
Advancing Air Combat Tactics with Improved
Neural Fictitious Self-Play Reinforcement

Learning

Shaoqin He1,2, Yang Gao1(), Baofeng Zhang1,2, Hui Chang1, and Xinchen Zhang1

1 Institute of Automation, Chinese Academy of Sciences, Beijing, China
2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

{heshaoqin2021, yang.gao, zhangbaofeng2022, hui.chang,
xinchen.zhang}@ia.ac.cn

Abstract. We study the problem of utilizing reinforcement learning for action
control in 1v1 Beyond-Visual-Range (BVR) air combat. In contrast to most
reinforcement learning problems, 1v1 BVR air combat belongs to the class of
two-player zero-sum games with long decision-making periods and sparse
rewards. The complexity of action and state space in this game makes it
difficult to learn high-level air combat strategies from scratch. To address this
problem, we propose a reinforcement learning self-play training framework to
solve it from two aspects: the decision model and the training algorithm. Our
decision-making model uses the Soft actor-critic (SAC) algorithm, a method
based on maximum entropy, as the action control of the reinforcement learning
part, and introduces an action mask to achieve efficient exploration. Our
training algorithm improves Neural Fictitious Self-Play (NFSP) and proposes
the best response history correction (BRHC) version of NFSP. These two
components helped our algorithm to achieve efficient training in the high-
fidelity simulation environment. The result of the 1v1 BVR air combat problem
shows that the improved NFSP-BRHC algorithm outperforms both the NFSP
and the Self-Play (SP) algorithms.

Keywords: Air Combat, Reinforcement Learning, Neural Fictitious Self-Play.

1 Introduction

The development of intelligent algorithms for unmanned air combat has been a
significant research topic for a long time. Since the 1960s, some scholars have been
developing intelligent air combat systems, attempting to use artificial intel- ligence
methods to replace pilots in air combat decision-making. Prior methods mainly
include: expert systems constructed by knowledge from air combat do- main
experts[2], decision systems built by heuristic algorithms such as genetic algorithms
and fuzzy logic[3], modelling and solving air combat decisions based on game
theory[20], supervised learning based on deep learning, using expert- annotated air
combat decision data for behavior cloning. In recent years, with the success of Alpha
Go, a Go AI developed by the DeepMind team, in defeating the human world

2

champion, more and more reinforcement learning-based algorithm research has also
appeared in the air combat domain[19, 11, 5, 15, 14, 13, 17]. The expert system
method needs to rely on human experts to design a large number of air combat rules,
and the performance of the rule-based air combat intelligent algorithm will not exceed
the ability of the designer himself. Heuristic algorithms require experts to design
utility functions. The method based on game theory faces the difficulty of modeling
real air combat problems and solving Nash equilibrium. Behavioral cloning methods
are limited by the size of the data and the ability of the pilots who annotate the data.
The current work based on reinforcement learning methods has the problem that the
simulation environment is too simple and the target strategy is fixed.

In order to solve these problems, this paper uses reinforcement learning combined
with our proposed improved version of the NFSP training method. The contributions
of this paper are as follows:
 In the decision-making model, we use the Soft actor-critic (SAC) algorithm,

an entropy-based method, for the reinforcement learning aspect of action
control, and introduce the mechanism of action mask to help the algorithm to
explore efficiently.

 In the training algorithm, we propose an improved version of the NFSP
algorithm, called NFSP-BRHC, which is closer to the Nash equilibrium than
the original NFSP algorithm.

 Ablation and comparison experiments are conducted in a high-fidelity
simulation environment, showing that the NFSP-BRHC training algorithm
outperforms the NFSP and SP training algorithms.

2 Related Works

With the continuous innovation of reinforcement learning algorithms, more and more
air combat decision-making methods based on reinforcement learning have emerged.
Liu[11] used the Deep Q-Learning (DQN)[12] algorithm for short-range maneuvers
in air combat, and its training opponent was based on the Min-Max recursive
approach with a depth of 5. Yang[19] used the DQN algorithm for the same scenario,
and at the same time used the idea of course learning for basic training, and the
opponent strategy for subsequent training was based on statistical rule algorithms.
Guo[5] verified the effect of Deep Deterministic Policy Gradient (DDPG)[10]
algorithm in the same scene. Qiu[15], on the other hand, added the action of firing
missiles in a two-dimensional environment using the improved Twin Delayed Deep
Deterministic Policy Gradient (TD3)[4] algorithm to learn maneuvers to evade the
missiles. Piao[13] used the Proximal Policy Optimization (PPO)[16] algorithm in 1v1
BVR air combat and trained it through the self-play training method. In the Alpha
Dogfight Trail held by DARPA, Adrian P. Pope et al.[14] developed an air combat
agent based on the layered reinforcement learning architecture of the SAC
algorithm[7], and won second place in the competition.

The first four works[11, 19, 5, 15] all use rule-based target strategy as opponents
for training, which suffers from many problems such as overfitting and being limited

3

by the target strategy. The last two works[13][14] use a training framework based on
self-play to achieve autonomous evolution of air combat AI, but this training method
has the problem that the game may be caught in a loop and cannot converge to the
Nash equilibrium.

Different from the above methods, the training method used in our study is an
improved version of NFSP. We improve the NFSP algorithm to make it converge
faster and closer to the approximate Nash equilibrium during the training process. In
terms of exploring the state space, we propose action masks to help the agent improve
the exploration efficiency. These improvements allow agents to converge faster
during training and perform better in high-fidelity simulation environment.

3 Proposed Method

In this section, the BVR air combat problem will be modeled as a Markov game[1].
Then, the decision model and network architecture of the BVR air combat agent we
use are described. Next, an action mask is introduced to help AI better explore the
state space. Finally, several self-play algorithms are discussed, and a Neural Fictitious
Self-Play algorithm based on best response history correction (NFSP-BRHC) is
proposed for the tactical evolution of air combat agents.
3.1 BVR Air Combat Modeling
In this paper, the 1v1 BVR air combat problem is modeled as a fully competitive
multi-agent Markov game. We can use the tuple �0, �, �, �, �, � to define this
Markov game, where �0 is the initial state, � is the joint state space, � is the joint
action space, �: � × � → � presents the state transition probability, �: � × � → �
presents the reward function, and � ∈ 0,1 is the discount factor. For agent � , the
state space is �� , the action space is �� , the reward is �� , and its policy �� is the
mapping of �� × �� → 0,1 . The goal of each agent in the Markov game is to
maximize the cumulative discounted reward: �� = ���� Σ�=0

� ���� ��, �� , where �
represents the time horizon, ��� denotes the probability distribution of trajectories
produced by following policy ��.

State space.
The state space of BVR air combat mainly contains two parts: the state �� that can

be obtained directly and the state ��� that needs to be obtained indirectly by further
calculation. �� includes opposing aircrafts' three-dimensional coordinates �, �, �, three
angles ϕ�, ϕ�, ϕ� , indicating the attitude, velocities ��, ��, �� in the direction of the
three axes, magnitude of the combined velocity � , radar lock signal �� and the
number of remaining missiles � . ��� includes opposing aircrafts' distance � , the
projected distances ��, ��, �� in the direction of the three axes, the closing rate �' , the
aspect angle �� , the antenna train angle ��� , the elevation angle �� , the heading
crossing angle ��� , and finally the energy-related velocity squared � and velocity
squared difference ��. The entire state space is defined as follows:

�� = [�, �, �, ��, ��, ��, ��, ��, ��, � , ��, �, �,
��, ��, ��, �', ��, ���, ��, ���, �, ��].

(1)

4

There are 38 states in total. All states are inclusive of both sides except for the
distance � , the projected distances ��, ��, �� , the closing rate �' , the elevation angle
��, the heading crossing angle ��� and the velocity squared difference ��.
Action Space.
Fighter pilots can make many complex tactical maneuvers during their missions, and
these complex tactical maneuvers are composed of basic atomic actions. So as long as
the action space contains these basic atomic actions, it can cover higher-level complex
maneuvers. Referring to the seven basic maneuvers [automated maneuvering
decisions for air-to-air combat] designed by NASA scholars, the action space we
designed contains seven basic actions: uniform straight flight, upward flight,
downward flight, left-turn flight, right-turn flight, accelerate, decelerate, and a launch
action to control the missile, as shown in Table 1.

Table 1. Action Space.
Category Serial Basic Atomic Action

Maneuvers

�1 uniform straight flight
�2 upward flight
�3 downward flight
�4 left-turn flight
�5 right-turn flight
�6 accelerate
�7 decelerate

Attack �8 launch missile

Reward Definition.
In past work, some relied on fine-tuned per-step reward signals from human

experts, while others were based on sparse reward signals from important events[13].
Per-step reward signals can solve the problem of cold start, but are difficult to adjust
and performance is limited by the designer's subjective understanding of the air
combat advantage. Important event rewards reflect objective air combat events, but
are too sparse and suffer from the cold start problem. Therefore, we combine these
two types of rewards. The rewards at each step with small weights guide the agent to
explore the tendency to explore more valuable states to solve the problem of cold
start, and the objective important event rewards help the agent correctly recognize the
causal relationship between winning and policy.

The rewards for each step include whether the radar detects the opponent, speed
advantage in the direction of the enemy's defense line and a fixed negative reward to
encourage the agent to end the fight as soon as possible. Rewards for important events
include sparse rewards for launching missiles and rewards for successfully evading
missiles. The rewards for launching missiles are negative, which can make the agent
more cautious about launching missiles. This setting is because each agent only
carries two missiles and needs to maximize the benefits of launching. Rewards for
important events also include rewards for crossing the enemy's line, rewards for
launching missiles and hitting the enemy to win, and penalties for going out of
bounds.

5

The coefficient relationship between the rewards of each step plus the rewards of
the missile and the reward of the final result is such that the winning side will receive
much larger rewards than the losing side. The reward settings are described in Table
2 ,where � denotes the max step number in the simulation.

Table 2. Reward Definition.

Category Event Weight

Per-step
Rewards

Detect 0.5
Be detected -0.5

Speed advantage [-1,1]
fixed negative -0.1

Import Event
Rewards

Launch missile -50
Escape missile 50

Cross the line first 2n
Cross the line late -2n

Hit 2n
Be hit -2n

Out of bounds -4n

3.2 Decision Model

Soft actor-critic.
Soft actor-critic (SAC)[7] is a maximum entropy reinforcement learning (MERL)

algorithm developed based on the idea of maximum entropy, which outputs a
stochastic distributed policy function similar to the PPO algorithm. The difference is
that the SAC algorithm is an off-policy actor-critic algorithm. Compared with PPO,
the sample efficiency of SAC is higher. Compared with the DDPG algorithm, which
belongs to the off-policy actor-critic algorithm, SAC uses a stochastic policy, while
DDPG uses a deterministic policy. The stochastic policy can help the agent to explore
better and converge more stably, while the deterministic policy is more likely to fall
into a local optimum, and its performance and convergence are also unstable. And
what makes SAC most different from other reinforcement learning algorithms is that
it maximizes the entropy of the policy while optimizing it to maximize the cumulative
benefit. This makes the stochastic policy behave more randomly while ensuring the
cumulative return, which can more fully explore the state space and further enhance
the stability of the algorithm's performance. After introducing the maximum entropy,
the training goal of the SAC actor is to maximize the cumulative reward and the
expectation of the policy entropy, which is expressed as follows:

�������∗ = argmax
� �

 � ��,�� ∼��� � ��, �� + �� � ⋅ |�� , (2)
where ρπ denotes the distribution of state-action pairs that the agent encounters

under the control of policy π, α is the temperature coefficient, which is used to adjust
the degree of emphasis on entropy.

6

Due to the different optimization goals, the value iteration formula of maximum
entropy reinforcement learning is slightly changed compared with standard
reinforcement learning. The Bellman equation for value iteration of the soft Q
function and soft V function in the SAC algorithm is as follows:

�����
� ��, �� = ���+1∼� ��+1|��,�� � ��, �� + ������� ��+1 , (3)

������ �� = ���∼� �����
� ��, �� − �log� ��|�� . (4)

The critic network corresponds to the soft Q function, and its training goal is to
minimize the following loss function:

�� = � ��,�� ∼�
1
2
� ��, �� − �� ��, �� , (5)

where � represents the replay buffer, �� is the target critic network.
The agent policy approximates the energy-based policy (EBP)[6] by minimizing

the KL divergence between the policy represented by the state-conditioned stochastic
neural network[6] and EBP. Finally, the loss function of the actor network is derived
as follows:

�� = ���∼�,��∼� log� ��|�� − 1
�
� ��, �� . (6)

Many performance-improving techniques are used in SAC, including drawing on
the double Q network[18] and target Q network in DQN to alleviate the problem of
overestimation of the Q value. One of the most important improvements is the
automatic entropy adjustment mechanism. �, as a hyperparameter that controls
MERL's emphasis on entropy, has a significant impact on the performance of the
algorithm. It has different suitable values in different reinforcement learning tasks or
different training stages of the same task[7]. The authors of SAC propose an
improvement to automatically adjust alpha to keep entropy always greater than a
threshold while maximizing the expected reward. The final loss function on alpha is
as follows:

�� = ���∼�� −�log�� ��|�� − �ℋ0 , (7)

whereℋ0 denotes the threshold of entropy.

Action Mask.
Due to the huge combination of action and state space in 1v1 BVR air combat, in

order to improve the efficiency of training, the method of action mask is proposed to
prune the exploration of reinforcement learning. There is not much expert knowledge
involved in the action mask, and it is mainly used to eliminate some unreasonable
places in the training process: 1) About going out of bounds, whether it is falling into
the sea or going out of bounds in the horizontal direction. By designing the action
mask to realize turning or climbing in advance to avoid failure caused by going out of
bounds. 2) Regarding launching missiles, avoid launching missiles when you are in a
state where launching missiles is impossible to hit or when there are no missiles.

Action masks help the algorithm cut down on exploration and use limited resources
to explore more meaningful states.

7

Network Structure.
The network structure of the reinforcement learning part of a single agent is shown

in Fig. 1. The observed value of the environment is composed of two parts: direct
observation �� and indirect observation ��� which needs further calculation. After
normalization, �� and ��� are obtained respectively, and these two parts constitute the
state of the whole problem. Then input the state to an actor network and four critic
networks (the other three critic networks with the same structure are omitted in the
figure). The actor network and the critic network are composed of four layers of fully
connected layers, the number of hidden units in each layer is 512, and the activation
function is ReLU. In addition, there is a module called Action Mask that calculates
the action mask of the current state based on the environment observation.

Fig. 1. The neural network structure of the RL part of the agent

3.3 Neural Fictitious Self-Play with Best Response History Correction
The training methods used in previous work[13,14,17] on the application of
reinforcement learning to air combat are often based on self-play. However, Using
self-game in a non-transitive game will make the trained models of each generation
fall into a cycle. In short, there are three policies �, �, and � in a non-transitive game,
and � > � cannot be obtained when � > � and � > � are satisfied.

Fictitious Self-Play[8] can alleviate this problem, and it has been proved that it can
converge to approximate Nash equilibrium in imperfect-information poker games. In
the Fictitious self-play, the current policy of the agent is obtained by the weighted
average of the best response(BR) and the historical average policy. Among them, the
BR is the best response of the agent to the opponent's historical average policy, and
the historical average policy is the historical average of BR for one's own side.

In the Neural Fictitious Self-Play[9], the best response and the historical average
policy are represented by the neural network, as shown in Fig. 2. Each agent in the
Neural Fictitious Self-Play consists of a best response policy network and a historical
average policy network. The best response policy network is learned and trained by a
reinforcement learning algorithm, such as SAC with an action mask used in this
paper. The historical average policy network is trained by supervised learning, and the

8

Fig. 2. The NFSP framework

training samples come from the past average behavior of the best response policy
network. The supervised learning part uses the logarithmic loss function:

�� = � �,� ∼��� −���� �|� . (8)

The final output policy of the agent trained by NFSP is a weighted mixture of the
best response policy and the historical average policy, where the weight is η.

Fictitious Play can converge to Nash equilibrium in theory, but Neural Fictitious
Self-Play uses the neural network to approximate the best response policy, and there
is a certain gap between the obtained and real best response. Because each time the
best response policy network is used to approximate the best response, the network
may not converge completely, and there will always be a deviation. For example, in
the game of rock-paper-scissors, the opponent's strategy is fixed rock, and our best
response policy network outputs a policy of 25\% rock, 5\% scissors, and 70\% paper
after a round of training. This is not the best response. If we do not choose scissors
because of the 30\% probability, then the supervised learning buffer used to learn the
historical average policy will be mixed with many non-best response samples, which
will cause errors in the learning of the historical average policy. Therefore, we
propose an NFSP with the best response history correction (NFSP-BRHC) to solve
this problem.

NFSP-BRHC no longer stores all the output history of the best response strategy
network into the supervised learning buffer of the historical average policy, but stores
the policy of the final winning episode output by the best response network into the
SL buffer. Because in the two-person zero-sum game with long-term sparse rewards,
the real reward signal is only the final victory or failure. In this game, the final
winning decision sequence is more consistent with the definition of the best response
than the failed decision sequence generated due to incomplete convergence, and it is
also more valuable in training the historical average policy.

9

In addition, considering that there are few samples in the supervised learning (SL)
buffer in the early stage of training, so the best response strategy should account for a
greater weight in the mixed strategy output. With the increase of training times, the
best response policy samples in the SL buffer continue to expand, and the weight of
the average policy should continue to increase. In this way, the second improvement
of the NFSP-BRHC algorithm is obtained, and the fixed mixing coefficient is
improved to decay to a threshold with the number of training generations.

The improvements to the SL buffer samples and the attenuated mixing coefficients
constitute the complete NFSP-BRHC training algorithm. Combining NFSP-BRHC
and SAC algorithm with action mask, we get NFSP-BRHC with SAC, shown in
Algorithm 1.

1v1 BVR air combat is a two-person zero-sum game with long-term sparse
rewards, and other auxiliary rewards are set to help the algorithm converge faster and
explore better. In the experimental part, we verified the effectiveness of the algorithm
improvement on the 1v1 BVR air combat problem.

10

4 Experiments

1v1 BVR air combat is a two-person zero-sum game with long-term sparse rewards,
and other auxiliary rewards are set to help the algorithm converge faster and explore
better. In the experimental part, we verified the effectiveness of the algorithm
improvement on the 1v1 BVR air combat problem.

4.1 Simulation Environment and Problem Setting
The 1v1 BVR air combat simulation environment in this article is a high-fidelity 6-
DOF simulation environment developed based on C++ language, and the flight
dynamics models of the corresponding aircraft and missiles are consistent with those
in the DCS world. The aircraft used in our experiments is the F-16 fighter jet. The
battlefield for BVR air combat is set as a rectangular area with a length of 100km
from north to south and a width of 50km from east to west. The bases of both sides
are 10km in size from north to south, and 50km in width from east to west, which is
located at the southernmost and northernmost points of the battlefield respectively.
The two opposing sides carry two AIM-120 and set off from the center of their
respective bases at a height of 3km. If the aircraft is out of bounds, it will be directly
judged to be a failure. The out-of-bounds actions include the position exceeding the
battlefield boundary and crashing into the sea.

4.2 Experiment Setup
In the experiments, the discount factor is set as 0.99 and the SAC algorithm in the
reinforcement learning part uses the Adam optimizer with an initial learning rate of
απ 5.0e-5 for the actor network and α� 8.0e-5 for the critic network with a target
entropy of -10. The neural network in the supervised learning part contains five
hidden layers and uses the Adam optimizer with an initial learning rate of αΠ 5.0e-5.
The probability of the BR policy being selected in the NFSP-BRHR, η, is initially 1
and decays to a threshold of 0.1 as the experiment proceeds. In the experiments, each
action lasts 0.5s, which is an appropriate value, considering the difference between
BVR air combat and Dog Fight. If it is too long, it will be difficult to learn complex
maneuvering behaviors, and if it is too short, it will be difficult to train.

4.3 Ablation and Contrast Experiments
In a two-person zero-sum game, comparing the rewards of algorithms is pointless. We
use the winning rate of simulation experiments between agents trained by different
training algorithms as a comparison standard.

Action Mask Ablation Experiment.
To demonstrate the effectiveness of the action mask, we conduct ablation

experiments. Using the SP, NFSP, and NFSP-BRHC three algorithms to train a total
of 5000 episodes, about two million (2M) steps.

Finally, the trained red/blue model with the action mask module and the red/blue
model without the action mask module of the same training algorithm is simulated
100 times for BVR air combat, and the average winning rate is calculated as shown in
Fig. 3. (a).

11

Fig. 3. a) The ablation experiment of Action Mask. b) Comparative experiment with baseline
training algorithm

It can be found that the effect of the policy model with the action mask module
trained by three different training methods is better than that without the action mask
module. The experimental results prove that the action mask can indeed effectively
help the agent to prune the exploration space, and use more resources in the places
that need to be explored more, thereby helping the agent to achieve a higher winning
rate.
Comparison with Baseline Algorithms.

After the same number of training times as in the ablation experiment, 100 BVR
air combat simulations are performed between the models obtained by the three
training algorithms of SP, NFSP, and NFSP-BRHC. The average winning rate is
finally shown in Fig. 3. (b).

It can be found that the relationship among the effects of the three training
algorithms is satisfied: NFSP-BRHC > NFSP > SP, which is consistent with our
expectations. The model trained by NFSP-BRHC will be closer to the Nash
equilibrium and converge faster, while the model trained by NFSP will deviate from
the Nash equilibrium due to the error strategy generated when the best response
network does not fully converge. However, the models trained by these two training
methods are better than SP.

The experimental results confirm the analysis we conducted in the method section,
and prove the effectiveness of our proposed NFSP-BRHC training method.

4.4 Tactical Evolution During Training
As shown in Fig. 4, during the training, the agents adapt to each other's policies and
continuously realize the evolution of tactics.

These behaviors show that the tactics of the agent trained by the NFSP-BRHC
algorithm are constantly evolving during the training process. The policies of the two
sides are adapting to each other during the training, and they are constantly
approaching the Nash equilibrium in the process of adaptation. This phenomenon of
mutual adaptation of policies also confirms our analysis in the Methods section.

12

Fig. 4. a) Initially, the agent did not launch missiles or fly directly towards the finish line. b)
As training progressed, the agent learned to accelerate at the start to maintain level flight and
win the race. c) However, after learning to launch missiles, the strategy of accelerating towards
the line became ineffective, and the agent learned to judge possible missile trajectories to
escape them. d) The agent mastered missile launching, often performing a crank maneuver to
evade opponent missiles launched at a closer range. e) The agent learned to launch two missiles
at different positions. f) Additionally, the agent learned to climb first in the game and increase
the threat of launching missiles, which also helped it gain a situational advantage.

5 Conclusion
In this paper, we propose a new training method NFSP-BRHC. This method corrects
the best response historical samples during training and uses decayed best response
weights, making the averaging policy much closer to the historical average of best
responses. And, we combine the NFSP-BRHC algorithm and SAC with action mask
and apply it to 1v1 BVR air combat decision-making. The experimental results show
that in 1v1 BVR air combat, the agent trained by our proposed training algorithm has
more advantages than the agents trained based on SP or NFSP.

In addition, the NFSP-BRHC training framework can be used not only in 1v1 BVR
air combat but also in other sparsely rewarded two-person zero-sum games. In the
future, we intend to apply the NFSP-BRHC training framework to more games that
conform to this definition to further verify the effectiveness of the training framework
and continue to improve it.

Acknowledgement. This work was supported by National major science and
technology plan project, National Defense Science and Technology Foundation
Reinforcement Program Key Project, the Strategic Priority Research Program of the
Chinese Academy of Sciences.

References
1. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity via

multi-agent competition. arXiv preprint arXiv:1710.03748 (2017)
2. Burgin, G.H.: Improvements to the adaptive maneuvering logic program. Tech. rep. (1986)
3. Ernest, N., Carroll, D., Schumacher, C., et al.: Genetic fuzzy based artificial intelligence

for unmanned combat aerial vehicle control in simulated air combat missions. Journal of
Defense Management 6(1), 2167–0374 (2016)

4. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in

13

actor-critic methods. In: International conference on machine learning. pp. 1587–1596.
PMLR (2018)

5. Guo, J., Wang, Z., Lan, J., Dong, B., Li, R., Yang, Q., Zhang, J.: Maneuver decision of uav
in air combat based on deterministic policy gradient. In: 2022 IEEE 17th International
Conference on Control & Automation (ICCA). pp. 243–248. IEEE (2022)

6. Haarnoja, T., Tang, H., Abbeel, P., Levine, S.: Reinforcement learning with deep energy-
based policies. In: International conference on machine learning. pp. 1352–1361. PMLR
(2017)

7. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In: International conference
on machine learning. pp. 1861–1870. PMLR (2018)

8. Heinrich, J., Lanctot, M., Silver, D.: Fictitious self-play in extensive-form games. In:
International conference on machine learning. pp. 805–813. PMLR (2015)

9. Heinrich, J., Silver, D.: Deep reinforcement learning from self-play in imperfect
information games. arXiv preprint arXiv:1603.01121 (2016)

10. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra,
D.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971
(2015)

11. Liu, P., Ma, Y.: A deep reinforcement learning based intelligent decision method for ucav
air combat. In: Modeling, Design and Simulation of Systems: 17th Asia Simulation
Conference, AsiaSim 2017, Melaka, Malaysia, August 27–29, 2017, Proceedings, Part I
17. pp. 274–286. Springer (2017)

12. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through
deep reinforcement learning. nature 518(7540), 529–533 (2015)

13. Piao, H., Sun, Z., Meng, G., Chen, H., Qu, B., Lang, K., Sun, Y., Yang, S., Peng, X.:
Beyond-visual-range air combat tactics auto-generation by reinforcement learning. In:
2020 International Joint Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2020)

14. Pope, A.P., Ide, J.S., Mićović, D., Diaz, H., Rosenbluth, D., Ritholtz, L., Twedt, J.C.,
Walker, T.T., Alcedo, K., Javorsek, D.: Hierarchical reinforcement learning for air-to-air
combat. In: 2021 international conference on unmanned aircraft systems (ICUAS). pp.
275–284. IEEE (2021)

15. Qiu, X., Yao, Z., Tan, F., Zhu, Z., Lu, J.G.: One-to-one air-combat maneuver strategy
based on improved td3 algorithm. In: 2020 Chinese Automation Congress (CAC). pp.
5719–5725. IEEE (2020)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

17. Sun, Z., Piao, H., Yang, Z., Zhao, Y., Zhan, G., Zhou, D., Meng, G., Chen, H., Chen, X.,
Qu, B., et al.: Multi-agent hierarchical policy gradient for air combat tactics emergence via
self-play. Engineering Applications of Artificial Intelligence 98, 104112 (2021)

18. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning.
In: Proceedings of the AAAI conference on artificial intelligence. vol. 30(2016)

19. Yang, Q., Zhang, J., Shi, G., et al.: Maneuver decision of uav in short-range air combat
based on deep reinforcement learning. IEEE Access 8, 363–378 (2019)

20. Zheng, H., Deng, Y., Hu, Y.: Fuzzy evidential influence diagram and its evaluation
algorithm. Knowledge-Based Systems 131, 28–45 (2017)

