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ABSTRACT

Speech Emotion Recognition (SER) requires a thorough understand-
ing of both the linguistic content of an utterance (i.e., textual infor-
mation) and how the speaker utters it (i.e., acoustic information).
The one vital challenge in SER is how to effectively fuse these two
kinds of information. In this paper, we propose a novel Multimodal
Cross- and Self-Attention Network (MCSAN) to tackle this prob-
lem. The core of MCSAN is to employ the parallel cross- and self-
attention modules to explicitly model both inter- and intra-modal in-
teractions of audio and text. Specifically, the cross-attention module
utilizes the cross-attention mechanism to guide one modality to at-
tend to the other modality and update the features accordingly. Sim-
ilarly, the self-attention module employs the self-attention mecha-
nism to propagate information within each modality. We evaluate
MCSAN on two benchmark datasets, IEMOCAP and MELD. Exper-
imental results demonstrate that our proposed model achieves state-
of-the-art performance on both datasets.

Index Terms— speech emotion recognition, multimodal fusion,
self-attention, cross-attention

1. INTRODUCTION

Emotion plays an important role in human communication. Speech
Emotion Recognition (SER) aims to endow machines with the abil-
ity to perceive emotion. SER has a wide range of applications in the
human-computer interaction field [1]. Takes the ubiquitous voice
assistants (such as Amazon’s Alexa and Apple’s Siri) as an exam-
ple. It’s necessary for them to infer the user’s emotion and respond
properly to enhance the user experience.

Most recent studies on SER only focus on acoustic information.
Various deep learning models have been developed to extract emo-
tion relevant information from either handcrafted acoustic features
or raw speech signals. Such as Convolution Neural Network (CNN)
[2, 3], Recurrent Neural Network (RNN) [4, 5], self-attention mech-
anism [6] and their combinations [7, 8, 9]. The textual information
embedded in speech is less exploited. This information is also cru-
cial to SER because in some cases, the emotion of an utterance can
be determined by the linguistic semantics. For example, “It’s really
a bad day!” indicates that the speaker is in a sad mood.

However, fusing the acoustic and textual information is not
trivial. There are generally two kinds of interactions that need to
be considered when fusing multimodal information, namely, the
intra-modal interactions and the inter-modal interactions [10]. The
intra-modal interactions refer to the fine-grained feature interactions

within a single modality. Such as the frame-frame relationships in
acoustic features and the word-word relationships in textual fea-
tures. By modeling the intra-modal interactions, we can capture
modality-specific patterns for emotion prediction. Since saying a
sentence in different tones may deliver completely different emo-
tions, it’s necessary to model the frame-word relationships between
audio and text. These are the so-called inter-modal interactions. The
inter-modal interactions are either synchronous (for example, an em-
phasis on a specific word) or asynchronous (for example, laughter
after speaking something funny).

Recently, several works have explored to fuse the acoustic and
textual information for SER. Generally, these works can be catego-
rized into three types. The first type builds independent models for
each modality and combines their outputs for final emotion classi-
fication [11, 12, 13, 14]. Different architectures can be adopted for
each modality to best suit different inputs. For example, Yoon et
al. [11] employ two Long Short-Term Memory (LSTM) networks to
encode audio and text. Tripathi et al. [13] apply 1D-CNN for word
embeddings and 2D-CNN for spectral features. Although the intra-
modal interactions can be captured, the inter-modal interactions are
not explored. The second type utilizes the aligned audio and text as
inputs [15]. The aligned features are first fused and then fed into a
temporal model for sequential learning. Thus, the inter-modal inter-
actions can be captured in the whole process. Nevertheless, the cost
is to provide alignment information. To overcome this issue, the
third type utilizes the attention mechanism to infer the latent cross-
modal relationships between audio and text. Yoon et al. [16] propose
a novel multi-hop mechanism to iteratively select and aggregate in-
formation from one modality by conditioning on the other modality.
Xu et al. [17] utilize the attention mechanism to learn the latently
aligned speech frames for each word. However, none of them ex-
plicitly model both intra- and inter-modal interactions of audio and
text.

To address the above issues, we propose a novel Multimodal
Cross- and Self-Attention Network (MCSAN) in this paper. MC-
SAN is mainly composed of a cross-attention module and two
self-attention modules. The cross-attention module utilizes the
cross-attention mechanism to propagate information between audio
and text, while the self-attention modules employ the self-attention
mechanism to propagate information within each modality. Thanks
to these modules, MCSAN can explicitly model both inter- and
intra-model interactions of audio and text. To verify MCSAN’s
effectiveness, we conduct experiments on two datasets. The results
show that it outperforms state-of-the-art methods. We also perform
ablation studies to justify the design choice of our model.
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2. THE PROPOSED MODEL

As shown in Fig.1, MCSAN first uses an audio encoder and a text en-
coder to encode acoustic and textual features respectively. Then the
encoded feature sequences are fed into the cross- and self-attention
modules to learn the inter- and intra-modal interactions of audio and
text. Finally, the outputs from these modules are concatenated and
sent into a fully connected classifier for emotion prediction. Details
are introduced as follows.

2.1. Audio Encoder

Suppose that the input acoustic feature sequence of an utterance is
represented as Xa = {x1

a,x
2
a, ...,x

T ′
a
a }T ∈ RT

′
a×da (T ′a is the num-

ber of acoustic frames, da is the feature dimension). We adopt the
architecture of CNN with LSTM as the audio encoder. Specifically,
two 1D temporal convolutional layers are used to capture the lo-
cal patterns. Since T ′a is typically large, each convolutional layer
is followed by a max-pooling layer to reduce the temporal resolu-
tion and facilitate subsequent learning. Then a bidirectional LSTM
(BiLSTM) layer is employed to capture the temporal dependencies
within the sequence. The forward and backward hidden states of the
BiLSTM layer are averaged to obtain the encoded acoustic features.
The overall process can be summarized as follows:

Xa = ConvBlock(ConvBlock(Xa)) (1)
←−
h t
a,
−→
h t
a = BiLSTM(xta,

←−
h t+1
a ,
−→
h t−1
a ), t = 1, 2, ..., Ta (2)

hta =
1

2
(
←−
h t
a +
−→
h t
a), t = 1, 2, ..., Ta (3)

where ConvBlock(·) = MaxPool(Conv1D(·)), Ta is the num-
ber of acoustic frames after the second pooling layer. We denote
Ha = {h1

a,h
2
a, ...,h

Ta
a }T ∈ RTa×d (d is the unified feature di-

mension) as the encoded acoustic feature sequence.

2.2. Text Encoder

Suppose that the input textual feature sequence of an utterance is
represented as Xl = {x1

l ,x
2
l , ...,x

Tl
l }

T ∈ RTl×dl (Tl is the number
of words, dl is the feature dimension). Considering that Tl is usually
small, we only use a bidirectional LSTM layer to encode the word-
level textual features. The encoded textual feature sequence Hl =

{h1
l ,h

2
l , ...,h

Tl
l }

T ∈ RTl×d can be obtained as follows:

←−
h t
a,
−→
h t
a = BiLSTM(xta,

←−
h t+1
a ,
−→
h t−1
a ), t = 1, 2, ..., Ta (4)

htl =
1

2
(
←−
h t
l +
−→
h t
l), t = 1, 2, ..., Tl (5)

2.3. Cross-Attention Module

The cross-attention module aims to capture the inter-modal interac-
tions between each pair of acoustic frames and textual words. The
module is composed of a position embedding layer (for simplicity,
we do not depict it in Fig.1) and N stacked cross-attention layers
and feed-forward layers. The position embedding layer is used to in-
ject temporal information into the feature sequence [18]. The main
insight of the module is to utilize the cross-attention mechanism to
learn the associations between two modalities and then propagate in-
formation from one modality to the other modality according to the
learned associations. In the following part, we introduce the cross-
attention mechanism in detail.

To learn the associations between audio and text, we first need
to transform each feature sequence into three terms, which are the
query, key, and value, using linear projections:

Qa,Ql = WQ
a Ha,W

Q
l Hl (6)

Ka,Kl = WK
a Ha,W

K
l Hl (7)

Va,Vl = WV
a Ha,W

V
l Hl (8)

where Qm, Km, Vm ∈ RTm×d are the query, key, and value of the
feature sequence of modality m, m ∈ {a, l}. WQ

m, WK
m, WV

m ∈
Rd×d are the corresponding projection matrices.

Following [18], we calculate dot products of the query and key
of audio and text in a crossed way to estimate the associations be-
tween two modalities. Then the results are scaled and row-wisely
normalized by the softmax function to get the attention weights. Af-
ter that, we aggregate the value term of each feature sequence using
the corresponding weights to obtain the propagated information be-
tween two modalities:

∆Ha→l = softmax(QlK
T
a /
√
d)Va (9)

∆Hl→a = softmax(QaK
T
l /
√
d)Vl (10)

where ∆Ha→l ∈ HTl×d, ∆Hl→a ∈ RTa×d represents the propa-
gated information from audio to text and text to audio, respectively.

The process described above is single-head attention. In prac-
tice, we use multi-head attention, which can be done by doing single-
head attention multiple times and then combining the results of each
head. The details can be found in [18].

Finally, we update the features of one modality with the propa-
gated information from the other modality.

Ha = LayerNorm(Ha + ∆Hl→a) (11)
Hl = LayerNorm(Hl + ∆Ha→l) (12)

To further increase the representation capacity, a fully connected
feed-forward layer [18] is added behind the cross-attention layer:

Ha = LayerNorm(Ha + FeedForward(Ha)) (13)
Hl = LayerNorm(Hl + FeedForward(Hl)) (14)

We denote the outputs of the last stacked layer in the module as Hc
a

and Hc
l , respectively.

2.4. Self-Attention Module

Parallel to the cross-attention module, the self-attention module
aims to capture the intra-modal interactions within audio and text.
This module is similar to the cross-attention module except for the
usage of the self-attention mechanism. The self-attention mech-
anism shares the same spirit with the cross-attention mechanism.
The only difference is that the query, key, and value are from the
same modality. Thus, the whole process for one stacked layer in the
self-attention module can be summarized as follows:

∆Hm = softmax(QmKT
m/
√
d)Vm (15)

Hm = LayerNorm(Hm + ∆Hm) (16)
Hm = LayerNorm(Hm + FeedForward(Hm)) (17)

where ∆Hm ∈ RTm×d is the propagated information within modal-
ity m,m ∈ {a, l}. We denote the outputs of the last stacked layer in
two self-attention modules in Fig.1 as Hs

a and Hs
l , respectively.

4276

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on May 15,2024 at 01:32:10 UTC from IEEE Xplore.  Restrictions apply. 



CNN+
LSTM

LSTM

Cross

N 

N  Self-attention Module

FF

Cross FF

Self FF

Self FF

N  Self-attention Module

Cross-attention Module

Audio Encoder

Text Encoder

MFCC

GloVe

P

P

P

P

+ FC
Oh, my Gosh. 
that's so cute

…

Fig. 1. The overall architecture of our proposed model. “Self”: self-attention layer, “Cross”: cross-attention layer, “FF”: feed-forward layer,
“P”: global max-pooling layer. “FC”: fully connected layer.

2.5. Classification

To perform final classification, we first summarize each output from
the cross- and self-attention modules using a global max-pooling
layer. Suppose that the summarized features for Hc

a, Hc
l , H

s
a, Hs

l

are hca, hcl , h
s
a, hsl ∈ Rd, respectively. Then we concatenate them to

obtain the utterance-level representation. Finally, a fully-connected
network and a softmax layer are followed to predict the underlying
emotion. The cross-entropy loss is used to optimize the model. The
above process is summarized as follows:

h = Concat(hca,h
c
l ,h

s
a,h

s
l ) (18)

ŷ = Softmax(fθ(h)) (19)

L = −
∑
i

yilog(ŷi) (20)

where y = {y1, y2, ..., yn}T is the one-hot vector of the emotion
label, ŷ = {ŷ1, ŷ2, ..., ŷn}T is the predicted probability distribution,
n is the number of emotion categories, fθ is the fully connected
network with paramter θ.

3. EXPERIMENTS

3.1. Datasets

IEMOCAP [19] is the most commonly used dataset in SER. It con-
tains about 12 hours of video recordings. To align with previous
studies [20], we use 7,487 utterances from seven emotions: frustra-
tion, neutral, anger, sadness, excitement, happiness, surprise. Since
there is no standard split for this dataset, we follow [20, 14] to per-
form 10-fold cross-validation, where 8:1:1 are used for training, val-
idation and test, respectively. The weighted accuracy (WA, i.e., the
overall accuracy) and unweighted accuracy (UA, i.e., the average
accuracy over all emotion categories) is adopted as the evaluation
metrics.

MELD [21] is a new multimodal dataset for emotion recognition
in conversation. It consists of 13,708 utterances with seven emotions
(i.e., anger, disgust, fear, joy, neutral, sadness, and surprise) of 1,433
dialogues from the classic TV-series Friends. The whole dataset is
split into three parts: training (9,989), validation (1,109), and test

(2,610). Following [21, 22], we report the weighted average F1 score
on this dataset.

3.2. Implementation Details

We extract 40-dimensional Mel-Frequency Cepstral Coefficients
(MFCC) from speech signals. The window size and hop size are
set to 25 ms and 10 ms, respectively. The max length of the MFCC
feature sequence is set to 1000. We perform z-normalization before
feeding them into the audio encoder. For textual features, we first
apply word-tokenizer to the transcripts provided by the datasets.
Then each word in an utterance is embedded into a 300-dimensional
vector using the pre-trained GloVe model [23].

We implement our model within the PyTorch framework. The
number of hidden neurons in the model is 128. The number of
stacked layers in the cross- and self-attention module is 1. The num-
ber of heads is set to 8. The kernel size of the convolutional and
max-pooling layer in the audio encoder is 3. To train the model, we
use a Adam optimizer [24] with a learning rate of 0.001 on IEMO-
CAP and 0.0005 on MELD. The batch size is 256. We train the
model at most 30 epochs on IEMOCAP and 20 epochs on MELD.

3.3. Baselines

On the IEMOCAP dataset, the following baselines are used for com-
parison:

1. MDRE [11] employs dual recurrent neural networks to en-
code audio and text and then combines the results of two
modalities using a fully connected neural network for final
emotion classification.

2. MHA [16] is based on MDRE, which additionally utilizes a
novel multi-hop attention mechanism to automatically infer
the correlation between audio and text.

3. Xu et al. [17] propose to use the attention mechanism to learn
the latent alignment between audio and text.

4. CAN [14] aggregates the sequential information from aligned
audio and text by using the attention weights of each modality
in a normal and crossed way.

On the MELD dataset, we use two baselines for comparison:
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1. cMKL [25] adopts CNN for feature extraction and uses mul-
tiple kernel learning to fuse multimodal features.

2. Liang et al. [22] employ two deep auto-encoders to learn
latent representations of audio and text and concatenate them
for classification.

3.4. Comparison to State-of-the-art Methods

We first evaluate our proposed model on the IEMOCAP dataset. The
results 1 of 10-fold cross-validation on the dataset are presented in
Table 1. From the table, we can observe that MCSAN outperforms
above baseline models. Specifically, MCSAN improves the state-
of-the-art CAN model by 3.3% absolute value in terms of WA. We
should also mention that CAN needs the aligned audio and text as in-
put. However, by virtue of the cross-attention mechanism, our model
does not need alignment information. The improvement in terms of
UA is even higher. MCSAN outperforms the state-of-the-art MHA
model by 6.9%. We also present the performance of AMH [20]
in Table 1. AMH is a tri-modal version of MHA by incorporating
the visual information into MHA’s framework. Although MCSAN
only exploits the acoustic and textual information, it is comparable
to AMH by achieving slightly worse performance in terms of WA
but better performance in terms of UA. These results show the supe-
riority of our proposed model.

Table 1. Model performance comparison on the IEMOCAP dataset.
The results of 10-fold cross-validation are presented asmean±std.
The result of Xu et al. is from [14]. “A”: audio modality, “L”: textual
modality, “V”: visual modality.

Model Modality WA UA

MDRE [11] A+L 0.498 ± 0.059 0.418 ± 0.077
MHA [16] A+L 0.543 ± 0.026 0.491 ± 0.028

Xu et al. [17] A+L 0.560 ± 0.028 0.450 ± 0.028
CAN [14] A+L 0.579 ± 0.019 0.487 ± 0.017

AMH [20] A+V+L 0.617 ± 0.016 0.547 ± 0.025

MCSAN (ours) A+L 0.612 ± 0.012 0.560 ± 0.019

To further demonstrate the effectiveness of MCSAN, we then
evaluate it on the MELD dataset. Table 2 presents the results on the
test set of this dataset. We can notice that MCSAN outperforms the
state-of-the-art by 3.1% absolute value in terms of weighted aver-
age F1 score. Moreover, our model even exceeds the corresponding
semi-supervised model (denoted by “semi” in Table 2) which makes
use of a large amount of unlabeled data.

Table 2. Model performance comparison on the MELD dataset. The
result of cMKL is from [21].

Model F1

cMKL [25] 0.555
Liang et al. [22] 0.561

Liang et al. [22] (semi) 0.571

MCSAN (ours) 0.592

1We adopt the revised results of MDRE, MHA, and AMH from the Github
repository of AMH’s author: https://github.com/david-yoon/attentive-
modality-hopping-for-SER.

3.5. Ablation Study

In this section, we conduct several experiments on IECMOCAP to
evaluate several key factors in our proposed model. Table 3 presents
the results. First, we evaluate the effect of modality. From the table,
we can observe a significant performance drop when only utilizing
acoustic or textual information as input. This suggests that it’s vi-
tal for SER systems to effectively fuse these two kinds of informa-
tion. Second, we evaluate the effect of attention modules. When
the self- or cross-attention module is removed, the model’s perfor-
mance decrease by 0.7%/1.6% in terms of WA and 1.0%/2.4% in
terms of UA. This verifies the importance of these two modules and
demonstrates that it’s necessary to explicitly model both the inter-
and intra-modal interactions. Besides, the model’s performance is
worse when the cross-attention module is removed, which indicates
that modeling of inter-modal interactions is more critical than the
modeling of intra-modal interactions. Third, we evaluate the effect
of the model’s architecture. Instead of putting the attention modules
in parallel, we combine them in a sequential manner with different
orders. However, neither “cross+self (seq)” nor “self+cross (seq)”
is superior to the parallel architecture. Finally, we evaluate the ef-
fect of the model’s capacity. We find that the model’s performance
goes down when we stack more layers in the self- and cross-attention
modules. We believe that this might be caused by overfitting because
the dataset may be too small to fully train large models.

Table 3. Ablation study on the IEMOCAP dataset.

Model WA UA

MCSAN 0.612 ± 0.012 0.560 ± 0.019

w/o audio 0.509 ± 0.010 0.469 ± 0.028
w/o text 0.491 ± 0.011 0.404 ± 0.010

w/o self 0.605 ± 0.013 0.550 ± 0.026
w/o cross 0.596 ± 0.012 0.536 ± 0.028

cross + self (seq) 0.606 ± 0.011 0.552 ± 0.025
self + cross (seq) 0.602 ± 0.012 0.554 ± 0.024

N = 2 0.601 ± 0.015 0.551 ± 0.025
N = 3 0.595 ± 0.012 0.541 ± 0.018

4. CONCLUSION

In this paper, we propose a novel Multimodal Cross- and Self-
Attention Network (MCSAN) for speech emotion recognition.
Thanks to the parallel cross- and self-attention modules, MC-
SAN can explicitly model the inter- and intra-modal interactions
within/between audio and text. Experimental results on IEMOCAP
and MELD demonstrate the effectiveness of MSCAN. In the future,
we plan to extend our model to a tri-modal version by incorporating
the visual information into our framework.
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