
Coarse-to-Fine Recurrently Aligned Transformer
with Balance Tokens for Video Moment Retrieval

and Highlight Detection

Yi Pan1,2, Yujia Zhang1,∗, Hui Chang1, Shiying Sun1, Feihu Zhou3, Xiaoguang Zhao1
1 State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences

2 School of Artificial Intelligence, University of Chinese Academy of Sciences
3 Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital

{panyi2022,zhangyujia2014,hui.chang,sunshiying2013,xiaoguang.zhao}@ia.ac.cn, zhoufh301@126.com

Abstract—Video moment retrieval (MR) and highlight de-
tection (HD) are two user-oriented video understanding tasks
aimed at extracting query-dependent or highlighted moments to
provide valuable content for users. While many recent works have
proposed solutions for the joint task of MR and HD leveraging
transformer architecture, we argue that existing approaches have
not adequately aligned the video and text modalities using basic
transformer encoders, and have overlooked the misalignment
between irrelevant video clips and text queries. To address these
issues, we introduce COREBA: a Coarse-to-Fine Recurrently
Aligned Transformer with Balance Tokens. Firstly, we design
a plug-and-play Coarse-to-Fine Cross-modal interaction (CFC)
module, replacing the original transformer encoder to align the
two modalities in a progressive manner. Secondly, we present a
novel Recurrent Alignment Mechanism (RAM) to deeply align
the modalities in a recurrent fashion. Thirdly, to mitigate the
misalignment problem, we append text queries with learnable
Balance Tokens to restrict the text information fused with
irrelevant clips. Extensive experiments validate the effectiveness
and superiority of our proposed method.

Index Terms—Video moment retrieval, video highlight detec-
tion, multimodal alignment

I. INTRODUCTION

A vast number of videos are uploaded to the internet for
users’ entertainment or learning purposes. Videos, composed
of consecutive frames, inherently provide richer semantic
information compared to static images. However, they also
contain more redundant information, making it inconvenient
for users to find the most relevant segments they are inter-
ested in. To address this problem, several user-oriented video
understanding tasks have emerged, such as video thumbnail
generation [1, 2], video moment retrieval [3, 4] and video
highlight detection [5, 6]. Specifically, video moment retrieval
focuses on extracting temporal segments from untrimmed
videos specified by user queries, while video highlight de-
tection aims to identify significant clips within a video by
assigning saliency scores to each clip.

In a recent study, Lei et al. [7] introduced a joint task
of moment retrieval and highlight detection, along with the
creation of the corresponding QVHighlights dataset. This task
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Fig. 1: (a) The softmax operation in attention layers inevitably fuses text features into
irrelevant video clips, resulting in the features of relevant clips becoming indistinct. (b)
Incorporating learnable balance tokens helps confine text features fused into irrelevant
clips, thereby preserving the distinctiveness of features associated with relevant clips.

is particularly challenging as it requires a finer alignment
between two vastly different modalities, namely, video and
text, to accurately locate specified moments and assign correct
saliency scores. The baseline model, Moment-DETR, is an
end-to-end model based on the DETR [8] architecture and
achieves promising accuracy. However, Moment-DETR aligns
videos and text queries by simply concatenating tokens from
both modalities, utilizing basic transformer encoders without
employing refined alignment strategies. Many recent works,
such as QD-DETR [9], MH-DETR [10], and UMT [11], delve
deeper into the alignment challenge by introducing encoders
equipped with multimodal cross-attention. They leverage video



clip tokens as queries and text tokens as keys and values to
derive text-dependent video representations. Nevertheless, we
contend that directly fusing text features with video features
poses difficulties due to the significant gap between the modal-
ities. Furthermore, aligning all clips with the input sentence is
impractical as the text query only specifies certain moments.

To address these limitations, we propose a COarse-to-
Fine REcurrently Aligned Transformer with BAlance Tokens
(COREBA). Firstly, we introduce a Coarse-to-Fine Cross-
modal interaction (CFC) module for video-text alignment.
This module initiates coarse alignment by fusing texts to
videos through a VT-block and videos to texts through a TV-
block. The roughly aligned tokens are then projected into a
joint semantic space using a shared projection block before
undergoing refined alignment through the same VT-block.
Furthermore, we design a Recurrent Alignment Mechanism
(RAM) that iteratively feeds features from two modalities
into the same CFC module with multiple turns for deeper
alignment. Experiments demonstrate this mechanism outper-
forms methods with multiple fusion layers. To address the
misalignment issue between irrelevant video clips and texts,
we introduce learnable Balance Tokens appended to original
text tokens, as shown in Fig. 1. These tokens are trained
to regulate the attention map, confining the injection of text
information to irrelevant video clips and ensuring the distinc-
tiveness of relevant clips. Comprehensive experiments validate
the effectiveness of our proposed method, demonstrating its
superiority over baselines on the QVHighlights dataset.

Our contributions can be summarized in three aspects:
Firstly, we propose a plug-and-play Coarse-to-Fine Cross-
modal (CFC) interaction module for effective video-text align-
ment. Secondly, we present a Recurrent Alignment Mecha-
nism (RAM) to enable deeper multimodal fusion. Thirdly,
we address the misalignment between irrelevant video clips
and queries by introducing Balance Tokens. Comprehensive
ablation experiments validate the effectiveness of each design.

II. RELATED WORKS

A. Video Moment Retrieval

The goal of video moment retrieval (MR) is to identify spe-
cific video segments given a text query. MR methods generally
fall into two categories: proposal-based methods [3, 12] and
proposal-free methods [13]. Proposal-based methods employ
sliding windows [12] or anchors [3] to generate proposal
candidates first, from which the required moments are selected.
In contrast, proposal-free methods [13] directly predict the
start and end of target moments in an end-to-end manner.
Many recent studies [14, 15] have also adopted multi-modal
transformer encoders to fuse video and text modalities and
decoders to predict required moments. However, they use basic
transformers without refined alignment strategies, potentially
compromising the precision of moment localization.

B. Video Highlight Detection

Video highlight detection (HD) aims to identify highlight
video clips by assigning a saliency score to each clip. The ma-

jority of methods, such as [16, 17], consider fully-supervised
settings and rely on dense annotations at the frame level.
Some recent approaches [5, 6] have introduced unsupervised
methods that eliminate the need for dense annotations. These
methods often utilize external concepts as weak supervision
signals, including visual co-occurrence [18] or video dura-
tion [5].

C. Joint Video Moment Retrieval and Highlight Detection

Concurrently addressing moment retrieval and highlight
detection in a unified manner is an emerging research topic
leveraging both tasks’ benefits. It enables precise moment
localization, provides quick highlights, and shares common
characteristics, as introduced by Lei et al. [7] in their
baseline model, Moment-DETR, along with the QVHight-
lights dataset. Moment-DETR employs a standard transformer
encoder-decoder architecture, coarsely aligning videos and
texts by simply concatenating tokens before passing them
through transformer encoder layers. Several recent works [9–
11, 19, 20] have been proposed focusing on this challenging
task based on Moment-DETR. UMT [11] utilizes a query
generator to produce decoder queries, while QD-DETR [9]
leverages a cross-modal encoder to extract query-dependent
video features. EaTR [19] introduces an event reasoning mod-
ule to generate event-aware moment queries. However, these
approaches utilize basic transformer encoders to align two
vastly different modalities, potentially limiting their ability to
capture deeply fused multimodal representations. Additionally,
they uniformly fuse text features to each video clip without
considering the misalignment of irrelevant clips.

III. APPROACH

Here we first formalize the joint task of MR and HD, then
proceed to describe our proposed method in detail. Given a
video with Lv clips and a text query with Lt tokens, we utilize
the extracted video features Fv ∈ RLv×dv and text features
Ft ∈ RLt×dt provided in [7] (where dv and dt denote the
feature dimensions of videos and texts respectively). The goal
of the task is to locate Nm temporal segments represented by
the start and end timestamps: M = {mi ∈ R2}Nm

i=1, and assign
saliency scores S ∈ RLv to each clip of the video.

The overall architecture of our method is shown in Fig. 2(a).
Initially, we augment text features with Balance Tokens and
fuse the two modalities through the Coarse-to-Fine Cross-
modal interaction module within the Recurrent Alignment
Mechanism (RAM). Subsequently, leveraging the finely fused
features Ffine ∈ RLv×d (where d represents the dimension of
the joint semantic space), we compute the saliency scores S
using the saliency encoder and identify the required temporal
segments M with a moment decoder.

A. Balance Tokens

We first project video features Fv ∈ RLv×dv and text
features Ft ∈ RLt×dt to the same dimension d using
two 3-layer MLPs denoted as MLP1 and MLP2: F ′

v =
MLP1(Fv) ∈ RLv×d, F ′

t = MLP2(Ft) ∈ RLt×d, where F ′
v
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Fig. 2: (a) The overall pipeline of our method. Balance tokens are appended to text tokens to restrict fusion with irrelevant video clips. Features from two modalities are passed to
the Coarse-to-Fine Cross-Modal interaction (CFC) module within the Recurrent Alignment Mechanism for profound alignment. (b) The architecture of the CFC module. The two
VT-blocks share the same weights (shown in the same color). We employ a self-attention block to align the two features in a shared semantic space. The fusion process repeats for
Nr times. The residual operation is not illustrated for clarity.

and F ′
t represent projected features. Previous works [9, 10, 19]

typically fuse text features into entire video clips. However, the
text query only specifies certain video segments. To balance
attention weights and confine the fusion of text information
with irrelevant video clips, we append learnable Balance
Tokens to the original text tokens. Formally, let Fb ∈ RLb×d

denote Lb Balance Tokens. The balanced text feature sequence
is given by:

F̃t = [F ′
t ||Fb] ∈ RL̃t×d (1)

where || denotes the concatenation operation, and L̃t =
Lt + Lb. The projected video features F ′

v and balanced text
features F̃t are then passed to the Coarse-to-Fine Cross-Modal
Interaction module for deeper fusion.

B. Coarse-to-Fine Cross-Modal Interaction Module

The Coarse-to-Fine Cross-modal interaction (CFC) module
is introduced to achieve a progressive and in-depth alignment
between video and text features. As depicted in Fig. 2(b), given
the projected video features F ′

v and the balanced text features
F̃t, the module first fuse text features to each clip with a VT-
block, which consists of a single cross-attention layer:

Fvt = CAvt(F
′
v, F̃t, F̃t) ∈ RLv×d (2)

where CAvt denotes the standard cross-attention operation
with the video features F ′

v as queries and the balanced text
features F̃t as keys and values. This operation introduces the
textual information to video clips.

Similarly, we employ a TV-block to associate relevant text
queries with video clips:

Ftv = CAtv(F̃t, F
′
v, F

′
v) ∈ RL̃t×d (3)

where F̃t serves as queries and F ′
v serves as keys and values

in the CAtv cross-attention operation.
Here the fused features Fvt and Ftv demonstrate coarse

alignment, as the cross-attention operation treats queries (video
or text tokens) separately, disregarding intra-modality at-
tributes such as the temporal relationships among video clips.
Consequently, we utilize a self-attention block to further im-
prove the fused representations by considering intra-modality
attributes: 

F s
vt = SA(Fvt, Fvt, Fvt)

F̃vt = F ′
v +Mean(F s

vt, Fvt)

F s
tv = SA(Ftv, Ftv, Ftv)

F̃tv = F̃t +Mean(F s
tv, Ftv)

(4)

Specifically, a shared self-attention block, denoted as SA is
applied to features Fvt and Ftv to closely align them in
a shared semantic space, producing F s

vt, F
s
tv . The aligned

features are individually subjected to mean averaging with
Fvt and Ftv , and then fused features denoted as F̃vt and F̃tv ,
are obtained through two residual paths. Finally, these two
resulting features are fed into the same cross-attention block
CAvt for fine-grained alignment, yielding Ffine:

Ffine = CAvt(F̃vt, F̃tv, F̃tv) ∈ RLv×d (5)



Note that the Balance Tokens actively participate in the en-
tire interaction process and are learnt automatically to balance
the attention weights. The intricately aligned feature Ffine is
further utilized by the Recurrent Alignment Mechanism before
being passed to the saliency encoder and moment decoder.

C. Recurrent Alignment Mechanism

To further enhance the alignment between the video and text
modalities, we design a Recurrent Alignment Mechanism that
iteratively feeds features to the same CFC module for multiple
turns. The pseudo code of this mechanism can be represented
as follows:

Algorithm 1: Recurrent Alignment Mechanism

Input: F ′
v, F̃t

Output: Ffine

1 for i = 1, . . . , Nr do
2 F̃vt, F̃tv, Ffine = CFC(F ′

v, F̃t)
3 F ′

v = F ′
v + Ffine

4 F̃t = F̃t + F̃tv

5 end
6 return Ffine

CFC denotes the operations in III-B, Nr is the number
of recurrent turns, and F ′

v, F̃t, Ffine, F̃vt, F̃tv are features
obtained from III-B. The module shares weights across the
multiple alignment turns. In comparison to the direct uti-
lization of multiple CFC modules, this mechanism enables
the transformer layers to more effectively leverage features
from various fusion stages. The experiments detailed in IV-E
demonstrate the superiority of this mechanism.

D. Saliency Encoder and Moment Decoder

We adopt the design of the saliency encoder and moment
decoder from QD-DETR [9]. Specifically, the feature Ffine is
input to a two-layer transformer encoder ENCs that includes
a learnable saliency token ts ∈ Rd:

[F̂fine||t̂s] = ENCs([Ffine||ts]) (6)

The saliency scores are computed by taking the products of
the saliency token with all clip tokens:

S =
F̂T
finewf · t̂sws

d
∈ RLv (7)

where wf , ws ∈ Rd are learnable parameters.
For moment localization, we adopt the modified decoder

from DAB-DETR [21] as described in [9]. Queries are de-
signed by explicit centers mc and lengths ml of moments.
With Nq queries, the decoder aggregates relevant clip features
from F̂fine and outputs features Fdec ∈ RNq×d.

We then apply a 3-layer MLP to the features to predict
normalized moment centers and widths: M̂ = {m̂i}

Nq

i=1, m̂i ∈
[0, 1]

2. Additionally, a linear layer is applied to predict moment
labels: Ŷ = {ŷi}

Nq

i=1, where ŷi ∈ {0, 1}. Here, 1 denotes

foreground if the predicted moment matches a ground truth,
and 0 denotes background. The ground truth moments and
labels are denoted as M = {mi}

Nq

i=1 and Y = {yi}
Nq

i=1

with ∅ padded to match the number Nq . Following Moment-
DETR [7], we employ the Hungarian algorithm to find an
assignment between each (mi, yi) and the corresponding pre-
diction (m̂σ(i), ŷσ(i)).

E. Training Losses

We use the same losses as described in [9]. For moment
retrieval, the loss between mi and m̂i comprises an L1
regression loss, a generalized IoU loss and a cross-entropy
loss:

Lmr = λL1||mi − m̂i||
+ λgIoULgIoU (mi, m̂i)

− λCE [yi log ŷi + (1− yi) log (1− ŷi)]

(8)

where λ∗ are hyperparameters to balance different losses.
For highlight detection, we utilize three types of losses:

the margin saliency loss between pairs of high-rank clips and
low-rank clips, the negative saliency loss of unpaired videos
and queries, and the rank-aware contrastive loss for contrastive
learning:


Lmarg = max(0,∆+ S(tlow)− S(thigh))

Lneg = − log(1− S(tneg))

Lcont = −ΣR
r=1 log

Σt∈Tpos
r

exp (S(t)/τ)

Σt∈(Tpos
r ∪Tneg

r ) exp (S(t)/τ)

(9)

where ∆ is a positive margin for the margin loss, S(·) denotes
the predicted saliency score of a given clip, thigh and tlow

denote clips with high scores and low scores, respectively,
tneg denotes clips from unpaired videos, and r denotes the
ranking variable from 1 to R (the maximum rank value). For
further details, please refer to [9, 22].

The loss for highlight detection is then calculated as:

Lhl = λmargLmarg + λnegLneg + λcontLcont (10)

where λmarg , λneg , λcont are hyperparameters to balance the
losses.

The overall training loss is a combination of the moment
retrieval loss and the highlight detection loss:

L = Lmr + Lhl (11)

IV. EXPERIMENTS

A. Dataset

We conduct experiments on the recently proposed QVHigh-
lights [7] dataset, which is currently the only dataset for the
joint moment retrieval and highlight detection task. The dataset
contains more than 10,000 videos annotated with free-form
queries, one or more relevant moments and clip-wise saliency
scores.



Method
Moment Retrieval Highlight Detection

R1 mAP >= Very Good

@0.5 @0.7 @0.5 @0.75 avg mAP HIT@1

Moment-DETR [7] 53.94 34.84 - - 32.20 35.65 55.55
UMT [11] 60.26 44.26 56.70 39.90 38.59 39.85 64.19
MH-DETR [10] 60.84 44.90 60.76 39.64 39.26 38.77 61.74
UniVGT [20] 59.74 - - - 36.13 38.83 61.81
EaTR [19] 61.36 45.79 61.86 41.91 41.74 37.15 58.65
QD-DETR [9] 62.68 46.66 62.23 41.82 41.22 39.13 63.03

COREBA 65.16 49.48 63.90 42.61 42.48 40.39 65.42

TABLE I: Comparison with other methods shows that our method outperforms baselines across all metrics.

Nb

Moment Retrieval Highlight Detection
R1 mAP >= Very Good

@0.5 @0.7 @0.5 @0.75 avg mAP HIT@1

0 63.23 47.48 62.66 41.75 41.63 39.08 62.58

1 63.94 (+0.71) 47.23 63.17 (+0.51) 41.68 41.17 39.57 (+0.49) 63.29 (+0.71)
3 63.35 (+0.12) 48.26 (+0.78) 62.93 (+0.27) 42.59 (+0.84) 42.18 (+0.55) 39.55 (+0.47) 62.90 (+0.32)
5 62.45 46.32 61.97 41.54 40.99 39.33 (+0.47) 62.97 (+0.32)
7 65.16 (+1.93) 49.48 (+2.00) 63.90 (+1.24) 42.61 (+0.86) 42.48 (+0.85) 40.39 (+1.31) 65.42 (+2.84)
9 62.68 46.66 62.23 41.82 41.22 39.13 (+0.05) 63.03 (+0.45)

TABLE II: Models with different numbers of Balance Tokens. Nb denotes the number of balance tokens.

id Ntv Nvt Ns

Moment Retrieval Highlight Detection
R1 mAP >= Very Good

@0.5 @0.7 @0.5 @0.75 avg mAP HIT@1

(qd3) 0 3 0 62.00 46.52 61.84 41.68 41.53 39.40 63.81
(qd4) 0 4 0 63.94 48.71 63.33 42.57 42.10 40.04 65.10

(a) 0 1 1 63.42 48.00 63.47 42.63 42.29 39.93 64.58
(b) 1 1 0 62.84 46.26 63.08 42.17 42.05 39.79 62.77
(c) 1 2 1 63.68 47.68 62.14 41.86 41.43 39.85 64.00
(d) 1 1 2 64.32 48.52 62.94 44.14 42.83 39.79 63.16

(e) 1 1 1 65.16 49.48 63.90 42.61 42.48 40.39 65.42

TABLE III: Models with different TV-block, VT-block, Self-Attn Settings. Ntv , Nvt and Ns

denote the number of TV-block, VT-block and Self-attention block, respectively.

B. Implementation Details

We use the official features provided in Moment-DETR [7].
Specifically, for videos we use the SlowFast [23] and
CLIP [24] (ViT-B/32) features from the visual encoder, and for
text queries, we use the CLIP features from the text encoder.
The number of Balance Tokens is set to 7. The model consists
of 1 CFC module, 2 saliency encoder layers and 2 decoder
layers. The number of loops Nr in the Recurrent Alignment
Mechanism is set to 3. The hidden dimension d of the model
is 256. For losses, we follow the setting in QD-DETR [9] and
set the parameters λmarg = 1, λcont = 1, λL1 = 10, λgIoU =
1, λCE = 4, λneg = 1. The model is trained for 200 epochs
with a learning rate set to 1e-4 and batch size set to 32.

C. Evaluation Metrics

Following [7], we report the mean average precision (mAP)
for the moment retrieval task. The mAP is computed with
IoU thresholds of 0.5, 0.75 and an average over multiple
IoU thresholds [0.5 : 0.05 : 0.95]. Additionally, we report
the standard metric Recall@1 (R@1) used in single moment
retrieval, where a prediction is considered positive if it has a

high IoU with one of the ground truths. For highlight detection,
we provide the mAP and the hit ratio [25] (HIT@1) for the
highest scored clip.

D. Quantitative Results

We compare our method with recent state-of-the-art meth-
ods on QVHighlights val split. As shown in Table I, our
method outperforms these methods across all metrics. For
moment retrieval, we outperform the QD-DETR model by
nearly 3% in R1 metric, and 0.74% to 1.67% in mAP metrics.
For highlight detection, we outperform UMT by 1.23% in
the HIT@1 metric. These results show the effectiveness and
superiority of our method.

E. Analysis

1) Ablation on Balance Tokens: Firstly, we analyze the
effectiveness of Balance Tokens with different numbers. We
equip the model with 0, 1, 3, 5, 7, 9 Balance Tokens respec-
tively. The results are shown in Table II. It can be observed
that different numbers of Balance Tokens boost the perfor-
mance to varying degrees. Models with 7 Balance Tokens



Settings
Moment Retrieval Highlight Detection

R1 mAP >= Very Good

@0.5 @0.7 @0.5 @0.75 avg mAP HIT@1

MOD 2 63.16 47.74 63.70 42.79 42.54 39.70 63.61
REC 2 64.71 47.94 62.83 42.86 42.09 39.98 63.55

MOD 3 64.19 49.48 63.35 42.24 42.10 40.15 64.39
REC 3 65.16 49.48 63.90 42.61 42.48 40.39 65.42

MOD 4 63.68 47.61 63.91 43.00 42.51 39.37 62.90
REC 4 64.77 47.74 63.81 42.06 41.78 39.77 65.42

MOD 5 62.19 45.74 61.67 40.14 40.07 38.83 61.74
REC 5 62.71 47.29 62.64 41.74 41.65 39.74 63.94

TABLE IV: Comparison between Recurrent Alignment and Multiple Layers designs. REC N refers to models with 1 CFC module and N recurrent loops. MOD N refers to models
with N CFC modules and no recurrent loops applied.

RAM CFC BAT
MR HD

R1 mAP >= Very Good
@0.5 @0.7 @0.5 @0.75 avg mAP HIT@1

(a) 62.00 45.61 61.61 40.84 39.97 38.18 60.65
(b) ✓ 62.65 47.81 62.72 42.68 42.26 39.01 62.77
(c) ✓ 64.77 48.52 63.64 42.25 41.52 39.35 63.94
(d) ✓ 61.35 47.10 61.51 41.90 41.45 39.11 63.29
(e) ✓ ✓ 63.23 47.78 62.66 41.75 41.63 39.08 62.58
(f) ✓ ✓ 63.16 48.00 63.33 42.43 42.20 39.29 63.42
(g) ✓ ✓ 65.03 48.45 63.56 42.41 42.38 39.79 64.06
(i) ✓ ✓ ✓ 65.16 49.48 63.90 42.61 42.48 40.39 65.42

TABLE V: Ablation study on combinations of designs. BAT, CFC, and RAM refer to Balance Tokens, Coarse-to-Fine Cross-modal interaction module and the Recurrent Alignment
Mechanism, respectively.

perform the best, achieving a 2% improvement in R1@0.7 and
2.84% improvement in HIT@1. Furthermore, in the highlight
detection task, all models with Balance Tokens outperform
the models without Balance Tokens. The results in the dense
clip-level highlight detection task indicate that introduced
Balance Tokens may effectively restrict the information from
text features injected into irrelevant clips, benefiting the entire
task at the clip-level.

2) Ablation on CFC module: Secondly, we analyze the
design of the CFC module by exploring several alternative
architectures. As detailed in III-B, our approach involves
employing one TV-block, one shared VT-block twice ((2)
and (5)), and one shared self-attention (4). The alternative
architectures are designed as models without a TV-block,
without a self-attention block, with two separate VT-blocks
and with two separate self-attention blocks respectively. The
experimental results in Table III illustrate that the model
configured with the aforementioned default settings attains the
highest overall performance.

The comparison between (a) and (e) reveals that it is bene-
ficial to fuse video features into text features, which has been
overlooked by previous studies [9, 10]. Experiments (b) and
(e) showcase the value of intra-modality mining through a self-
attention block, while (c) and (d) demonstrate the effectiveness
of employing a shared VT-block and self-attention layer to
align the features within a unified semantic space.

To prove that the performance is attributed to the architec-
ture rather than the parameter count, we conduct additional
experiments employing a model with 3 and 4 fusion layers

introduced in QD-DETR, along with the same number of
Balance Tokens (experiments (qd3) and (qd4)). The results
demonstrate that our method surpasses QD-DETR with a
similar parameter count.

3) Ablation on Recurrent Alignment Mechanism: Next, we
conduct experiments on the Recurrent Alignment Mechanism
(RAM). We specifically focus on whether the recurrent design
holds superiority over employing multiple fusion modules.
Thus, we conduct a comparative analysis between models with
various numbers of recurrent alignment loops, and models
with identical numbers of fusion modules but lacking recur-
rent alignment. As shown in Table IV, across most metrics,
models incorporating recurrent alignment consistently outper-
form corresponding models employing multiple modules. This
indicates that despite having fewer parameters, the recurrent
alignment mechanism succeeds in aligning the features from
different recurrent stages, enabling a more profound alignment.

4) Ablation on Combination of Designs: Finally, we con-
duct ablation studies concerning the combination of the three
designs: Balance Tokens (BAT), the CFC module and the
Recurrent Alignment Mechanism (RAM). Commencing with
a QD-DETR baseline model with one cross-model fusion
layer, we progressively incorporate our designs in various
combinations. The results are summarized in Table V.

From experiments (b), (c), and (d), it is evident that incor-
porating one of the three designs contributes to performance
enhancement. Among these designs, the CFC module demon-
strates the most significant impact. Experiments (f) and (g)
further illustrate that augmenting Balance Tokens to models
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Fig. 3: Visualization of one prediction from COREBA and other methods. Our method locates the required moment more precisely.

(coarse-1)

(fine-1)

(coarse-2)

(fine-2)

(coarse-3)

(fine-3)

relevant clipsirrelevant clips

𝑇qu𝑒𝑟𝑦

𝑇𝑏𝑎𝑙𝑎𝑛𝑐𝑒

relevant clipsirrelevant clips relevant clipsirrelevant clips

𝑇qu𝑒𝑟𝑦

𝑇𝑏𝑎𝑙𝑎𝑛𝑐𝑒

Coarse-to-fine

Recurrent Stages

Fig. 4: Visualization of attention maps for the VT-block. Figure coarse-i or fine-i visualizes the attention map from the coarse or fine alignment in the i-th recurrent stage. Tquery

and Tbalance denote query tokens and balance tokens, respectively. The irrelevant clips and relevant clips are illustrated based on the ground truth. It is clear that the balance
tokens gradually extract more attention from irrelevant clips during the alignment process, ensuring the distinctiveness of relevant clips (shown in the red circle).

with RAM or CFC improves performance. However, it is
noteworthy that the model in experiment (e), combining RAM
and CFC module, underperforms the model solely utilizing
the CFC module. This outcome suggests that lacking Balance
Tokens might lead to an excessive fusion of text features
with irrelevant clips, resulting in decreased performance. Ulti-
mately, the combination of all three designs yields the highest
overall performance.

F. Visualization

We visualize some examples from the QVHighlights
dataset. As illustrated in Fig. 3, our method demonstrates
improved precision in locating specified moments. Addition-
ally, we provide a visualization of the attention map from the
VT-block of the CFC module, showcased in Fig. 4. During
the coarse-to-fine recurrent alignment, the balance tokens
progressively attract more attention from irrelevant clip tokens,
thereby ensuring the distinctiveness of relevant segments.

V. CONCLUSION

In this paper, we propose COREBA, a Coarse-to-Fine Re-
currently Aligned Transformer with Balance Tokens designed

for the joint video moment retrieval and highlight detection
task. We propose a plug-and-play Coarse-to-Fine Cross-model
interaction module to effectively fuse videos and texts. A
Recurrent Alignment Mechanism is further applied to the
CFC module, enabling a profound alignment between the two
modalities. Considering the misalignment between irrelevant
video clips and text queries, we append learnable Balance
Tokens to text queries, regulating the attention map and confin-
ing the fusion of text features with irrelevant clips. Extensive
experiments demonstrate the superiority and effectiveness of
our proposed method.
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