to excavate both static appearance and dy-
namic motion information. Extensive experiments on six datasets
show that MAE-DFER consistently outperforms state-of-the-art
supervised methods by significant margins (e.g., +6.30% UAR on
DFEW and +8.34% UAR on MAFW), verifying that it can learn pow-
erful dynamic facial representations via large-scale self-supervised
pre-training. Besides, it has comparable or even better performance
than VideoMAE, while largely reducing the computational cost
(about 38% FLOPs). We believe MAE-DFER has paved a new way
for the advancement of DFER and can inspire more relevant re-
search in this field and even other related tasks. Codes and models
are publicly available at https://github.com/sunlicai/MAE-DFER.
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1 INTRODUCTION
Facial expressions, as an important aspect of nonverbal communi-
cation, play a significant role in interpersonal interactions [10]. In
the past two decades, automatic facial expression recognition (FER)
has drawn widespread attention due to its crucial role in developing
intelligent and empathetic machines that can interact with humans
in a natural and intuitive way [11, 44, 45]. FER also has a wide
spectrum of practical applications in areas such as healthcare [3],
education [66], and entertainment [53]. According to the input data
type, FER can be divided into two categories, i.e., static FER (SFER)
and dynamic FER (DFER) [31]. SFER takes static facial images as
input, while DFER aims to recognize expressions in dynamic image
sequences or videos. Since SFER overlooks the critical temporal
information for the interpretation of facial expressions, this paper
mainly focuses on DFER.

DFER is dominated by the supervised learning paradigm. Re-
searchers have developed various deep neural networks for this task,
including 2D/3D convolutional neural networks (CNN) [15, 25, 27],
recurrent neural networks (RNN) [14, 52, 65], and more advanced
Transformer-based architectures [29, 35, 37, 61, 69]. Although su-
pervised methods have achieved remarkable success, the limited
training samples in existing DFER datasets (typically around 10K,
which is much smaller than those in other research areas such as
general image/video classification and face recognition, see details
in Table 1) severely restrict their further advancement (e.g., train-
ing large video Transformers). A straightforward idea to address
this issue is to increase the dataset scale. However, collecting and
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Figure 1: An overview of the proposed MAE-DFER.

annotating large-scale high-quality DFER datasets is pretty time-
consuming and labor-intensive, which is mainly due to the sparsity
of dynamic facial expressions in videos and the ambiguity and sub-
jectivity in facial expression perception [25, 31, 64]. Considering
that there are massive unlabeled facial videos on the Internet, a
natural question arises in the mind: can we exploit them to fully
unleash the power of deep neural networks for better DFER?

The recent progress of self-supervised learning in many deep
learning fields [1, 12, 22] indicates that there is a positive answer.
Notably, masked autoencoder (MAE) [22] in computer vision devel-
ops an asymmetric encoder-decoder architecture for masked image
modeling. It successfully pre-trains the vanilla Vision Transformer
(ViT) [13] in an end-to-end manner and outperforms the supervised
baselines in many vision tasks. Subsequently, VideoMAE [54] ex-
tends MAE to the video domain and also achieves impressive results
on lots of general video datasets. Motivated by this line of research,
we present MAE-DFER (Fig. 1), a novel self-supervised method
based on VideoMAE which leverages large-scale self-supervised
pre-training on abundant unlabeled facial video data to promote the
advancement of DFER. Although VideoMAE has made remarkable
success in self-supervised video pre-training, we notice that it still
has two main drawbacks: 1) The vanilla ViT encoder employed
in VideoMAE requires substantial computation during fine-tuning
due to the quadratic scaling cost of global space-time self-attention,
which is unaffordable in many resource-constrained scenarios. 2) It
only reconstructs video appearance contents during pre-training,
thus might be insufficient to model temporal facial motion infor-
mation which is also crucial to DFER.

To tackle the above issues in VideoMAE, ourMAE-DFER presents
two core designs accordingly. For the first issue, MAE-DFER devel-
ops an efficient local-global interaction Transformer (LGI-Former)
as the encoder. Different from the global space-time self-attention
in ViT, LGI-Former first constrains self-attention in local spatiotem-
poral regions and then utilizes a small set of learnable representative

tokens to enable efficient local-global information exchange. Con-
cretely, it decomposes the global space-time self-attention into
three stages: local intra-region self-attention, global inter-region
self-attention, and local-global interaction. In this way, LGI-Former
can efficiently propagate global information to local regions and
avoid the expensive computation of global space-time attention.
For the second issue, MAE-DFER introduces joint masked appear-
ance and motion modeling to encourage the model to capture both
static facial appearance and dynamic motion information. Specifi-
cally, in addition to the original appearance content reconstruction
branch, it simply utilizes the frame difference signal as another re-
construction target for explicit temporal facial motion modeling. To
verify the effectiveness of MAE-DFER, we perform large-scale self-
supervised pre-training on the VoxCeleb2 dataset [9], which has
more than 1M unlabeled facial video clips collected from YouTube.
Then we fine-tune the pre-trained model on six DFER datasets,
including three relatively large in-the-wild datasets (DFEW [25],
FERV39k [64], and MAFW [32]) and three small lab-controlled
datasets (CREMA-D [5], RAVDESS [36], and eNTERFACE05 [38]).
The results show that MAE-DFER significantly outperforms the
state-of-the-art supervised methods, indicating that it is capable of
learning strong and useful dynamic facial representations for DFER.
Moreover, compared with VideoMAE, MAE-DFER largely reduces
∼38% FLOPs while having comparable or even better performance.
The main contributions of this paper are summarized as follows:

• We present a novel self-supervised method, MAE-DFER, as
an early attempt to leverage large-scale self-supervised pre-
training on abundant unlabeled facial video data to advance
the development of DFER.

• MAE-DFER improves VideoMAE by developing an efficient
LGI-Former as the encoder and introducing joint masked
appearance and motion modeling. With these two core de-
signs, MAE-DFER largely reduces the computational cost
while having comparable or even better performance.

• Extensive experiments on six DFER datasets show that our
MAE-DFER consistently outperforms the previous best su-
pervised methods by significant margins (+5∼8% UAR on
three in-the-wild datasets and +7∼12% WAR on three lab-
controlled datasets), which demonstrates that it can learn
powerful dynamic facial representations for DFER via large-
scale self-supervised pre-training.

2 RELATEDWORK
2.1 Dynamic Facial Expression Recognition
The early studies on DFER primarily focus on designing various
local descriptors and only several very small lab-controlled datasets
are available for evaluation. With the emergence of deep learning
and the proliferation of relatively larger datasets, the research par-
adigm has undergone a transformative shift towards training deep
neural networks in an end-to-end fashion. In general, there are three
trends. The first trend directly utilizes 3D CNNs (such as C3D [55],
3D ResNet [21], R(2+1)D [56], and P3D [46]) to extract joint spa-
tiotemporal features from raw facial videos [15, 25, 27, 32, 60, 64].
The second trend uses the combination of 2D CNN (e.g., VGG
[48] and ResNet [23]) and RNN (e.g., LSTM [24] and GRU [8])
[14, 25, 26, 32, 52, 64, 65]. Recently, with the rise of Transformer
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[59], several studies exploit its global dependency modeling abil-
ity to augment CNN/RNN for better performance, which forms
the third trend [29, 30, 32, 35, 37, 69]. For instance, Former-DFER
[69] employs a Transformer-enhanced ResNet-18 for spatial fea-
ture extraction and another Transformer for temporal informa-
tion aggregation. STT [37] improves Former-DFER by introducing
factorized spatial and temporal attention for joint spatiotemporal
feature learning. IAL [29] further introduces the global convolution-
attention block and intensity-ware loss to deal with expressions
with different intensities. However, all the above methods fall into
the supervised learning paradigm, which is thus restricted by the
limited training samples in existing DFER datasets. Unlike them,
this paper proposes a self-supervised method that can learn power-
ful representations from massive unlabeled facial video data and
achieve significant improvement over them.

2.2 Masked Autoencoders
Masked autoencoders (MAEs), as the representative of generative
self-supervised learning, have recently achieved unprecedented
success in many deep learning fields [67]. They are mainly inspired
by the progress of masked language modeling (e.g., BERT [12] and
GPT [47]) in natural language processing and typically adopt a
mask-then-predict strategy to pre-train the vanilla ViT. Notably,
iGPT [7] follows GPT to auto-regressively predict pixels and makes
the first successful attempt. BEiT [2] follows BERT and adopts a two-
stage training pipeline, i.e., first utilizing an off-the-shelf tokenizer
to generate discrete visual tokens and then performing masked-
then-predict training. MAE [22] improves BEiT by designing an
asymmetric encoder-decoder architecture to enable efficient end-
to-end pre-training. After that, many studies adopt the architecture
of MAE to perform self-supervised pre-training on various tasks.
For instance, VideoMAE [54] and its concurrent work MAE-ST [17]
extends MAE to the video domain and achieve impressive results
on lots of video benchmarks. Our proposed MAE-DFER is inspired
by VideoMAE and it develops two core designs to facilitate effective
and efficient representation learning for DFER.

3 METHOD
3.1 Revisiting VideoMAE
VideoMAE [54] is a simple extension of MAE [22] in the video
domain. It basically follows the asymmetric encoder-decoder archi-
tecture of MAE for self-supervised video pre-training. The main
difference is that a much higher masking ratio (i.e., 90% vs. 75%) and
tube masking strategy (instead of random masking) are adopted,
considering that large temporal redundancy and high temporal
correlation in videos [54]. In specific, VideoMAE mainly consists of
four modules: cube embedding, tube masking, a high-capacity en-
coder Φ𝑒 (i.e., the vanilla ViT), and a lightweight decoder Φ𝑑 . Given
a raw video V ∈ R𝑇×𝐻×𝑊 ×3, VideoMAE first utilizes cube embed-
ding with a cube size of 2×16×16 to transform V into a sequence of
tokens X ∈ R𝐾×𝐶 , where 𝐾 = 𝑇

2 · 𝐻16 · 𝑊16 and 𝐶 is the channel size.
Then the tube masking module generates a mask M ∈ {0, 1}𝐾 with
a masking ratio of 𝜌 = 90% and the high-capacity encoder Φ𝑒 only
takes the unmasked tokens X ⊙ M ∈ R𝐿×𝐶 (𝐿 = (1 − 𝜌)𝐾) as in-
put and simply process them with global space-time self-attention.
Subsequently, the lightweight decoder Φ𝑑 combines the encoded

visible tokens with the learnable mask tokens (with a size of 𝜌𝐾 ) to
reconstruct the raw video data. Finally, the mean square error be-
tween the original and reconstructed video in the masked positions
are calculated to optimize the whole model. The above process can
be generally formulated as follows:

LVideoMAE = MSE(Φ𝑑 (Φ𝑒 (X ⊙ M)),V ⊙ Ψ(1 −M)) (1)

where Ψ is a function used to obtain masked positions in the pixel
space. In downstream tasks, the lightweight decoderΦ𝑑 is discarded
and only the high-capacity ViT encoder Φ𝑒 will be fine-tuned.

3.2 MAE-DFER: Overview
Although VideoMAE has made great success in self-supervised
video pre-training, it still faces two major challenges. First, it only
focuses on reconstructing raw appearance contents in the video,
which thus lacks explicit temporal motion modeling and might not
be sufficient to model temporal facial motion information. Second,
although it enjoys high efficiency during pre-training through an
asymmetric encoder-decoder architecture (i.e., dropping a large
proportion of masked tokens to save computation), the computa-
tional cost of global space-time self-attention in the vanilla ViT is
still extremely expensive during downstream fine-tuning since it
cannot drop input tokens at this stage. To tackle these issues, as
shown in Fig. 1, we propose MAE-DFER, a new self-supervised
framework for DFER. For the first issue, MAE-DFER introduces
joint masked appearance and motion modeling to encourage the
model to excavate both static appearance and dynamic motion in-
formation (Section 3.3). For the second issue, it employs a novel
Local-Global Interaction Transformer (LGI-Former) as the encoder
to largely reduce the computational cost of ViT during downstream
fine-tuning (Section 3.4).

3.3 MAE-DFER: Joint Masked Appearance and
Motion Modeling

Temporal motion information matters for DFER (e.g., the grad-
ual appearance and disappearance of a smile may convey totally
different emotions). To explicitly incorporate this information in
self-supervised pre-training, our MAE-DFER adds an additional
temporal motion reconstruction branch in parallel with the original
appearance reconstruction branch in VideoMAE to achieve joint
facial appearance and motion structure learning. Specifically, we
simply calculate the frame difference signal as the temporal motion
target given that its computation is very cheap and it has shown
effectiveness in video action recognition [49, 62, 63]. To ensure
that the computational cost during pre-training similar to Video-
MAE, we share the decoder backbone for appearance and motion
branches and only use two different linear heads to predict their
targets. Besides, the decoder only outputs appearance predictions
in the odd frames and motion predictions in the remaining even
frames. Finally, the total loss is the weighted sum of mean square
errors in two branches:

LMAE-DFER = _ ·MSE(Φ𝑑 (Φ𝑒 (X ⊙ M)),V𝑎 ⊙ Ψ(1 −M))+
(1 − _) ·MSE(Φ𝑑 (Φ𝑒 (X ⊙ M)),V𝑚 ⊙ Ψ(1 −M)) (2)

where V𝑎 = V[0 : 𝑇 : 2] is the appearance target, V𝑚 = V[1 : 𝑇 : 2]−
V[0 : 𝑇 : 2] is the motion target, _ is a hyperparameter to balance
the contribution of two branches and we empirically set it to 0.5.
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Figure 2: The illustration of LGI-Former. For simplicity, we only present the information flow in one block, which mainly
consists of three stages: 1) local intra-region self-attention, 2) global inter-region self-attention, and 3) local-global interaction.

3.4 MAE-DFER: Efficient LGI-Former
The architecture of LGI-Former is illustrated in Fig. 2. Unlike the
global space-time self-attention adopted in the vanilla ViT, LGI-
Former constrains self-attention in local spatiotemporal regions
to save computation. However, simply stacking multiple local self-
attention layers does not permit inter-region information exchange.
Inspired by [16] and [51], the core idea of LGI-Former is to in-
troduce a small set of representative tokens to local regions. On
the one hand, these tokens take charge of summarizing critical
information in local regions. On the other hand, they allow for
long-range dependencies modeling between different regions and
enable efficient local-global information exchange. Thanks to the
introduction of representative tokens, the expensive global space-
time self-attention can be decomposed into three stages with much
cheaper computation: 1) local intra-region self-attention, 2) global
inter-region self-attention, and 3) local-global interaction. In the
following, for simplicity, we only describe the above three stages
during fine-tuning. The process during pre-training is similar as
MAE-DFER follows VideoMAE to adopt the tube masking strategy
and applies the same masking ratio to each local region to ensure
that all regions have an equal number of visible tokens.

Local Intra-Region Self-Attention. For convenience, we first
reshape the input sequenceX ∈ R𝐾×𝐶 (after cube embedding) to 3D
tokens X ∈ R

𝑇
2 ×

𝐻
16 ×

𝑊
16 ×𝐶 and divide it into non-overlapped local

spatiotemporal regions with an equal size of 𝑡 × ℎ ×𝑤 as shown in
Fig. 2. In each region, apart from the original tokens, we also add a
learnable representative token. The local intra-region self-attention
then operates on their concatenation to simultaneously promote
fine-grained local feature learning and enable local information
aggregation into the representative token. Assume that the original
local tokens and the associated representative token in the 𝑖th
region is X𝑖 ∈ R𝑁×𝐶 and S𝑖 ∈ R1×𝐶 respectively (𝑁 = 𝑡ℎ𝑤 , 𝑖 ∈
{1, 2, ..., 𝑀}, and𝑀 = 𝐾

𝑁
is the number of representative tokens), the

formulation of local intra-region self-attention is given as follows:

X̂𝑖 = Concat(S𝑖 ,X𝑖 ) (3)

X̂𝑖 = MHSA(LN(X̂𝑖 )) + X̂𝑖 (4)

where X̂𝑖 ∈ R(𝑁+1)×𝐶 , MHSA is the multi-head self-attention in
the vanilla ViT, and LN stands for layer normalization. In particular,
the calculation of MHSA is formulated as follows:

MHSA(X) = Concat(head1, ..., headℎ)W𝑂 (5)

head𝑗 = Attention(XW𝑄

𝑗
,XW𝐾

𝑗 ,XW
𝑉
𝑗 ) (6)

Attention(Q,K,V) = softmax(QK
⊤

√
𝑑

)V (7)

where W∗
𝑗
∈ R𝐶×𝑑 (∗ ∈ {𝑄,𝐾,𝑉 }), W𝑂 ∈ R𝐶×𝐶 , ℎ is the number

of attention heads, 𝑑 = 𝐶
ℎ
is the feature dimension of each head.

Global Inter-Region Self-Attention. After local intra-region
self-attention, the representative token has extracted crucial infor-
mation in each local region and can represent the original tokens to
perform information exchange between different regions. Since the
number of representative tokens is typically small (e.g., 8), the com-
putational cost for inter-region communication can be negligible.
Thus, we first aggregate all representative tokens and then sim-
ply utilize global inter-region self-attention on them to propagate
information between different regions, i.e.,

S = Concat(S1, ..., S𝑀 ) (8)
S = MHSA(LN(S)) + S (9)

where S ∈ R𝑀×𝐶 is the aggregated representative tokens.
Local-Global Interaction. After information propagation via

global inter-region self-attention, the representative token in each
local region has been consolidated by useful information from
other regions, thus having a global view of the whole input tokens.
To enable the original tokens in each local region to access the
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global information, we further employ cross-attention between
local tokens and representative tokens to achieve that goal:

X𝑖 = MHCA(LN(X𝑖 ), LN(S)) + X𝑖 (10)
X𝑖 = FFN(LN(X𝑖 )) + X𝑖 (11)
S = FFN(LN(S)) + S (12)

where MHCA is multi-head cross-attention and FFN denotes feed-
forward network. Specifically, MHCA has the similar implemen-
tation with MHSA except that its query and key/value come from
different inputs, i.e.,

MHCA(X,Y) = Concat(head1, ..., headℎ)W𝑂 (13)

headℎ = Attention(XW𝑄

𝑗
,YW𝐾

𝑗 ,YW
𝑉
𝑗 ) (14)

Complexity Analysis.We suppose that the flattened input is
X ∈ R𝐾×𝐶 , where𝐾 = 𝑀𝑁 is the number of total input tokens,𝑀 is
the number of local regions and 𝑁 is the number of original tokens
in each region. Since self-attention scales quadratically with the
sequence length, the complexity of local intra-region self-attention
is 𝑂 (𝑀 (𝑁 + 1)2) ≈ 𝑂 (𝑀𝑁 2) = 𝑂 (𝐾2

𝑀
). Similarly, the complexity

of global inter-region self-attention is 𝑂 (𝑀2) = 𝑂 ( 𝐾2

𝑁 2 ). Moreover,
local-global interaction has a complexity of 𝑂 (𝑀𝑁𝑀) = 𝑂 (𝐾2

𝑁
).

Putting them together, the complexity of an LGI-Former block is
𝑂 (( 1

𝑀
+ 1
𝑁 2 + 1

𝑁
)𝐾2), while a standard Transformer block in the

vanilla ViT has a complexity of 𝑂 (𝐾2). In practice, 𝑀 ≪ 𝐾 and
𝑁 ≪ 𝐾 , thus the computational cost of LGI-Tranformer is largely
reduced compared with the vanilla ViT.

4 RESULTS
4.1 Datasets
Pre-training Dataset. We perform self-supervised pre-training
on VoxCeleb2 [9]. It has over 1 million video clips of more than
6,000 celebrities, extracted from around 150,000 interview videos on
YouTube. It is divided into a development set and a test set. We only
use the development set for pre-training, which contains 1,092,009
video clips from 145,569 videos.

DFER Datasets. We conduct experiments on 6 datasets, includ-
ing 3 large in-the-wild datasets (i.e., DFEW [25], FERV39k [64], and
MAFW [32]) and 3 small lab-controlled datasets (i.e., CREMA-D [5],
RAVDESS [36], and eNTERFACE05 [38]). Their basic information
is summarized in Table 1. Detailed introductions can be found in
Appendix A. Following previous studies [25, 32, 64, 69], we report
both unweighted average recall (UAR, i.e., the mean class accuracy)
and weighted average recall (WAR, i.e., the overall accuracy). For
those datasets using cross-validation, we combine the predictions
and labels from all folds to calculate the final UAR and WAR.

4.2 Implementation Details
MAE-DFER. For the high-capacity encoder, we adopt the LGI-
Former which has 16 blocks and a hidden size of 512. The total
number of parameters is 84.9M, which is similar to that (86.2M) of
ViT base model. The local region size is set to 2 × 5 × 10 by default.
For the lightweight decoder, we follow VideoMAE to adopt four
standard Transformer blocks with a hidden size of 384.

Table 1: Basic information of six DFER datasets used in this
paper. CV: cross-validation. †: subject-independent setting.

Name Wild #Videos #Classes Evaluation

DFEW [25] ✓ 11,697 7 Default 5-fold CV
FERV39k [64] ✓ 38,935 7 Default train & test
MAFW [32] ✓ 9,172 11 Default 5-fold CV
CREMA-D [5] × 7,442 6 5-fold CV †

RAVDESS [36] × 1,440 8 6-fold CV †

eNTERFACE05 [38] × 1,287 6 5-fold CV †

Pre-training. The original videos provided in VoxCeleb2 have a
resolution of 224×224. Given that the speaker’s face generally does
not fill the entire frame, we only used a 160 × 160 patch located
in the upper center of each video frame to remove the irrelevant
background information. During pre-training, we extract 16 frames
from each video clip using a temporal stride of 4. This results in
8 × 10 × 10 input tokens after cube embedding, when using a cube
size of 2 × 16 × 16. Regarding hyperparameters, we mainly follow
VideoMAE. Specifically, we use an AdamW optimizer with 𝛽1 = 0.9
and 𝛽2 = 0.95, an overall batch size of 128, a base learning rate
of 3𝑒 − 4, and a weight decay of 0.05. We linearly scale the base
learning rate according to the overall batch size, using the formula:
lr = base learning rate × batch size

256 . In addition, we use a cosine
decay learning rate scheduler. By default, we pre-train the model
for 50 epochs, with 5 warmup epochs. When using 4 Nvidia Tesla
V100 GPUs, the pre-training takes about 3-4 days.

Fine-tuning. Same as pre-training, the input clip size is 16 ×
160 × 160 and the temporal stride is 4 for most datasets (except 1
for FERV39k). To optimize the model, we use an AdamW optimizer
with 𝛽1 = 0.9 and 𝛽2 = 0.999, with a base learning rate of 1𝑒 − 3
and an overall batch size of 96. The other hyperparameters remain
the same as in pre-training, and more details can be found in [54].
We fine-tune the pre-trained model for 100 epochs, with 5 warmup
epochs. During inference, we sample two clips uniformly along the
temporal axis for each video and then calculate the average score
as the final prediction.

4.3 Ablation Studies
In this part, we conduct ablation experiments onDFEWand FERV39k
to demonstrate the effects of several key factors in MAE-DFER. For
simplicity, on DFEW, we only report results of fold 1 (fd1).

Pre-training Epochs. As shown in Table 2, we observe that
longer pre-training is generally beneficial and the performance
saturation occurs at around 50 epochs. Besides, we also find that
the performance of training from scratch (i.e., #Epochs=0) is very
poor (nearly random guessing). This is largely attributed to the
limited training samples in current DFER datasets since large vi-
sion Transformers are data-hungry and training them typically
requires more than million-level labeled data [13, 54]. This result
also demonstrates the significance and superiority of large-scale
self-supervised pre-training over traditional supervised learning.

Comparison of Different Model Architectures. We then
investigate the effect of three key modules in LGI-Former by eval-
uating the performance of the following variants: 1) only local
intra-region self-attention (i.e., no global inter-region self-attention
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Table 2: Ablation study on the pre-training epochs.

Dataset Metric Pre-training Epochs

0 10 30 50 70

DFEW UAR 15.08 58.05 60.46 62.59 61.93
WAR 23.84 71.29 72.73 74.88 74.58

FERV39k UAR 18.09 39.98 42.04 43.12 43.15
WAR 28.33 50.21 51.62 52.07 52.01

Table 3: Ablation study on themodel architecture. Intra: local
intra-region self-attention. Inter: global inter-region self-
attention. LGI: local-global interaction.

Dataset Intra Inter LGI #Params (M) FLOPs (G) UAR WAR

DFEW

✓ × × 51.2 42.7 59.66 72.00
✓ ✓ × 68.0 42.8 60.43 73.69
✓ × ✓ 68.1 49.6 60.98 74.58
✓ ✓ ✓ 84.9 49.8 62.59 74.88
× × × 86.2 80.8 62.85 74.93

FERV39k

✓ × × 51.2 42.7 40.94 50.88
✓ ✓ × 68.0 42.8 42.15 52.04
✓ × ✓ 68.1 49.6 42.25 52.01
✓ ✓ ✓ 84.9 49.8 43.12 52.07
× × × 86.2 80.8 43.72 52.52

and local-global interaction), 2) no local-global interaction, 3) no
global inter-region self-attention, and 4) using global space-time
self-attention instead (i.e., ViT). The results are presented in Table
3. We have the following observations: 1) The first variant has the
worst performance, which is as expected since only utilizing local
intra-region self-attention does not allow local tokens to access
global information. 2) Either global inter-region self-attention or
local-global interaction contributes to better performance, demon-
strating the effectiveness of these two modules in local-global infor-
mation propagation. Besides, the latter is generally more effective
than the former but at the cost of more computation. It also should
be noted that global inter-region self-attention only introduces neg-
ligible computation (∼0.1G FLOPs) thanks to the small number (i.e.,
8) of representative tokens. 3)When combing the global inter-region
self-attention with local-global interaction, LGI-Former achieves
the best results. Besides, compared with the last variant which uses
global space-time self-attention (i.e., ViT), we only observe slight
performance drop (<0.6%) but large computation reduction (∼38%
FLOPs), thus demonstrating the efficiency of LGI-Former.

Effectiveness of Joint Masked Appearance and Motion
Modeling.We study the effect of different loss weights in Equation
2, ranging from 1.0 (i.e., only the original appearance target) to
0.0 (i.e., only the motion target). As shown in Fig. 3, we find that
the joint model outperforms the model with only one reconstruc-
tion target and it achieves the best performance when adopting a
loss weight around 0.5. For instance, on DFEW fd1, the best joint
model surpasses the standalone appearance model by 1.69% UAR
and 0.92%WAR and its motion counterpart by 1.77% UAR and 1.02%
WAR. These results indicate that joint masked appearance and mo-
tion modeling are indispensable to facilitate better spatiotemporal
representation learning for DFER. In addition to our MAE-DFER,
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Figure 3: Ablation study on the loss weight.

Table 4: Ablation study on the local region size.

Dataset Region size
(𝑡 × ℎ ×𝑤 ) 𝑀 #Params (M) FLOPs (G) UAR WAR

DFEW

1 × 5 × 10 16 84.9 49.8 62.36 74.33
2 × 2 × 10 20 84.9 50.0 61.07 74.87
2 × 5 × 10 8 84.9 49.8 62.59 74.88
2 × 10 × 10 4 84.9 50.7 61.27 74.19
4 × 5 × 10 4 84.9 50.7 62.36 74.67

FERV39k

1 × 5 × 10 16 84.9 49.8 42.71 52.26
2 × 2 × 10 20 84.9 50.0 42.24 52.25
2 × 5 × 10 8 84.9 49.8 43.12 52.07
2 × 10 × 10 4 84.9 50.7 42.71 52.02
4 × 5 × 10 4 84.9 50.7 43.09 52.41

we apply it to VideoMAE (shown in Table 10 of Appendix), which
can also bring further improvement (1.51% UAR with 0.30% WAR
on DFEW fd1 and 0.39% UAR with 0.13% WAR on FERV39k).

Role of Local Region Size. We evaluate the effect of different
local region sizes in LGI-Former and report the results in Table 4.
We can find that the model performance is not very sensitive to
the region size. Moreover, the model computation with different
region sizes are similar to each other. These results indicate that, no
matter how to divide the input into local regions, LGI-Former can
achieve effective and efficient local-global information exchange
via the introduced representative tokens and its specialized designs
(i.e., the three key modules). Besides, when using the region size
of 2 × 5 × 10 (only using𝑀 = 8 representative tokens), the model
achieves the best performance-computation trade-off.

4.4 Comparison with State-of-the-art Methods
Results on Large In-the-wild Datasets. We first compare MAE-
DFER with previous state-of-the-art supervised methods on DFEW,
FERV39k, and MAFW in Table 5, Table 6, and Table 7, respectively.
On DFEW, MAE-DFER surpasses the previous best methods (i.e.,
DPC-Net [65] and M3DFEL [60]) with a significant margin, achiev-
ing a noteworthy 6.30%UAR and 5.18%WAR improvement. Besides,
we also present fine-grained performance of each class in Table 12
of Appendix, MAE-DFER also achieves remarkable improvement
across most facial expressions. Notably, for the disgust expression,
which only accounts for 1.2% of the entire dataset and is very chal-
lenging for all baselines, MAE-DFER improves the best accuracy by
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Table 5: Results on DFEW. †: pre-trained on VoxCeleb2.
Underlined: the best supervised result. Bold: the best result.

Method #Params (M) FLOPs (G) UAR WAR

Supervised methods
C3D [55] 78 39 42.74 53.54
R(2+1)D-18 [56] 33 42 42.79 53.22
3D ResNet-18 [21] 33 8 46.52 58.27
EC-STFL [25] - 8 45.35 56.51
ResNet-18+LSTM [69] - 8 51.32 63.85
ResNet-18+GRU [69] - 8 51.68 64.02
Former-DFER [69] 18 9 53.69 65.70
CEFLNet [33] 13 - 51.14 65.35
EST [35] 43 - 53.43 65.85
STT [37] - - 54.58 66.65
NR-DFERNet [30] - 6 54.21 68.19
DPCNet [65] 51 10 57.11 66.32
IAL [29] 19 10 55.71 69.24
M3DFEL [60] - 2 56.10 69.25

Self-supervised methods
VideoMAE [54] 86 81 58.49 70.61
VideoMAE [54] † 86 81 63.60 74.60
MAE-DFER (ours) 85 50 63.41 74.43

Table 6: Results on FERV39k. †: pre-trained on VoxCeleb2.
Underlined: the best supervised result. Bold: the best result.

Method #Params (M) FLOPs (G) UAR WAR

Supervised methods
C3D [55] 78 39 22.68 31.69
P3D [46] - - 30.48 40.81
R(2+1)D [56] - - 31.55 41.28
3D ResNet-18 [21] 33 8 26.67 37.57
ResNet-18+LSTM [64] - - 30.92 42.59
VGG-13+LSTM [64] - - 32.42 43.37
Two C3D [64] - - 30.72 41.77
Two ResNet-18+LSTM [64] - - 31.28 43.20
Two VGG-13+LSTM [64] - - 32.79 44.54
Former-DFER [69] 18 9 37.20 46.85
STT [37] - - 37.76 48.11
NR-DFERNet [30] - 6 33.99 45.97
IAL [29] 19 10 35.82 48.54
M3DFEL [60] - 2 35.94 47.67

Self-supervised methods
VideoMAE [54] 86 81 38.50 49.61
VideoMAE [54] † 86 81 43.33 52.39
MAE-DFER (ours) 85 50 43.12 52.07

over 10%. This considerable improvement indicates that our method
is capable of learning powerful representations for DFER via large-
scale self-supervised pre-training. As for the other two datasets,
we have similar observations. On the current largest DFER dataset,
FERV39k, MAE-DFER achieves the new state-of-the-art perfor-
mance, exceeding the previous best methods (i.e., STT [37] and IAL
[29]) by 5.36% UAR and 3.53%WAR. On MAFW, MAE-DFER out-
performs the best-performing T-ESFL [32] by a considerable margin
of 8.34% UAR and 6.13%WAR. Besides, large performance improve-
ment for several rare expressions are also observed on FERV39k

Table 7: Results on MAFW. †: pre-trained on VoxCeleb2.
Underlined: the best supervised result. Bold: the best result.

Method #Params (M) FLOPs (G) UAR WAR

Supervised methods
ResNet-18 [23] 11 - 25.58 36.65
ViT [13] - - 32.36 45.04
C3D [55] 78 39 31.17 42.25
ResNet-18+LSTM [32] - - 28.08 39.38
ViT+LSTM [32] - - 32.67 45.56
C3D+LSTM [32] - - 29.75 43.76
Former-DFER [69] 18 9 31.16 43.27
T-ESFL [32] - - 33.28 48.18

Self-supervised methods
VideoMAE [54] 86 81 38.43 51.74
VideoMAE [54] † 86 81 40.87 53.51
MAE-DFER (ours) 85 50 41.62 54.31
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even)

Mask (0.75)

Rec (all)
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Mask (0.9)

Rec (all)

Rec (diff: 

even)

Figure 4: Reconstruction results of a VoxCeleb2 test video
under masking ratios of 0.75 and 0.9. We only show 8 frames
due to the space limitation.

and MAFW in Table 13 and Table 14 of Appendix. In summary, the
promising results on three in-the-wild datasets demonstrate the
strong generalization ability of MAE-DFER in practical scenarios.

Comparison with VideoMAE. To verify the effectiveness and
efficiency ofMAE-DFER, we also show the results of VideoMAE [54]
on three in-the-wild datasets, including both the original model
pre-trained on Kinetics-400 [6] for 1600 epochs and the model
pre-trained on VoxCeleb2 under the same setting as MAE-DFER.
From Table 5-7, we have the following observations: 1) The orig-
inal VideoMAE model pre-trained on general videos (i.e., action
recognition) is largely inferior to its counterpart pre-trained on
facial videos, indicating that the large-domain gap between self-
supervised pre-training and downstream fine-tuning will severely
hurt the performance. 2) Compared with VideoMAE pre-trained
on VoxCeleb2, our MAE-DFER largely reduces the computational
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Table 8: Results on three lab-controlled datasets. Underlined: the best supervised result. Bold: the best result.

CREMA-D RAVDESS eNTERFACE05

Method Modality UAR WAR Method Modality UAR WAR Method UAR WAR

VO-LSTM [19] Video - 66.80 VO-LSTM [19] Video - 60.50 3DCNN [4] - 41.05
Goncalves et al. [20] Video - 62.20 3D ResNeXt-50 [50] Video - 62.99 3DCNN-DAP [4] - 41.36
Lei et al. [28] Video 64.68 64.76 AV-LSTM [19] Video+Audio - 65.80 STA-FER [43] - 42.98
AV-LSTM [19] Video+Audio - 72.90 AV-Gating [19] Video+Audio - 67.70 TSA-FER [42] - 43.72
AV-Gating [19] Video+Audio - 74.00 MCBP [50] Video+Audio - 71.32 C-LSTM [40] - 45.29
MulT Base [57] Video+Audio - 68.87 MMTM [50] Video+Audio - 73.12 EC-LSTM [41] - 49.26
MulT Large [57] Video+Audio - 70.22 MSAF [50] Video+Audio - 74.86 FAN [39] - 51.44
Goncalves et al. [20] Video+Audio - 77.30 CFN-SR [18] Video+Audio - 75.76 Graph-Tran [68] - 54.62

MAE-DFER (ours) Video 77.33 77.38 MAE-DFER (ours) Video 75.91 75.56 MAE-DFER (ours) 61.67 61.64

Former-DFER (MM2021)
UAR=52.45%, WAR=65.14%

IAL (AAAI2023)
UAR=55.09%, WAR=68.91%

VideoMAE (NeurIPS2022)
UAR=61.34%, WAR=74.63%

MAE-DFER (ours)
UAR=62.59%, WAR=74.88%

Happy
Sad
Neutral
Angry
Surprise
Disgust
Fear

Figure 5: Embedding space visualization using t-SNE [58].

cost (∼38% FLOPs) during fine-tuning, while achieving compara-
ble performance on DFEW and FERV39k (only -0.11%∼0.19% UAR
and -0.17%∼0.32% WAR), and even better performance on MAFW
(+0.75% UAR and +0.80% WAR). Thus, these results demonstrate
the effectiveness and efficiency of the proposed method.

Results on Small Lab-controlled Datasets.We show the com-
parison results on CREMA-D, RAVDESS, and eNTERFACE05 in Ta-
ble 8. Compared with in-the-wild datasets, we observe even larger
performance improvement on three lab-controlled datasets. On
CREMA-D, our MAE-DFER outperforms the best unimodal meth-
ods by over 12%UAR and 10%WAR.More surprisingly, it also shows
slightly better performance than the state-of-the-art multimodal
method, thus amply demonstrating the superiority of MAE-DFER.
On RAVDESS, MAE-DFER improves the previous best by more
than 12%WAR and also achieves comparable performance with the
best audio-visual method. Finally, on eNTERFACE05, MAE-DFER
surpasses the best-performing Graph-Tran [68] by about 7% WAR.

4.5 Visualization Analysis
Reconstruction. We first visualize the reconstructed results of
MAE-DFER in Fig. 4. The video is randomly selected from the

VoxCeleb2 test set. For better visualization, we use a gray-style
background for frame difference images shown in even frames and
also show all the reconstructed video by adding the reconstructed
frame difference images in even frames with the adjacent recov-
ered odd frame images. From Fig. 4, we see that under such a high
masking ratio (75% or 90%), MAE-DFER still can generate satisfac-
tory reconstructed results for both the facial appearance content
and temporal motion information. Notably, despite the change in
identity information (as the model does not see this person during
pre-training), the dynamic facial expression can be well restored by
reasoning in limited visible contexts (e.g., the opening mouth). This
imply that our model is able to learn meaningful dynamic facial
representations that capture the global spatiotemporal structure.

Embedding Space. To further qualitatively show the superiority
of MAE-DFER over traditional supervised methods, we visualize
the learned embeddings using t-SNE [58] on DFEW fd1. As can be
seen in Fig. 5, the embeddings of our method are more compact and
separable than those of two state-of-the-art supervisedmethods (i.e.,
IAL [29] and Former-DFER [69]), which demonstrates that MAE-
DFER can learn more discriminative representations for different
dynamic facial expressions through large-scale self-supervised pre-
training. Besides, VideoMAE has similar embedding space with our
MAE-DFER but at the cost of much larger computational cost.

5 CONCLUSION
In this paper, we have presented an effective and efficient self-
supervised framework, namelyMAE-DFER, to exploit large amounts
of unlabeled facial videos to address the dilemma of current super-
vised methods and promote the development of DFER. We believe
MAE-DFER will serve as a strong baseline and foster relevant re-
search in DFER. In the future, we plan to explore the scaling behav-
ior of MAE-DFER (i.e., using more data and larger models). Beside,
it is also interesting to apply it to other related tasks (e.g., dynamic
micro-expression recognition and facial action unit detection).
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In Appendix, we provide more information about six DFER
dataset, additional ablation studies, and fine-grained results on
three in-the-wild datasets.

A DATASETS
DFEW comprises 16,372 video clips extracted from over 1,500 high-
definition movies. Each video clip is annotated with seven basic
emotions (i.e., happy, sad, neutral, anger, surprise, disgust, and fear).
We only use 11,697 single-labeled clips in this paper.

FERV39k is currently the largest real-world dynamic facial
expression dataset. It has 38,935 video clips with an average length
of 1.5 seconds and is annotated with seven basic emotions.

MAFW is a multimodal compound in-the-wild affective dataset,
consisting of 10,045 video clips annotated with 11 compound emo-
tions (including contempt, anxiety, helplessness, disappointment,
and seven basic emotions). In this paper, we conduct experiments
on 9,172 single-labeled video clips.

CREMA-D is a high-quality audio-visual dataset with 7,442
video clips. Each of them is labeled with six emotions, including
happy, sad, anger, fear, disgust, and neutral.

RAVDESS is an audio-visual dataset that includes emotional
speech and song. It consists of 2,880 video clips, each labeled with
8 emotions (i.e., seven basic emotions and calm). In this paper, we
only use the speech part consisting of 1,440 video clips.

eNTERFACE05 is an audio-visual emotion recognition dataset
that contains approximately 1,200 video clips, each simulating six
emotions, including anger, disgust, fear, happy, sad, and surprise.

B MORE ABLATION STUDIES
Model Size. We investigate the effect of different sizes of LGI-
Former to downstream performance. In addition to the default
base version (512-dim), we also design two smaller versions, i.e.,
small (384-dim) and tiny (256-dim). The small version has roughly
half parameters and FLOPs of the base version and it is similar for
tiny and small. As shown in Table 9, we find that the performance
only degrades moderately when the model size becomes smaller,
especially for FERV39k. It is worth noting that even the tiny version
still largely outperforms the state-of-the-art supervised methods
(such as DPCNet [65] and IAL [29] in Table 5 and Table 6), despite
that they has similar parameters and computational cost, which
thus further demonstrates the superiority of our proposed method.

Table 9: Ablation study on the model size.

Dataset Size Dim #Params (M) FLOPs (G) UAR WAR

DFEW
Tiny 256 21.5 13.0 59.90 73.30
Small 384 47.9 28.4 61.09 74.03
Base 512 84.9 49.8 62.59 74.88

FERV39k
Tiny 256 21.5 13.0 41.20 51.55
Small 384 47.9 28.4 42.04 52.24
Base 512 84.9 49.8 43.12 52.07

VideoMAE with Joint Masked Appearance and Motion
Modeling. Besides our MAE-DFER, we further introduce explicit
temporal facial motion modeling to VideoMAE. The results are
presented in Table 10. Similar to our MAE-DFER, we observe that
jointmasked appearance andmotionmodeling can further boost the

performance of VideoMAE, although standalone motion modeling
performs slightly worse than standalone appearance modeling in
the original VideoMAE.

Table 10: Ablation study on VideoMAE with additional tem-
poral facial motion modeling.

Dataset Appearance Motion #Params
(M)

FLOPs
(G) UAR WAR

DFEW × ✓ 86.2 80.8 60.86 74.02
✓ × 86.2 80.8 61.34 74.63
✓ ✓ 86.2 80.8 62.85 74.93

FERV39k × ✓ 86.2 80.8 42.17 51.96
✓ × 86.2 80.8 43.33 52.39
✓ ✓ 86.2 80.8 43.72 52.52

Role of Classification Token Type. We finally explore the
effect of two different classification tokens (i.e., original tokens and
representative tokens) for downstream fine-tuning. As shown in
Table 11, we find that performing mean pooling on the representa-
tive tokens for final classification slightly outperforms that on the
original tokens. We speculate that this is because the representative
tokens are more compact and high-level than the original tokens.

Table 11: Ablation study on the classification token type.

Token type DFEW FERV39k

UAR WAR UAR WAR

Original tokens 62.16 74.51 42.89 51.91
Representative tokens 62.59 74.88 43.12 52.07

C DETAILED RESULTS
In this section, we first present more fine-grained results (i.e., ac-
curacy of each class) on DFEW, FERV39k, and MAFW in Table
12, Table 13, and Table 14, respectively. From three tables, we ob-
serve that MAE-DFER significantly outperforms the state-of-the-
art supervised methods on most facial expressions, especially on
some rare facial expressions (such as disgust, contempt, and dis-
appointment). For instance, on DFEW, our MAE-DFER surpasses
the previous best supervised results by about 9% on sad, 13% on
disgust, and 8% on fear. On MAFW, it improves the best-performing
supervised methods by over 5% on anger, 7% on disgust, 8% on con-
tempt, 8% on anxiety, 6% on helplessness, and 7% on disappointment.
Moreover, compared with VideoMAE pre-trained under the same
setting, MAE-DFER has comparable or even better fine-grained
performance while largely reduces the computational cost during
fine-tuning. We also note that the original VideoMAE pre-trained
on Kinetics-400 does not perform well on some rare expressions
(e.g., disgust on FERV39k), although it could achieve the best re-
sults on some dominated expressions (e.g., neutral on FERV39k).
These results indicate that our MAE-DFER can effectively and effi-
ciently learn more robust and general representations for DFER via
large-scale self-supervised training on abundant unlabeled facial
videos, thus mitigating the unbalanced learning issue and achieving
superior fine-grained performance.
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Table 12: Results on DFEW. †: pre-trained on VoxCeleb2. Underlined: the best supervised result. Bold: the best result.

Method #Params
(M)

FLOPs
(G)

Accuracy of Each Emotion (%) Metric (%)

Happy Sad Neutral Anger Surprise Disgust Fear UAR WAR

Supervised methods
C3D [55] 78 39 75.17 39.49 55.11 62.49 45.00 1.38 20.51 42.74 53.54
R(2+1)D-18 [56] 33 42 79.67 39.07 57.66 50.39 48.26 3.45 21.06 42.79 53.22
3D ResNet-18 [21] 33 8 76.32 50.21 64.18 62.85 47.52 0.00 24.56 46.52 58.27
EC-STFL [25] - 8 79.18 49.05 57.85 60.98 46.15 2.76 21.51 45.35 56.51
ResNet-18+LSTM [69] - 8 83.56 61.56 68.27 65.29 51.26 0.00 29.34 51.32 63.85
ResNet-18+GRU [69] - 8 82.87 63.83 65.06 68.51 52.00 0.86 30.14 51.68 64.02
Former-DFER [69] 18 9 84.05 62.57 67.52 70.03 56.43 3.45 31.78 53.69 65.70
CEFLNet [33] 13 - 84.00 68.00 67.00 70.00 52.00 0.00 17.00 51.14 65.35
EST [34] 43 - 86.87 66.58 67.18 71.84 47.53 5.52 28.49 53.43 65.85
STT [37] - - 87.36 67.90 64.97 71.24 53.10 3.49 34.04 54.58 66.65
NR-DFERNet [30] - 6 88.47 64.84 70.03 75.09 61.60 0.00 19.43 54.21 68.19
DPCNet [65] 51 10 - - - - - - - 57.11 66.32
IAL [29] 19 10 87.95 67.21 70.10 76.06 62.22 0.00 26.44 55.71 69.24
M3DFEL [60] - 2 89.59 68.38 67.88 74.24 59.69 0.00 31.63 56.10 69.25

Self-supervised methods
VideoMAE [54] 86 81 92.23 67.81 70.97 74.02 62.59 10.34 31.49 58.49 70.61
VideoMAE [54] † 86 81 93.09 78.78 71.75 78.74 63.44 17.93 41.46 63.60 74.60
MAE-DFER (ours) 85 50 92.92 77.46 74.56 76.94 60.99 18.62 42.35 63.41 74.43

Table 13: Results on FERV39k. †: pre-trained on VoxCeleb2. Underlined: the best supervised result. Bold: the best result.

Method #Params
(M)

FLOPs
(G)

Accuracy of Each Emotion (%) Metric (%)

Happy Sad Neutral Anger Surprise Disgust Fear UAR WAR

Supervised methods
C3D [55] 78 39 48.20 35.53 52.71 13.72 3.45 4.93 0.23 22.68 31.69
P3D [46] - - 61.85 42.21 49.80 42.57 10.50 0.86 5.57 30.48 40.81
R(2+1)D [56] - - 59.33 42.43 50.82 42.57 16.30 4.50 4.87 31.55 41.28
3D ResNet-18 [21] 33 8 57.64 28.21 59.60 33.29 4.70 0.21 3.02 26.67 37.57
ResNet-18+LSTM [64] - - 61.91 31.95 61.70 45.93 14.26 0.00 0.70 30.92 42.59
VGG-13+LSTM [64] - - 66.26 51.26 53.22 37.93 13.64 0.43 4.18 32.42 43.37
Two C3D [64] - - 54.85 52.91 60.67 31.34 5.96 2.36 6.96 30.72 41.77
Two ResNet-18+LSTM [64] - - 59.00 45.87 61.90 40.15 9.87 1.71 0.46 31.28 43.20
Two VGG-13+LSTM [64] - - 69.65 47.31 52.55 47.88 7.68 1.93 2.55 32.79 44.54
Former-DFER [69] 18 9 65.65 51.33 56.74 43.64 21.94 8.57 12.53 37.20 46.85
STT [37] - - 69.77 47.81 59.14 47.41 20.22 10.49 9.51 37.76 48.11
NR-DFERNet [30] - 6 69.18 54.77 51.12 49.70 13.17 0.00 0.23 33.99 45.97
IAL [29] 19 10 - - - - - - - 35.82 48.54
M3DFEL [60] - 2 - - - - - - - 35.94 47.67

Self-supervised methods
VideoMAE [54] 86 81 71.28 48.60 63.99 47.28 20.69 5.35 12.30 38.50 49.61
VideoMAE [54] † 86 81 72.91 54.34 59.50 51.65 29.47 17.77 17.63 43.33 52.39
MAE-DFER (ours) 85 50 73.05 53.98 59.14 50.44 30.09 17.99 17.17 43.12 52.07

Table 14: Results on MAFW. †: pre-trained on VoxCeleb2. Underlined: the best supervised result. Bold: the best result.

Method #Params
(M)

FLOPs
(G)

Accuracy of Each Emotion (%) Metric (%)

AN DI FE HA NE SA SU CO AX HL DS UAR WAR

ResNet-18 [23] 11 - 45.02 9.25 22.51 70.69 35.94 52.25 39.04 0.00 6.67 0.00 0.00 25.58 36.65
ViT [13] - - 46.03 18.18 27.49 76.89 50.70 68.19 45.13 1.27 18.93 1.53 1.65 32.36 45.04
C3D [55] 78 39 51.47 10.66 24.66 70.64 43.81 55.04 46.61 1.68 24.34 5.73 4.93 31.17 42.25
ResNet-18+LSTM [32] - - 46.25 4.70 25.56 68.92 44.99 51.91 45.88 1.69 15.75 1.53 1.65 28.08 39.38
ViT+LSTM [32] - - 42.42 14.58 35.69 76.25 54.48 68.87 41.01 0.00 24.40 0.00 1.65 32.67 45.56
C3D+LSTM [32] - - 54.91 0.47 9.00 73.43 41.39 64.92 58.43 0.00 24.62 0.00 0.00 29.75 43.76
Former-DFER [69] 18 9 - - - - - - - - - - - 31.16 43.27
T-ESFL [32] - - 62.70 2.51 29.90 83.82 61.16 67.98 48.50 0.00 9.52 0.00 0.00 33.28 48.18

Self-supervised methods
VideoMAE [54] 86 81 62.23 23.32 32.64 78.18 60.28 66.60 56.81 0.41 27.62 5.34 8.24 38.34 51.74
VideoMAE [54] † 86 81 65.90 23.63 34.88 76.73 55.62 73.47 54.57 9.75 32.75 10.69 11.54 40.87 53.51
MAE-DFER (ours) 85 50 67.77 25.35 34.88 77.13 58.26 71.09 57.46 8.90 33.08 11.83 12.09 41.62 54.31
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