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ABSTRACT
Multilingual multimodal pre-training has garnered significant atten-
tion, but it faces challenges due to the substantial need for diverse
multilingual text-image data, especially for minor languages. This
article introduces UniGen, a unified strategy for efficient multilin-
gual multimodal pre-training inspired by internet data distribution
observations. Leveraging the richer availability and higher qual-
ity of multilingual text-English text and English text-image data,
UniGen aligns the latent space of multilingual text with visual
information to a unified semantic space. This alignment, with
English as a reference, proves effective in enhancing cross-modal
understanding. UniGen reduces reliance on multilingual text-image
data, surpassing comparable models in multilingual multimodal
benchmark IGLUE by a notable 7%. Notably, UniGen is the first mul-
tilingual multimodal model to unify all pre-training tasks within a
generative pre-training framework.
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1 INTRODUCTION
Current research focuses on multilingual and multimodal models,
which empower models to comprehend multiple languages and
bridge the gap between vision and language. These models are
crucial for multilingual communities, enabling tasks like creating
image descriptions in various languages. They require sophisticated
alignment across different language embeddings and between lan-
guage and visual data encodings. Such models can process both
visual and textual content in multilingual and multimodal contexts.
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Figure 1: A simple illustration of data reliance. While UC2
requires multilingual all-aligned text-image data, CCLM re-
quires multilingual text-image data, UniGen can rely on
English text-image data to achieve multilingual multimodal
alignment.

Earlier multilingual multimodal pre-training research has ex-
plored different methods. M3P [1] and UC2 [2] pioneered using
aligned image-text data in multiple languages for pre-training, with
specific training tasks and objectives. However, their reliance on
closely matched data limits language diversity. To address this,
CCLM [3] approach reduces the need for aligned data by treating
cross-modality and cross-language as separate views. It leverages
images with descriptions in one language, combined with multilin-
gual text, to improve text alignment across languages. However, as
illustrated in Figure 1, despite the relatively flexible requirements
compared to previous works, this approach still relies on data com-
posed of multilingual text and images, which restricts the potential
for data augmentation.

Moreover, the majority of existing pre-training strategies [2–
4] often focus on masked language modeling which forces the
model to complete sentences by masking certain parts of the text,
prompting it to extract information from visual features or forcibly
establishing associations between visual targets and text [1, 2, 5]
using object detection frame–works like Fast R-CNN [6]. Neither
of these approaches directly use visual features

effectively; instead, they serve as auxiliary alignments in the
training process for text tasks. The singularity of training objectives
prevents the model from exploring deep information in both text
and images. Masked data modeling is not specifically designed for
cross-lingual and cross-modal tasks. Some efforts attempting to
leverage multimodal information also introduce multiple training
objectives, increasing training complexity.

In this work, we propose UniGen based on generative pre-
training to address the aforementioned issues. On the one hand,
at the data level, we simplify data requirements by using English
as a pivot between multilingual text and images, reducing depen-
dency on paired data. On the other hand, our unified generative
approach streamlines pre-training objectives, treating multilingual-
to-English text as translation and English text-to-image as caption-
ing, both handled by a generative decoding model. As noted in
BEIT-3 [7], introducing multiple pre-training objectives can be scal-
ing up unfriendly and inefficient for training the model. A unified

pre-training paradigm provides certain advantages for model train-
ing in this context. Additionally, we integrate traditional tasks like
contrastive learning, image-text matching, and question-answering
into our generative framework. Drawing inspiration from mod-
els like ChatCaptioner [8], we exploit large language models’ in-
context learning to generate question-answering data, enhancing
the model’s detail perception without extra datasets. This strategy
aims to refine the model’s visual and textual understanding.

We tested the UniGen model using the IGLUE [9] benchmark to
assess its effectiveness. Experiments show that UniGen matches
or surpasses current leading methods in comprehension, question-
answering, and reasoning, even with limited or no aligned multi-
lingual text-image data. Notably, UniGen excels in understanding
minor languages, promoting fairness in model performance. Un-
like some previous models that require complex adjustments for
different tasks, UniGen employs a consistent decoding approach
built on a unified pre-training strategy, simplifying fine-tuning and
improving both efficiency and ease of use.

Our contributions can be outlined in three folds: 1) the pro-
posal of a novel training method, UniGen, which employs a unified
generative pre-training paradigm for multilingual multimodal pre-
training, reducing the data requirements of traditional methods; 2)
the utilization of Image Captioning tasks and large-model-based
image-text question-answering tasks to more directly leverage vi-
sual information to improve model performance; 3) the adoption of
a paradigm that unifies pre-training and downstream task transfer
training, making the transfer process more straightforward with-
out the need for introducing additional network components. We
believe this paradigm offers a new perspective for existing research
in multilingual multimodal pre-training, especially in the under-
standing of multimodal content for minor languages.

2 RELATEDWORKS
Pre-trained Language Models In recent years, many pre-trained
language models have achieved significant performance leaps by
leveraging vast amounts of data, relying on the self-attention mech-
anism of Transformer [10] and the use of self-supervised tasks.
On one hand, the representative of autoencoding pre-training
paradigms, BERT [11], achieved excellent text representations
through masked language modeling and next-sentence prediction.
Subsequently, RoBERTa [12] enhanced robust optimization by em-
ploying dynamic masking. These studies have led to the extension
of multilingual applications. mBERT [11], trained on a larger mul-
tilingual vocabulary and masked language modeling with multilin-
gual text, achieved encoding for multilingual text. XLM-RoBERTa
[13] introduced translation language modeling, enhancing semantic
alignment across different languages. On the other hand, repre-
sentative of autoregressive pre-training, the GPT series [14–16]
demonstrated that generative pre-training can also achieve lan-
guage understanding. Furthermore, it explored how generative
pre-training models can perform various tasks on top of language
understanding and acquire the capability of in-context learning.

Multimodal Pre-training: from mono to multilingual In
the field of vision-language pre-training, early researches [17–19]
often used a single-stream architecture, which allowed multimodal
features to interact early in the network, improving alignment.
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Figure 2: Illustration of the UniGen framework. UniGen involves two types of inputs: (a) unimodal or (b) multimodal input.

This led to the development of pre-training tasks like masked image
modeling and image-guided masked language modeling. CLIP [20],
with its contrastive learning on a vast image-text dataset, showed
remarkable zero-shot learning abilities. More recent studies have
combined contrastive learning with feature fusion techniques. AL-
BEF [21] introduced an ’align before fusion’ method, while BLIP-2
[22] used a Q-former to extract visual features relevant to the text,
both methods improving multimodal data alignment. In multi-
lingual multimodal pre-training, M3P [1] leveraged multilingual
multimodal inputs with random replacement and code-switch tasks
to enhance multilingual capabilities. UC2 [2] used dual-language
captions and visual data, employing offline models to associate
image targets with text and co-masking texts to help the model
learn from images. CCLM [3] treated image-multilingual text and
multilingual-English text as separate views, using masked language
modeling for alignment. This approach led to state-of-the-art per-
formance in various multilingual multimodal tasks.

3 METHOD
3.1 Overview
UniGen framework aims to achieve cross-language and cross-modal
alignment while reducing the usage of multilingual text-image
data. UniGen comprises three components: an image encoder, a
multilingual encoder, and an English decoder. The image encoder
consists of a pre-trained BLIP-2base [22] model, which includes a
frozen CLIP ViT-L/14 as encoder, and a Q-Former with 32 learnable
queries. For an image with a resolution of 224 × 224 as input, the
image encoder first partitions and extracts features in a patch size
of 16 × 16, followed by interaction with learnable queries in the Q-
Former to obtain the output. For the text encoder, we employ a pre-
trained XLM-R, which has been pre-trained on over 100 languages,
as the text encoder. It can tokenize input from multilingual text
and extract features to generate output. As for the English decoder,
a GPT-2base is chosen as the decoder. It takes the output from the
image encoder and the multilingual encoder as input embeddings
and produces the final output sequence through the decoder.

In the training tasks, we have selected two categories, totaling
four tasks, as illustrated in Figure 2. These comprise two unimodal
input tasks and two multimodal input tasks. The unimodal input
tasks involve a translation task using multilingual text-English

text input and an image captioning task using English text-image
input. As for the multimodal input, there is a multimodal question-
answering task (details will be introduced in section 3.2 and an
image-text matching task. The specifics of the training tasks will
be elaborated in section 3.3.

3.2 Large Language Model asQuestioner
Masked language modeling (MLM) offers distinct benefits over gen-
erative pre-training, particularly in its ability to prompt models
to fill in randomly masked tokens, thereby honing the model’s
attention to crucial caption details and enhancing perception of
visual nuances. However, generative autoregressive training lacks
this attention on detail within feature representations, which can
limit fine-grained perceptual skills. To address the issues of missing
image detail and small targets in generative pre-training, we intro-
duce image-text question-answering to encourage the model utilize
detailed visual information. Inspired by ChatCaptioner [8] frame-
work, which uses large language models for linguistic guidance
in multimodal tasks, our approach employs an offline large lan-
guage model to extract details from captions, directing multilingual
multimodal pre-training.

As depicted in Figure 3, considering the model’s size, accessi-
bility, and computational constraints, we utilizes an offline large
language model, Llama-30B [25], to extract detailed information
from image descriptions in Conceptual Captions 3M. Capitalizing
on the in-context learning capability of LLM, prompts are employed
to provide examples for the model’s output. The specific prompt is
as follows:

Extract accurate and important information to form a question-
answer pair exactly from the sentence following the pattern, avoid
using yes/no answers:

<sentence> a worker sits on a bench in front of a group of young
people. <question> What is the worker in front of? <answer> young
people. <sentence>. . .

Three key prompts are provided to the large language model:
1) Extract important information; 2) Avoid illusions; 3) Avoid sim-
ple questions. Through these prompts, detailed information can
be continuously extracted from input captions, automatically con-
structing image-question-answer data for subsequent image-text
question-answering training.
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Figure 3: A simple illustration of large language models
Questioner.

3.3 UniGen Pre-training
UniGen pre-training process consists of two types: unimodal-input
pre-training and multimodal-input pre-training.

Unimodal-input Pre-training The primary objective of
unimodal-input pre-training is to decouple multilingual text-image
data, achieving alignment between multiple languages and visual
latent spaces through a shared English decoder. Although they have
different input modalities, both of the final outputs are correspond-
ing English translations or captions, enabling a unified pre-training
objective. We additionally introduce two special

tokens, [trans] and [cap], to serve as prompts for task identifica-
tion in the English decoder.

Taking multilingual-English text pairs as an example, after Sen-
tencePiece tokenization and XLM-R feature extraction, the output
�C is then concatenated with [trans] and fed into the decoder, re-
sulting in an output denoted as �#

C = [�#
0 , . . . , �#

= ]. We employ
cross-entropy loss for generative pre-training, translation and cap-
tion loss are denoted as LCA0=B and L20? respectively.

�0
CA0=B = [�C0, �C1, . . . , �C=] ⊕ )� ( [CA0=B])

LCA0=B = − 1
#

=∑
8=0

+∑
9=0

~8, 9 log
(
�#
8,9

)
where)� denotes the decoder tokenizer, ⊕ is concatenate operation,
+ is the vocabulary size and�#

8,9
is the predicted probability of token

9 by the model at position 8 .
Multimodal-input Pre-training While unimodal input pre-

training achieves cross-modal alignment through a shared English
decoder, it can be troublesome to achieve better alignment without
cross-modal information interaction. Hence, the introduction of
multimodal input pre-training aims to enhance cross-modal align-
ment. This includes two pre-training tasks: image-text question-
answering and image-text matching. Correspondingly, two special
tokens are introduced: [qus] and [match]. Regardless of which
task, the input consists of English text-image pairs (or multilingual
text-image pairs). After passing through the multilingual encoder
and visual encoder, the embeddings are obtained, denoted as �E
and �C respectively. After concatenation with the corresponding
special token, they are fed to the decoder, producing the output

corresponding to the answer or judgment. Cross-entropy loss is
used and labels L@DB and L<0C2ℎ are assigned for these tasks.

�0
@DB = [�E0, . . . , �E<] ⊕ [�C0, . . . , �C=] ⊕ )� ( [@DB])

L@DB = − 1
#

=∑
8=0

+∑
9=0

~8, 9 log
(
�#
8,9

)
Following ALBEF and later works [21, 23], we adopt contrastive
learning in the image-text matching task to obtain hard negatives
for the matching process, which is vital for cross-modal alignment.
Simultaneously, contrastive learning can provide supervision sig-
nals for alignment at the model’s encoder levels, assisting in cross-
modal alignment. It’s important to note that, unlike BLIP-2 [22],
we don’t calculate the similarity for each query and select the max-
imum similarity as the [CLS] token. Instead, we take the first token
from the learnable queries of length< as the [CLS] token, which
carries global information of the visual input.

For a given positive sample of an image-text pair E8 , C8 , where the
remaining texts C 9 and images E 9 ( 9 ≠ 8) serve as negative samples
for E8 and C8 respectively, the NCE loss is defined as follows:

L�! =
1
2
(LE2C + LC2E)

LE2C = − 1
�

�∑
8=1

log
exp (sim (E8 , C8 ) /g)∑#
9=1 exp

(
sim

(
E8 , C 9

)
/g
)

where � is the batch size, sim(a, b) = aTb
‖a‖ ‖b‖ is the cosine similarity

between two tokens, g is a learnable hyperparameter that controls
the scale of similarity logits.

To sum up, the loss for all tasks consists of four generative losses
and one contrastive learning loss:

LBD< = LCA0=B +L20? +UL@DB + VL<0C2ℎ +L�! . The first two
align at the decoder level through single-modal tasks, while the
remaining three provide refined alignment objectives for the model
through cross-modal tasks.

4 EXPERIMENT
4.1 Datasets
The dataset used in this study consists of a multilingual text-
image dataset (primarily in English) and a multilingual-English
text dataset. Following the approach in CCLM [3], Conceptual Cap-
tions 3M(CC3M) [24] dataset is utilized as the primary multimodal
dataset. In UC2, CC3M has been translated into five languages
(Czech, French, German, Japanese, and Chinese) to form CC6L.This
expansion covers a variety of major languages and has been widely
applied in multilingual multimodal pre-training research.

However, the extensive use of data from major languages has
to some extent affected the alignment of non-participating minor
languages, leading to a decrease in their performance. Therefore,
this study attempts to mitigate this issue by reducing the utilization
of multilingual multimodal data. Specifically, during pre-training,
we randomly selected 10% of CC6L data and used randomly selected
language texts and images for input. The remaining portion of the
data was exclusively comprised of English data from CC3M for
training.
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In addition, as described in section 3.2, we introduced an English
image-text question-answering dataset through Llama-30B [25]. To
ensure fairness, we also utilized CC3M as the source for extracting
key information from captions, without introducing additional
datasets. This dataset can be referred to as Conceptual Captions
Question Answering 3M (CCQA3M).

Finally, for multilingual-English text, we employed the same
WikiMatrix [26] subset as CCLM for training. This subset includes
19 million examples of multilingual text pairs in English and 20
languages, covering all languages in the IGLUE benchmark.

4.2 Implementation Details
UniGen contains a visual encoder with CLIP ViT-L/14 and a Q-
Former, a XLM-R multilingual text encoder, and a GPT-2base de-
coder. For efficiency, the ViT part of the visual encoder and the
intermediate 6 layers of the decoder are frozen during training. The
model has an embedding dimension of 768, and the model consists
of 423M trainable parameters in total.

During pre-training, we employed the same 224 × 224 image
input size as in BLIP-2, along with learnable queries of length 32.
For XLM-R, a maximum text length of 40 was used. UniGen pre-
training uses the AdamW optimizer with V1 = 0.9 and V2 = 0.98
and a weight decay of 0.05. The learning rate was set to 1e-4, with a
warm-up of 2000 steps and linear decay. Pre-trainingwas conducted
with mixed precision on 8 NVIDIA A100 GPUs for 30 epochs, with
a batch size of 512, and a training duration of ∼ 6 days.

On the fine-tuning phase, we employed a reduced learning rate
to fine-tune the decoder model. Throughout this process, the study
utilized the small-sample dataset provided by iGLUE for fine-tuning
training. For classification tasks, such as XVNLI, we trained the
model to output corresponding keywords. For tasks like xGQA, we
allowed the model to generate answers from the entire vocabulary.
Admittedly, this approach is more challenging compared to the
previous research that used a restricted vocabulary for classification.
However, we believe that it is a more scalable method and a better
reflection of the model’s capabilities. During this process, we also
encountered instances where the model output ”black cat” while
the answer was ”cat”. Such cases were adjudicated manually when
compiling the final results. We use an AdamW optimizer with
V1 = 0.9 and V2 = 0.98 and a learning rate of 3e-5 without warming
up, the fine-tuning process was conducted with mixed precision on
1/8 (for retrieval) NVIDIA A100 GPU for 10 epochs.

4.3 Experimental Results
4.3.1 Downstream tasks. To facilitate a fair comparison with pre-
vious works, we validated UniGen on the IGLUE benchmark. The
IGLUE benchmark encloses a diverse set of tasks, including clas-
sification, question answering, inference, and retrieval, across 20
major and minor languages. Additionally, it provides few-shot data
to assess the model’s transferability under a computational-efficient
scenario.

XVNLI Cross-lingual Visual Natural Language Inference
(XVNLI) tasks the model to determine if a given text-hypothesis
aligns with, contradicts, or is neutral to an image-premise. The
dataset is based on SNLI [27] with the addition of multi-modal [28]
and 4 target language counterparts [29].

xGQA Cross-lingual GroundedQuestion Answering tasks [4]
the model to answer questions based on structured questions about
a related image. The dataset is manually translated into 7 target
languages based on GQA [30] dataset that was originally sampled
from Visual Genome.

MaRVL Multicultural Reasoning over Vision and Language
dataset [32] requires the model to classify whether the descrip-
tion is true or false about input images. The task relies on hand-
written descriptions provided in 5 languages, utilizing NLVR2 [31]
for training and MaRVL exclusively for testing.

Retrieval IGLUE comprises two retrieval tasks, namely
xFlickr&CO and WIT. For the former, 1000 image-text pairs were
selected from the Flickr30K [34] and COCO [35] datasets, respec-
tively, to form the test set. The textual descriptions were manually
captioned by annotators following the guidelines of Flickr30K in 6
languages. For WIT, data was gathered from Wikipedia in 108 lan-
guages [33], and test sets were constructed in 10 different languages,
maintaining a diverse range of language sizes.

4.3.2 IGLUE Results. Table 1 presents UniGen’s results on the
IGLUE benchmark, detailing its zero-shot and few-shot perfor-
mance. For retrieval tasks, Recall@1 (R@1) is reported, while
accuracy is used for understanding tasks like XVNLI, xGQA, and
MaRVL. In the zero-shot scenario, models are fine-tuned using
English datasets and tested on various target languages. In the
few-shot scenario, fine-tuning occurs on datasets in the target lan-
guages. To maintain a fair comparison, we ensured that all models
were evaluated using equivalent data volumes and similar model
sizes. UniGen shows a significant 7% improvement in zero-shot
understanding tasks, including inference and question-answering,
despite using only 10% of the multilingual-image data required by
previous models. For retrieval tasks, UniGen outperforms CCLM in
dual-stream retrieval (precentesd in parentheses), an improvement
attributed to a more powerful back-end that enhances performance
in rapid retrieval scenarios.

In the few-shot scenario, we employed the same settings as
IGLUE, conducting continuous fine-tuning of the model with a
limited amount of small samples. For WIT, given the absence of cor-
responding few-shot tasks in the original benchmark, we adopted
a similar setup. It can be observed that, overall, the model benefits
from

the learning process with a small number of samples from low-
resource languages. The extent of improvement, however, is influ-
enced by both the alignment of the model itself and the quality of
the small-sample data.

4.4 Ablation Study
To validate the effectiveness of each component in the model, we
conducted ablation studies by removing certain pre-training com-
ponents to evaluate their contributions to model training. We ex-
amined the effects under three conditions: using full CC6L dataset,
using only 10% of the data (reported configuration), and not using
multilingual text-image data. This setup aims to investigate the
contribution of multilingual text-image data to model alignment.
Additionally, we explored the effect of different pre-training strate-
gies by reducing question answering data, contrastive learning, and
other components on model performance. Apart from the specific
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Table 1: Results on IGLUE benchmark

Model NLI QA Reasoning Retrieval
XVNLI xGQA MaRVL xFlickr&CO WIT

IR TR IR TR

Zero-shot setting
xUNITER 58.48 21.72 54.59 14.04 13.51 8.72 9.81

M3P 58.25 28.17 56.00 12.91 11.90 8.12 9.98
UC2 62.05 29.35 57.28 20.31 17.89 7.83 9.09

CCLM3M 74.64 42.36 65.91 67.35(42.39) 65.37(43.04) 27.46 28.66
Ours 75.02 45.33 67.13 62.59(43.72) 60.50(44.54) 20.36 20.89

Few-shot setting
xUNITER 60.55 40.68 57.46 14.30 13.54 - -

M3P 59.36 41.04 49.79 13.21 12.26 - -
UC2 63.68 42.95 58.32 19.79 17.59 - -

CCLM3M 75.15 50.94 70.53 66.04 68.15 - -
Ours 74.98 54.19 72.27 63.70 61.09 - -

Best Results on Translate-English test
VisualBERT 74.12 48.72 62.35 41.64 36.44 15.36 15.75
VL-BERT 73.86 49.78 64.16 38.18 31.84 15.11 16.09

Table 2: Ablation study results

Settings XVNLI xGQA MaRVL xFlickr&CO
IR TR

Ours -w/ 10% CC6L 75.02 45.33 67.13 62.59 60.50
-w/ 100% CC6L 75.21 46.21 67.48 64.41 63.27
-w/o CC6L 74.80 44.47 64.86 60.58 58.12
-w/o CCQA3M 75.17 43.92 66.91 58.26 58.07
-w/o CCQA3M+CC6L 74.45 43.41 64.49 57.20 56.88
-w/o CCQA3M+CC6L+CL 67.38 40.31 62.10 50.08 47.22

aspects under investigation, we maintained an identical experimen-
tal setup to ensure fairness in the comparisons. The results are
shown in Table 2.

Firstly, regarding the utilization of multilingual text-image data,
we observed that having more such data does contribute to an
overall performance improvement. However, this enhancement
is primarily confined to the performance improvement of the 6
major languages restricted by CC6L, and the performance of minor
languages tends to be adversely affected. without CC6L, UniGen’s
approach is still capable of achieving alignment effectively through
English decoder latent space, yielding performance comparable to
that achieved with multilingual text-image data.

Image-text question answering plays a crucial role in improving
multilingual question answering and retrieval tasks during pre-
training. It sharpens the model’s attention to details and enhances
its ability to differentiate between similar samples. Eliminating
contrastive learning leads to a significant 10% drop in performance,
underscoring the importance of hard negative samples in teaching
the model to establish stronger connections and alignment, which
is vital for the success of downstream comprehension and retrieval
tasks.

5 CONCLUSION
In this paper, we propose UniGen, a unified generative pre-training
paradigm for multilingual and multimodal pre-training. It decou-
ples the requirement for multilingual text-image data into two
distinct data dependencies: multilingual-English text and English
text-image. Under the unified UniGen pre-training framework, we
achieve pre-training and fine-tuning for downstream tasks. We val-
idate UniGen’s pre-training on the IGLUE benchmark, demonstrat-
ing stronger multilingual multimodal understanding capabilities
with comparable retrieval performance under the premise of using
fewer multilingual text-image data. Importantly, our study reduces
the data dependency on multilingual text-image by decoupling
the data, thereby exhibiting greater potential to achieve improved
results on larger datasets. This part remains for future exploration.
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