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EEG-Based Focus of Attention Tracking and Regulation During
Dual-Task Training for Neural Rehabilitation of Stroke Patients
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Abstract— Dual-task training under variable-priority instructions
(DT-VP), during which subjects are required to vary their focus
of attention (FOA) between two concurrent tasks, has shown a
more significant improvement in neural rehabilitation than that
under fixed-priority instructions. Failed FOA switching not only
diminishes the recovery benefits, but also causes anxieties, which
is detrimental to rehabilitation. Developing a strategy for tracking
and regulating patients’ FOA to achieve a better performance in
task priority-following during DT-VP is thus imperative. In this
study, fifteen stroke patients participated in DT-VP that comprised
two tasks: a mathematical problem-solving task and a cycling
task, during which their electroencephalograms were recorded
simultaneously. The significantly differentiated power spectra of
four brain regions extracted from single-task training were fed
into a support vector machine to build a FOA tracking algorithm
for patients’ attention assessment during the DT-VP. Moreover,
dual-task difficulty adaptation method was designed to regulate
patients’ FOA when their FOA and the high-priority task were not
coincident. The comparison experimental results showed that the
proposed method significantly improved patients’ FOA distributed
on the high-priority task (analysis of variance, p <0.05). Meanwhile,
the absolute power spectral densities of the motor cortex and the
frontal region could also be improved during DT-VP under high
motor and cognitive task priority instructions, respectively. These
phenomena demonstrated the feasibility of the proposed method
in helping stroke patients better implement FOA switching and
maintenance.

Index Terms— Neural rehabilitation, brain-computer in-
terface, attention regulation, difficulty adaptation, task
priority-following.

I. INTRODUCTION

The central nervous system (CNS) damage caused by stroke
usually leads to motor and cognitive dysfunctions, which seriously
affect patients’ ability to take care of themselves in daily life [1].
ADLs (activities of daily living) are primarily multi-tasks, in which
subjects are supposed to have the ability to perform motor tasks
and higher cognitive tasks simultaneously [2], [3]. In order to make
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sure that stroke patients can be well integrated into ADLs, dual-task
training must be addressed during rehabilitation therapy [4].

During the dual-task training, subjects have to strategically allocate
their attention resources to ensure dual-task performance [5]. In
terms of focus of attention (FOA) priority, dual-task training can be
performed by shifting attention between two concurrent tasks (dual-
task training under variable-priority instructions, DT-VP) or placing
equal amounts of attention on both tasks (dual-task training under
fixed-priority instructions, DT-FP) [6], [7]. Recently, DT-VP has been
argued to be more effective for neural rehabilitation, based on the
evidence that subjects trained with DT-VP learned tasks faster and
performed better than those who received training with DT-FP [7],
[8].

Compared with DT-FP, DT-VP can bring out higher rehabilitation
benefits mainly because attention control is more taxing in DT-VP [9].
Specifically, subjects need to constantly pay more attention to the
high-priority task and shift attention between tasks across different
blocks. Therefore, shifting and maintaining their FOA depending on
the continuously changing priority instructions is the key to ensure
the recovery benefits of DT-VP [10]. In order to help patients better
regulate their FOA, some works proposed to provide individualized
feedback to inform them of their current FOA [9], [11]–[13]. Subjects
are required to keep their FOA as consistent as possible with the
high-priority task.

However, whether patients followed or can follow the task priority
instructions during DT-VP has rarely been monitored and regulated
in the previous studies. Failed FOA switching not only diminishes the
benefits of recovery but also causes anxieties, which is detrimental
to rehabilitation [14]–[16]. Therefore, it is imperative to develop
a countermeasure to track and regulate patients’ FOA to achieve
a better performance of task priority-following, thus minimizing
anxiety or stress effects. As for the FOA tracking system, behavioral
information, such as gaze and head angles, can be used for attention
assessment. For example, Chong et al. proposed a gaze-angle-based
generalized attention estimation model in 2018 [17]. In contrast
to behavioral information, physiological measurements related to
attention and workload also have been studied for many years [18].
The physiological information is more sensitive to the changes in cog-
nition [18]–[20]. For example, the relationship between increased task
demands and changes in heart rate, skin conductance, and respiration
rate has been verified [18], [21]–[23]. Over the recent twenty years,
brain signal acquisition and analysis techniques have made significant
progress, providing technical foundations for automatically tracking
patients’ FOA during DT-VP [24]–[26]. Due to the sufficiently high
temporal resolution and relatively low cost of electroencephalography
(EEG), EEG has been one important neural data source for exploring
subjects’ FOA variations [18], [27], [28].

Furthermore, another pressing question for DT-VP is that if the
subjects’ FOA is classified as that on the task with low priority,
what kinds of measures can be adopted to help patients follow the
task priorities better. In the previous studies, individualized feedback
was provided continuously to the subjects in order to ensure that
task priority instructions were followed [9], [11]–[13]. For example,
feedback took the shape of two changing color bars to inform subjects
of their FOA. Each bar was related to one task. Subjects were asked
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to try to maintain the bars in the green zone and prevent them from
turning red.

Although continuous feedback can make subjects deliberately and
coercively focus on the high-priority task, this involuntary attention
will be hard to maintain. For example, if the difficulty of the high-
priority task is pretty lower than that of the other, in order to
ensure dual task performance, subjects had to devote more attention
resources to the more difficult task, even though this task had a low
priority. Under this situation, subjects can hardly put their FOA on
the task with high priority, even with feedback. It has been argued
that humans would pay more attention to the relatively more difficult
task during dual-task situations [29], [30]. Therefore, we assume that
the performance-assessment-based task difficulty adjustment method
can be used to regulate subjects’ FOA.

This study aimed to track and regulate stroke patients’ FOA
during DT-VP based on EEG data to help them better follow the
changing task priorities. Firstly, cognitive-motor dual-task training,
which included a mathematical problem-solving task and a speed-
tracking cycling task, was designed for VP-DT. Then, FOA classifiers,
which were designed based on the EEG data collected from the
single-task training, were used to track subjects’ FOA continuously
during the DT-VP. Moreover, the dual-task difficulty adaptation
method was designed and introduced to regulate subjects’ FOA
when their FOA and the high-priority task was not in-sync. Finally,
fifteen patients with neurological deficits were recruited for the DT-
VP. The comparison experiments carried out in this study verified
that the proposed FOA tracking and regulation method could help
patients better implement FOA switching and maintenance depending
on the changing task priorities, thus further promoting the clinical
application of DT-VP.

The main contributions include:
1) A new DT-VP paradigm that comprises a mathematical

problem-solving task and a cycling task is proposed to induce
cognitive motor interference (CMI) for stroke patients.

2) An EEG-based FOA tracking and regulation method is pro-
posed to improve stroke patients’ task-priority following ability.
To the best of our knowledge, the FOA regulation method
during DT-VP has rarely been researched.

3) Fifteen stroke patients were recruited in this study. The results
demonstrated the feasibility of the proposed method in helping
them better implement FOA switching and maintenance.

The remainder of this paper is organized as follows: the design of
the proposed DT-VP paradigm and the details of FOA tracking and
regulation methods are given in Section II. Section III introduces the
experimental setup and the preprocessing of the acquired EEG data.
Then, experimental results are presented and discussed in Section IV.
Finally, Section V concludes the paper.

II. DESIGN OF THE FOA TRACKING AND REGULATION
SYSTEM

A. Design of the DT-VP Paradigm
Considering that cognitive-motor dual-task training can bring out

more rehabilitation benefits than dual-task training that only includes
cognitive or physical tasks [31], a pure mathematical problem-solving
cognitive task and a pure cycling motor task are designed for the DT-
VP. One of the designed VP-DT scenes can be seen in Fig. 1.

Specifically, as for the mathematical problem-solving task, differ-
ent arithmetic equations are presented as red letters in the center of
the screen in succession. Subjects are supposed to judge whether the
equation displayed on the screen is correct or not. If the equation is
correct (incorrect), the subject needs to press the left (right) mouse
button as quickly as possible. Once the subject has responded to
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Fig. 1. The designed VP-DT paradigm, which includes one mathemati-
cal problem-solving cognitive task and one speed-tracking cycling motor
task.

the displayed judgment question, the following calculation will be
immediately given and displayed in the same location. The ratio of
correct to incorrect equations presented is 50:50, and the difficulty is
at the same level in a fixed block. The latency from the presentation
of an equation to the button press responded for the corresponding
equation is defined as the solution time. Subjects’ average correct
rate and solution time are recorded in real-time.

As for the speed-tracking riding task, the solid red curve, shown in
Fig. 1, is designed as the velocity curve to be tracked. The other two
dotted red curves above and below the solid red curve are designed to
limit the range of variation of the patients’ actual speeds. Subjects are
supposed to track the reference velocity trajectory (solid red curve) as
accurately as possible. During the experiment, once the actual riding
speed of the subject exceeds the interval limited by the red dotted
lines, the patient needs to redo the corresponding trial immediately.
The average tracking error, calculated by Eq. (1), is recorded in real-
time.

fTE =
||V act − V ref ||2√

M
(1)

where || ∗ ||2 means the calculation of the L2-norm. V act ∈ RM and
V ref ∈ RM are the actual and reference velocity vectors sampled at
100 Hz in the last second, respectively. M represents to the length
of the vector V act or V ref , which is equal to 100 in this study. The
subject’s actual speeds are collected using a data acquisition card and
transmitted to the computer via TCP/IP protocol, which can be found
in our previous work [32].

B. FOA Tracking: EEG-Based Feature Extraction and
Classification

EEG signals are collected and analyzed in real-time for stroke
patients’ FOA assessment during DT-VP. Evidence has demonstrated
that attention variation is strongly correlated with the energy changes
of EEG signals in different bands. A higher attention level is often
related to a decrease in the theta band and an increase in the beta
band. Therefore, the theta to beta power ratio (TBR) has been widely
used to indicate subjects’ attention states [33]–[35]. A higher TBR
value relates to a higher attention the subject is paid to the experiment.
Inspired by this phenomenon, the EEG-based power spectra of the
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), and beta (14–30
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Fig. 2. EEG-based FOA tracking during DT-VP.

Hz) bands in five brain regions (frontal, central, parietal, occipital,
left motor, and right motor) are calculated for the attention-related
feature extraction.

Eight supervised machine learning classifiers are employed to build
the candidate FOA classifiers. These classifiers include support vector
machine (SVM), back-propagation neural network (BPNN), linear
discriminant analysis (LDA), K-nearest neighbors (KNN with K =
5), random forest (RF), naive bayesian (NB), discriminant analysis
classifier (DAC), and ensemble classifier (ENS). For implementing
the SVM model, the radial basis function is used as the kernel
function, and the transformation from output scores to posterior
probabilities is achieved using Platt’s method [36]. For the BPNN,
the Tanh-function method is chosen as the activation function of the
hidden layer, and the linear transfer function is chosen as the output
layer. For the RF classifier, it can be considered as the ensemble
learning algorithm. Thus the classification result is decided by the
majority vote of decision trees. These machine learning methods are
employed as candidate classifiers to compare with each other for the
eventual selection of the optimal attention tracking classifier.

The recorded EEG signals in the single-task conditions are used
as the training and validating data to build the FOA assessment
system since subjects’ FOA is clearly on the known task during the
single-task training. For example, during the mathematical problem-
solving task, subjects are instructed to try their best to solve the
mental calculation. Thus their FOA is obviously on the cognitive
task. Likewise, the subjects’ FOA is on the motor task during the
speed-tracking riding task. Therefore, the designed FOA assessment
system is a binary classifier, indicating that subjects’ current FOA is
on the cognitive or motor task.

Fig. 2 shows the flow chart of the EEG-based FOA tracking system.
Analysis of variance (ANOVA) is applied to select features with
significant differences between single motor and single cognitive
task training. In terms of classification model selection, classification
accuracy, recall, F1-score, receiver operating characteristic (ROC)
curves, and area under the curve (AUC) are employed to evaluate
the performance of the candidate FOA classifiers [37]. Details about
the feature selection and model selection are given in sections IV-A
and IV-B, respectively.

C. FOA Regulation: Dual-Task Difficulty Adaptation
It has been argued that humans would pay more attention to the

relatively more difficult task during the dual-task conditions [29],
[30]. Therefore, if the FOA tracking system detects that the patient

cannot shift or maintain their FOA successfully, a progressive dual-
task difficulty adaptation method designed in this study will be
triggered to help stroke patients follow the task priorities better.

The difficulty is divided into three levels (low, medium, and high)
and predefined for every single-task training. For the mathematical
problem-solving task, with the increase in difficulty level, patients are
supposed to do adding or subtracting tasks between one digit, one
and two digit, and two digits, respectively. In terms of the speeding-
tracking riding task, the difficulty adjustment is realized by adjusting
the distance between the two red dotted curves. The vertical distances
between the two red dotted curves under low, medium, and high
difficulty levels, are 3, 2, and 1, respectively.

The specific dual-task difficulty adjustment strategy is given in
Fig. 3. First, the task performance definition is given as follows.
Unacceptable (acceptable) cognitive task performance is defined as
the average correct rate of the judgment question lower (greater)
than 90% [5]. Unacceptable (acceptable) motor task performance
is defined as the actual riding speed curve (does not) exceed the
area formed by the two red dotted lines. At the beginning of DT-
VP, the difficulty of each single task was initialized according to
the neurologist’s advice, which is mainly based on the assessment
scores of FMA-LE (Fugl-Meyer Assessment of Lower Extremity)
and MMSE (Mini-Mental State Examination). The initial difficulty
level of each single task is raised with the corresponding assessment
score, which can be seen from Table I.

TABLE I
TASK DIFFICULTY INITIALIZATION STRATEGIES FOR DT-VP.

FMA-LE Initialized motor-task
difficulty level MMSE Initialized cognitive-task

difficulty level
20-24 Low 20-23 Low
25-29 Medium 24-27 Medium
30-34 High 28-30 High

It can be seen that the initial difficulty levels increase with the
assessment scores. Given that the initial task difficulty level is not
necessarily optimal for each patient during the DT-VP training, the
proposed dual-task difficulty adaptation method will be introduced in
real-time, leading to a suitable challenging task for a specific subject.

During the training, patients need to constantly shift their attention
and cognitive resources distributed on each sub-task depending on the
changing task priority instructions displayed on the screen, during
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Fig. 3. The flow chart of the proposed progressive dual-task difficulty
adaptation method. Taskh and Taskl denote the task with high priority
and low priority, respectively. The abbreviation of “A” and “UA” repre-
sent the performance of the corresponding task are acceptable and
unacceptable, respectively. The word “Keep” (“Increase” or “Decrease”)
indicates keep (increase or decrease) the difficulty of the corresponding
task (with one level).

which patients’ FOA is evaluated by the proposed FOA tracking
model in real-time. If the patient can actively regulate the attention
resources between tasks according to the changing task priorities, no
intervention is to be taken. On the contrary, if the patient can not
follow the task priority instructions actively, different task difficulty
adaptation strategies will be introduced according to patients’ dual-
task performance to help them better regulate their FOA. Specifically,
if the performance of both cognitive and motor tasks is acceptable,
the task difficulty level with high priority will be raised by one level.
To ensure dual-task performance, patients have to devote most of their
attention to the high-priority task since the difficulty of this single
task is increased. If the performance of one sub-task is acceptable
and one not, the difficulty level of the poorly performed sub-task will
be reduced by one. If the performance of both cognitive and motor
tasks is unacceptable, the difficulty of the task with lower priority
will be reduced. In conclusion, the basic principle of the proposed
task difficulty adjustment method is to raise the relative difficulty of
the high-priority task to the low-priority task, thus helping patients
better regulate their FOA. Note that if the task difficulty cannot be
updated as required by the task difficulty adjustment strategy (e.g.,
if the difficulty level of the cognitive task is at its highest level and
still needs to be increased), the current session will be terminated.

III. EXPERIMENT DESIGN

A. Subjects
The experiments were conducted in collaboration with Beijing

Bo’ai Hospital (China Rehabilitation Research Center). Fifteen pa-
tients with neurological deficits were recruited from the hospital. Prior
to the clinical experiments, the protocol of the experiment has been
approved by the Ethics Committee of China Rehabilitation Research
Center (approval number: 2020-138-1, date of approval: December
9, 2020). Written informed consent was signed by each patient prior
to the experiment in the study. The inclusion criteria for patients
selection are given as follows:

1) The patient has experienced a first-ever neurological injury
caused by a stroke.

2) The patient can perform resistance exercises to ensure that
he/she is able to do treadmill training autonomously without
assistance.

3) The patient should not have severe cognitive impairment to
ensure that patients can carry out the DT-VP compliably.

4) The patient are able to complete up to 100 additions and
subtractions.

5) The patient’s hearing and understanding abilities are normal.
6) Patients with a history of severe systemic diseases such as heart,

lung, liver, and kidney are excluded.
The clinical characteristics of the recruited patients are presented

in Table II. Considering that the designed DT-VP paradigm has high
requirements on patients’ cognitive functions, such as their abilities to
understand, execute and communicate, most of the subjects recruited
in this study were patients with motor dysfunction.

B. Experiment Setup
In order to validate the feasibility of the proposed method in

helping stroke patients better implement FOA switching and mainte-
nance during DT-VP, a contrast experiment was designed according
to whether there was the FOA regulation system. For both control
and experiment groups, the difficulty level of each single task was
initialized according to the doctor’s advice at the beginning of the
experiment, and the task priorities changed randomly during the
training. In addition, no interventions were taken regardless of the
patients’ FOA performance during DT-VP for the control group.
The task difficulty would remain the same as it was when the task
was initialized. However, for the experiment group, the dual-task-
difficulty-adaptation based FOA regulation method would be used to
regulate patients’ FOA for better task priority-following performance.

The experiment was conducted in a sound-proof room. All patients
had a normal or corrected-to-normal vision and participated in both
control group and experiment group. The wash-out period between
the two experiments was about half an hour to give patients enough
time to rest, thus minimizing the influence of the previous experiment
on the next experiment. Before the experiment, the patients were
required to wear a 32-Ag/AgCl-electrodes EEG cap for real-time
EEG signal acquisition. The electrodes were placed according to the
international 10–20 system and recorded at a sampling rate of 256
Hz (NeuroScan, NeuroScan Inc., Herndon, VA, USA). Considering
that patients’ movement would introduce some muscle artifacts to
the EEG signals inevitably, they were asked to keep their upper
body motionless as much as possible to minimize artifacts caused by
motion. Specifically, the DT-VP included 5 blocks, each including
3 trials. During each one-minute long trail, subjects were required
to vary and maintain their FOA to ensure the dual-task performance
according to the displayed task-priority instructions.

As mentioned in Section II-B, power-spectra-based features ex-
tracted from single-task training were used to train the FOA tracking
system. Therefore, before the DT-VP, patients must first perform
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TABLE II
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE RECRUITED PATIENTS WITH NEUROLOGICAL DEFICITS.

Age/Sex Handedness Disease Etiology Damaged parts FMA-UE FMA-LE MMSEcourse
17/M Right 5 months HS Left parietal-temporal lobe 55 25 29
27/M Right 4 months IS Right frontal-parietal lobe 59 24 29
34/M Right 1 months IS Right frontal lobe 57 28 26
35/F Right 3 months HS Left basal ganglia lobe 64 25 26
41/M Right 2 months IS Right frontal-parietal region 46 27 27
47/M Right 3 months IS Left basal ganglia lobe 42 24 30
50/M Right 4 months HS Right frontal lobe 62 27 27
52/M Right 4 months IS Left frontal lobe 52 25 25
53/F Right 3 months HS Bilateral frontal lobe 41 32 22
55/M Right 4 months IS Left parietal lobe 54 28 24
57/M Right 4 months HS Left frontal lobe 55 28 23
59/M Right 3 months HS Left frontal-parietal lobe 58 26 26
59/M Right 6 months IS Bilateral frontal lobes 44 29 25
60/M Right 4 months IS Left frontal-parietal lobe 62 26 29
61/M Right 2 months IS Right frontal-parietal lobe 65 24 29

HS = hemorrhagic stroke, IS = ischemic stroke, FMA-UE = Fugl-Meyer Assessment of Upper Extremity, FMA-LE = Fugl-Meyer Assessment of Lower
Extremity, MMSE = Mini-Mental State Examination. All standard clinical tests were carried out for the extremity of the impaired side.

single-task training for subject-specific FOA tracking system estab-
lishment, which could be seen in Fig. 4(a), (b). During the single-task
training, both pure mathematical problem-solving and speed-tracking
riding tasks were performed for one block. Each block included 3
trials, and each trial lasted 15 seconds around. Specifically, in each
trial, patients needed to finish 10 judgments during the mathematical
problem-solving task; for the speed-tracking riding task, they were
required to track the reference velocity trajectory as accurately as
possible. After each trial, they were allowed to rest for 10 seconds
to prepare for the subsequent trial. It should be noted that the
designed motor task was conducted in a sitting position rather than a
standing position because patients are difficult to keep their upper
body motionless during standing-based riding task. The artifacts
generated by these movements would seriously pollute the collected
EEG signals. Therefore, a sitting-based riding paradigm was used to
minimize muscle artifacts generated by movement.

Once EEG signals under single-task conditions were obtained,
the FOA tracking model can be trained spontaneously. In order to
increase the number of training samples and thus improve classi-
fication performance, the sliding-window strategy was introduced to
preprocess the acquired EEG signals. The sliding window length was
256 sampling points, with 128 sampling points overlapping. Hence,
15-second EEG signals were divided into 29 segments, and thus, 174
training samples were obtained for the subject-specific FOA tracking
model. EEG signals in every window were regarded as a sample
for feature extraction and classification. Baseline correction, a band-
pass filter (0.5-50 Hz), and a 50 Hz notch filter were applied to
each sample to eliminate baseline drift, noise, and power frequency
interference. The implementation details of the feature extraction
and classification model selection are to be given in Sections IV-
A and B, respectively. The preliminary experiment showed that the
FOA classification performance can be guaranteed under this sample
size. Finally, the FOA tracking and regulation based DT-VP can be
executed (Fig. 4(c)). Specifically, the DT-VP included 5 blocks, each
including 3 trials. During each one-minute long trail, subjects were
required to vary and maintain their FOA to ensure the dual-task
performance according to the displayed task-priority instructions.

IV. RESULTS AND DISCUSSION

A. FOA-Related EEG Features Analysis
Different brain regions’ power spectra (Elobe) across subjects

during single-task training were calculated to find the EEG signatures

with significant differences between the implementation of pure
mathematical problem-solving task and pure speed-tracking riding
task. The calculated power spectra were normalized to [0, 1].

Elobe =

N∑
c=1

|Fc(f)|2 =

N∑
c=1

∣∣∣∣∫ +∞

−∞
EEGc(t)e

−j2πftdt

∣∣∣∣2 (2)

Enorm =
Elobe − Emin

Emax − Emin
(3)

where c is channel index, N represents the total channel number used
for Elobe calculation.

The calculated EEG signatures distributed in the frequency of 0.5-
30 Hz are given in Fig. 5. In each sub-graph, only the channels
distributed in the red area of the topographic map were used for
power spectra calculation. By considering that EEG signals collected
from channel Fp1 and Fp2 can be easily contaminated by ocular
artifacts, these two channels were not included during frontal power
spectra calculation. The normalized power spectra under pure math
and riding training are shown in blue and red, respectively. The
solid black lines indicate the frequency bins in which the normalized
power differentiated between the two pure tasks significantly based
on ANOVA. The dotted black lines indicate the selected crucial bands
for FOA classification.

In Fig. 5, three frequency bands in different brain regions (theta
band in frontal, parietal and temporal lobes, alpha band in parietal,
temporal and motor lobes, and beta band in motor lobes) showed
significant spectral differences during pure riding and math training,
which suggested that patients’ FOA on riding or math tasks could be
discriminated through the above-mentioned brain dynamics. Further-
more, the motor areas exhibited a significant difference in the alpha
and beta bands between riding and math tasks. To reduce the effect
of motor-related activities arising from riding versus button press,
the significantly differentiated features extracted from motor regions
were excluded for FOA tracking system establishment.

B. Performance of the Candidate FOA Tracking Classifiers
Accuracy, recall, and F1-score of each candidate classifier were

calculated to compare with each other for the eventual selection of
the optimal attention tracking classifier. It can be seen from Table
III that, for the FOA classification model, SVM, BPNN, and RF
showed a better performance in FOA classification than the others.
Moreover, SVM achieved the highest accuracy of 87.94%, which was
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(a) Pure mathematical problem-solving task training  (b) Pure speed-tracking riding task training  (c) DT-VP

Fig. 4. Clinical experiment scenes. (a) Single cognitive task training: mathematical problem-solving task; (b) Single motor task training: speed-
tracking riding task; (c) Cognitive-motor dual-task training: DT-VP.

Math Riding

Significant difference between Math and Riding (p<0.05) Selected crucial bands for FOA classification under DT-VP

Fig. 5. Comparison of the normalized power spectra across subjects between pure mathematical problem-solving task and pure speed-tracking
riding task conditions. The normalized power spectra of pure math and pure riding conditions are shown in blue and red lines, respectively. The
black lines indicate the frequency bins in which the normalized power significantly differentiated between the two pure task (p <0.05). The black
dot lines indicate the selected crucial bands for FOA classification under DT-VP.

higher than that of BPNN and RF by a margin of 3.19% and 5.32%,
respectively.

TABLE III
THE CANDIDATE CLASSIFIER PERFORMANCE IN ACCURACY, RECALL,

AND F1-SCORE.

Classifiers Accuracy Recall F1-Score
SVM 87.94 87.98 87.94
BPNN 84.75 84.84 84.74

RF 82.62 82.70 82.61
KNN 81.91 81.96 81.91
NB 81.21 81.67 81.14

LDA 80.85 81.08 80.82
DAC 80.85 81.08 80.82
ENS 79.79 79.86 79.77

To further compare the classifiers mentioned above in FOA clas-
sification, ROC curves were plotted for all candidate classifiers, and
AUC values were also calculated, which was regarded as a composite
measure of classification performance among various classifiers. Fig.
6 showed that SVM had the highest AUC of 0.9 in estimating
the participants’ FOA on math or riding task. A larger ROC area
for the SVM classifier in Fig. 6 further demonstrated the superior
classification performance. Therefore, the significantly differentiated
power spectra features, and SVM based FOA classifier were used to
construct the FOA tracking system for DT-VP finally.

C. Behavior Performance During DT-VP
The behavioral performance is critical in revealing patients’ FOA

variations during the dual-task training [18]. Patients’ behavioral
performances under single-task and dual-task training were calculated
and analyzed to validate whether the designed paradigm could induce
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Math Riding

Significant difference between Math and Riding (p<0.05) Selected crucial bands for FOA classification under DT-VP

Fig. 5. Comparison of the normalized power spectra across subjects between pure mathmatical problem-solving task and pure speed-tracking riding task
conditions. The normalized power spectra of pure math and pure riding conditions are shown in blue and red lines, respectively. The black lines indicate
the frequency bins in which the normalized power significantly differentiated between the two pure task (p<0.05). The black dot lines indicate the selected
crucial bands for FOA classification under DT-VP.

patients’ FOA on riding or math tasks could be discriminated
through the above mentioned brain dynamics. Furthermore,
the motor areas exhibited significant difference in the alpha
and beta bands between riding and math tasks. To reduce
the effect of motor-related activities arising from riding versus
button press, the significantly differentiated features extracted
from motor regions were excluded for FOA assessment system
establishment.

B. Single-Task training: Classifier Performance

Accuracy, precision, recall and F1-score were utilized to
evaluate the candidate classifier performance on the validate
set, with the aim to test the optimal FOA tracking model.
It can be seen from Table II that compared with the other
classifiers, SVM showed the highest classification performance
in all indicators.

To further compare the ability of the above mentioned
classifiers in FOA classifications, ROC curves were plotted for
all candidate classifiers, and AUC values were also calculated,
which can be regarded as a composite measure of classification
performance among various classifiers. It can be seen from
Fig. 6 that SVM had the highest AUC of 0.9 in estimating
the participants’ FOA on math or riding task. Fig. 6 further
confirms the superior classification performance of SVM by
demonstrating the greater ROC area.

The significantly differentiated power spectra features, and
SVM based classifier were used to construct the FOA tracking

TABLE II
THE CANDIDATE CLASSIFIER PERFORMANCE IN ACCURACY, PRECISION,

RECALL, AND F1-SCORE.

Classifiers Accuracy Precision Recall F1-Score
SVM 89.72 89.72 89.72 89.72
BPNN 82.62 82.62 82.70 82.61
LDA 80.85 80.85 81.08 80.82
KNN 84.75 84.75 84.84 84.74
RF 81.91 81.91 81.96 81.91
NB 81.21 81.21 81.67 81.14

DAC 80.85 80.85 81.08 80.82
ENS 79.79 79.79 79.86 79.77
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ROC curves for candidate classifiers

SVM (AUC = 0.90)

RF (AUC = 0.84)
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NB (AUC = 0.83)
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DAC (AUC = 0.82)

Fig. 6. ROC curves and AUC values for the candidate classifiers.Fig. 6. ROC curves and AUC values for the candidate classifiers.

CMI first. CMI refers to the dual-task interference occurring when
the simultaneous conduction of a cognitive and a motor task, leading
to performance deterioration in one or both tasks. Patients’ task
performance under single-task training and dual-task training is given
in Table IV to see whether CMI was induced in this study.

TABLE IV
MEAN CORRECT RATE, SOLUTION TIME, AND TRACKING ERROR

PERFORMANCE DURING SINGLE TASK TRAINING AND DT-VP.

Settings Priority
Performances

Correct Solution Tracking
rate time error

Single-task training / / / 0.35(Motor task)
Single-task training / 0.93 1.49 /(Cognitive task)
DT-VP
(Control group)

CT >MT 0.92 1.53* 0.47*
MT >CT 0.94 1.64* 0.44*

DT-VP
(Experiment group)

CT >MT 0.93 1.51* 0.52*
MT >CT 0.93 1.75* 0.37*

“CT >MT” or “MT >CT” represent that the task priority of cognitive task
(CT) is higher or lower than motor task (MT) during DT-VP. “*” represents
for the significant difference between the dual-task training and the
corresponding single-task training (p < 0.05).

In table IV, “CT >MT” or “MT >CT” represent that the task
priority of cognitive task (CT) was higher or lower than motor task
(MT) during DT-VP. “*” represents the existence of a significant
difference between the task performance in dual-task training and
the corresponding single-task training (p < 0.05). It can be seen
that, as for the motor task performance, patients’ tracking error in
both control and experiment group under dual-task training was
significantly increased than that under single motor task training;
As for the cognitive task performance, patients’ solution time in
both control and experiment groups under dual-task training was
significantly increased than that in single cognitive task training.
These results showed that patients’ performance under dual-task train-
ing was significantly decreased than that under single-task training,
demonstrating the occurrence of CMI.

In order to validate the feasibility of the proposed method in task-
priority following ability enhancement, the significance analysis of
task performance between the control group and the experiment group
during DT-VP was calculated and given in Table V. Patients’ average
correct rate performance between experiment group and control group
did not show significant difference. As for the other two indicators,
when the cognitive task was the high-priority task, patients’ solution
time in the experiment group showed a slight decrease but without a
significant difference than that in the control group, and the tracking

TABLE V
SIGNIFICANCE ANALYSIS OF TASK PERFORMANCE BETWEEN CONTROL

AND EXPERIMENTAL GROUPS DURING DT-VP.

Settings Priority
Performances

Correct Solution Tracking
rate time error

Control
group

CT >MT 0.92±0.04 1.53±0.12 0.47±0.05
MT >CT 0.94±0.04 1.64±0.16 0.44±0.03

Experiment
group

CT >MT 0.93±0.03 1.51±0.14 0.52±0.06
MT >CT 0.93±0.05 1.75±0.18 0.37±0.03

Significant
test

CT >MT p = 0.884 p = 0.067 p = 0.001∗

MT >CT p = 0.729 p = 0.026∗ p = 0.002∗

error showed a significant increase. When the motor task is the
high-priority task, patients’ motor task performance (tracking error)
decreased significantly more than that in the control group. Mean-
while, the cognitive task performance (solution time) significantly
increased. Smaller tracking errors and longer solution times suggested
that patients put more attention into the speed-tracking task under
high motor task priority instruction, which preliminarily validated
the feasibility of the proposed method in helping patients better
implement FOA switching and maintenance during DT-VP.

D. FOA During DT-VP

The percentage of time (△t) when patients’ FOA was put on the
high-priority task during DT-VP was calculated for the control and
the experiment groups, respectively. With the increase of △t (0 ≤
△t ≤ 100), the more attention resources the subjects devoted to
the high-priority task. It can be seen from Fig. 7 that patients paid
more attention to the high-priority task during the training for both
control and experiment groups (△t >50%). While patients in the

Δ
t

p=0.012 p=0.008

Fig. 7. The percentage of time (△t) when patients’ FOA was on the
high-priority task during DT-VP.

experiment group can maintain their FOA on the high-priority task
better. More concretely, when the motor task was the high-priority
task, the percentage of time when patients’ FOA was on the motor
task in the experiment group was significantly higher than that in the
control group by a margin of 7.1% (p = 0.012 <0.05). Likewise,
when the cognitive task was the high-priority task, the percentage
of time when patients’ FOA was put on the cognitive task in the
experiment group was significantly higher than that in the control
group by a margin of 7.3% (p = 0.0008 <0.05).

Furthermore, to visualize the difference in neural activities under
different paradigms, the PSD-based topographical maps in 3-30 Hz
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for both the control and experiment groups were also calculated
and drawn in Fig. 8. The differences of brain activation in different

(a) Priority: MT > CT 

      (Control group)

(b) Priority: MT > CT 

   (Experiment group)

(c) Priority: CT > MT 

     (Control group)

(d) Priority: CT > MT 

   (Experiment group)

+

0

-

Fig. 8. The PSD based brain topographical maps for control group and
experiment group.

tasks were mainly reflected in the frontal and motor cortex, which
was consistent with previous studies [38]–[42]. Specifically, when
the motor task was a high-priority task (Fig. 8(a) and 8(b)), the
differences in brain activities was mainly reflected in the motor
cortex. It has been proved that high motor task engagement was
often related to an amplitude suppression of EEG signals in the motor
cortex, such as the mu and central beta bands ERD (event-related de-
synchronization) [41], [42]. Fig. 8(a) and 8(b) showed that the ERD
values (PSD) in the motor cortex was more distinct for the experiment
group than that for the control group. This phenomenon demonstrated
that patients could better switch and maintain their FOA on the high-
priority task (motor task) using the proposed FOA regulation method.

Similarly, when the cognitive task was the high-priority task (Fig.
8(c) and 8(d)), the differences in brain activities were mainly reflected
in the frontal region, and the PSD of the frontal region in the
experiment group was higher than that in the control group. Since
high attention level in the cognitive task was often related to an
increase of theta band energy in the frontal region, Fig. 8(c) and
8(d) further revealed that patients could better switch and maintain
their FOA on the high-priority task (cognitive task) in the experiment
group. Based on the results mentioned above, it was verified that
the proposed method could help stroke patients better implement
FOA switching and maintenance by changing task priorities, and thus
further promote the clinical application of DT-VP.

V. DISCUSSION

Compared with the traditional DT-VP paradigm, the proposed
FOA tracking and regulation based DT-VP training could lead to
better allocation of attention, task switching, and synchronization.
The results in Fig. 7 and Fig. 8 also demonstrated the feasibility of
the proposed method in FOA regulation during DT-VP. Meanwhile,
the activation intensity of the motor cortex and frontal region could be
improved under high motor and cognitive task priority instructions,
respectively.

The patient’s FOA compliance is the key factor determining the
rehabilitation benefits during DT-VP. In this study, the main reason
for enhancing patients’ task priority following ability was that the
proposed dual-task difficulty adaptation strategy ensured high-priority

task to attract more attention resources of patients. Specifically,
during the training, if the FOA tracking system detected that patients
could not shift or maintain their FOA successfully, the proposed
dual-task difficulty adaptation method was triggered to increase the
relative difficulty of the high-priority task with respect to the low-
priority task. The corresponding high task performance constraints
forced patients to pay more attention to the high-priority task, thus
improving patients’ task priority following ability.

In addition to the mentioned two dual-task paradigms in this paper,
i.e., dual-task training under variable- or fixed-priority instructions,
dual-task training with progression from variable- to fixed -priority
instructions has been researched recently [43]. More concretely, in the
first training session, subjects will be trained with dual-task activities
exclusively under variable-priority instructions so that they can better
learn and retain the motor and cognitive gains provided by this type of
dual-task training. In the next training session, subjects will perform
exclusively dual-task training with fixed priority to better mimic the
functional activities of daily living. The validity of this paradigm
needs to be studied and verified in the future.

Patients with severe cognitive impairment were excluded from this
experiment. Two reasons can be given for the exclusion. First, in dual-
task training, especially DT-VP, in addition to patients’ computational
ability, their abilities to memorize, understand, allocate attentional re-
sources, and coordinate multi-tasks are also highly required. Patients
with severe cognitive impairment generally have severe deficits in one
or more of these cognitive functions. It is difficult for them to carry
out the DT-VP compliably, which can easily induce their anxieties and
is detrimental to rehabilitation. Secondly, in clinic, dual-task training
is not recommended for patients with severe functional impairment.
Studies have shown that patients with severe cognitive/motor function
impairment are recommended to carry out single cognitive/motor
task training and then switch to dual-task training gradually for the
improvement of multitask coordination ability [44], [45].

The limitations that existed in this study can be given in three
aspects. First, as for the design of the DT-VP paradigm, dual-task
paradigm that constructed by a pure cognitive task and a pure
motor task needs to be digged further. In this paper, the designed
cognitive task was a mathematical-problem solving task. Subjects
were supposed to press the left or right mouse button according to
equation displayed on the screen. Therefore, motor activities caused
by mouse press were inevitable, thus contaminating the collected
cognitive-based EEG signals. The design of pure cognitive tasks will
be studied in the future.

Second, as for the design of the FOA tracking model, the subject-
independent FOA tracking model needs to be explored to reduce
calibration time. EEG signals vary largely among individuals, which
limits the generalization of attention tracking classifiers across sub-
jects. Moreover, due to the non-stationary characteristic of EEG,
a classifier trained early usually performs rather poorly at a later
time on the same subject [46]. Therefore, the FOA classification
model constructed in this study was subject-specific. Transfer learning
methods, which can overcome the shortcoming that EEG patterns
vary from subject to subject, can be explored to realize subject-
independent FOA tracking in the future.

Finally, as for the design of the FOA regulation strategy, an
optimization-based dual-task difficulty adaptation method can be
introduced to achieve a better FOA regulation. The difficulty level of
each single task in this study was predefined and divided into three
levels. Conditions that the task difficulty level could not be updated as
required by the task difficulty adjustment strategy sometimes occurred
(e.g., the difficulty level of the cognitive task was at its highest level
and still needed to be increased). The current session needed to be
terminated under these circumstances. Therefore, optimization-based
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stepless task difficulty adaptation methods need to be researched in
the future.

Additionally, the contrast experiment results demonstrated that
patients could better shift and maintain their FOA according to the
continuously changing priority instructions based on the proposed
method. However, the substantial rehabilitation benefits brought out
by this approach need to be confirmed in the future.

VI. CONCLUSION

In this study, an EEG-based FOA tracking and regulation system
was designed to help stroke patients better follow the task priority
instructions during DT-VP. The performance of the designed sys-
tem was validated through the comparison experiments on fifteen
stroke patients. The experiment results showed that patients’ FOA
distributed on the high-priority task was significantly improved
(p < 0.05) using the proposed FOA regulation system. Meanwhile,
the absolute PSDs of the motor cortex and the frontal region can
also be improved during dual-task training under high motor and
cognitive task priority instructions, respectively. These phenomena
demonstrated the feasibility of the proposed method in helping stroke
patients better implement FOA switching and maintenance, thus
further promoting the clinical application of DT-VP.
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