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a b s t r a c t

Spiking neural networks (SNNs) transmit information through discrete spikes that perform well in
processing spatial–temporal information. Owing to their nondifferentiable characteristic, difficulties
persist in designing SNNs that deliver good performance. SNNs trained with backpropagation have
recently exhibited impressive performance by using gradient approximation. However, their perfor-
mance on complex tasks remains significantly inferior to that of deep neural networks. By taking
inspiration from autapses in the brain that connect spiking neurons with a self-feedback connection,
we apply adaptive time-delayed self-feedback to the membrane potential to regulate the precision of
the spikes. We also strike a balance between the excitatory and inhibitory mechanisms of neurons to
dynamically control the output of spiking neurons. By combining these two mechanisms, we propose a
deep SNN with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN). The
results of experiments on several standard datasets show that the two modules not only accelerate
the convergence of the network but also increase its accuracy. Our model achieved state-of-the-art
performance on the MNIST, Fashion-MNIST, and N-MNIST datasets. The proposed BackEISNN also
achieved remarkably good performance on the CIFAR10 dataset while using a relatively light structure
that competes against state-of-the-art SNNs.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the past few years, deep neural networks (DNNs) have
ade tremendous progress in various machine learning tasks in
omputer vision (Krizhevsky, Sutskever, & Hinton, 2017), natu-
al language processing (Collobert & Weston, 2008), and speech
ecognition (Amodei et al., 2016). However, DNNs mimic only
he hierarchical topological structure of the flow of information
n the brain and process data in a real-valued form, but this is
ar removed from the information processing mechanisms of the
rain. Spikes play a crucial role in efficient information process-
ng, and spiking neural networks (SNNs) have been developed to
mulate information processing in the brain. SNNs are consid-
red to be third-generation neural networks (Maass, 1997). The
iscrete spike-driven communication between spiking neurons,
ultiple brain-inspired learning rules, and intricate connections
ake these networks biologically plausible and energy efficient.
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nc-nd/4.0/).
However, owing to the lack of an effective training algorithm,
the development of SNNs has stalled for a while, and they have
not yet demonstrated performance comparable to that of DNNs.
Many researchers have taken inspiration from the process of
learning by synapses in the brain to introduce such mechanisms
as spike-timing-dependent plasticity (Bi & Poo, 1998) and short-
term facilitation or depression to the learning of weights of the
SNNs (Diehl & Cook, 2015; Falez, Tirilly, Bilasco, Devienne, &
Boulet, 2019; Tavanaei & Maida, 2016, 2017; Zhang, Zeng, Zhao
and Shi, 2018; Zhang, Zeng, Zhao and Xu, 2018). Although such
an approach is suitable for biological interpretation, most of these
mechanisms are local learning rules, and it becomes increasingly
difficult to achieve global convergence as the number of network
layers increases. GLSNN (Zhao, Zeng, Zhang, Shi, & Zhao, 2020)
introduces global feedback layers combined with local learning
rules for optimization to alleviate this problem, but still performs
poorly on complex datasets.

The success of deep learning comes from the backpropaga-
tion algorithm; however, the characteristics of discontinuity and
nondifferentiability of SNNs have impeded the implementation of
backpropagation based on gradient descent. It is not feasible to
apply the backpropagation algorithm to directly train SNNs. An
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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lternative is to convert well-trained DNNs into SNNs through
dditional adjustments of their parameters (Diehl et al., 2015; Hu,
ang, & Pan, 2018; Sengupta, Ye, Wang, Liu, & Roy, 2019; Xu et al.,
018). Such methods of conversion have achieved accuracy com-
arable to the state of the art on large datasets such as ImageNet
nd complex architectures such as VGG and ResNet. However,
heir impressive performance is due to well-trained DNNs, and
his does not solve the problem of adequately training SNNs.
oreover, their DNN-based training does not take full advantage
f the temporal information in SNNs. When SNNs are deep, the
ime window should be large enough to enable the mean firing
ates to approach the values obtained by DNNs. With the recent
roposal of the approximation of the gradient of spiking thresh-
ld functions, the backpropagation algorithm can now be directly
pplied to train SNNs (Jin, Zhang, & Li, 2018; Lee, Delbruck, &
feiffer, 2016; Wu, Deng, Li, Zhu, & Shi, 2018; Wu et al., 2019). In
his process, the discontinuous derivative of the spiking neurons
s approximated by a continuous function. Although they perform
ell on some simple datasets, their performance on the whole
till lags significantly behind that of traditional DNNs.
In addition to typical spiking neurons and feedforward net-

ork structures, many complicated mechanisms support the
rain’s learning and inference. We draw on some of these to
urther improve backpropagation-based SNNs. The typical net-
ork structure is based on a simple forward structure. When
he spiking neuron’s membrane reaches a threshold, it releases a
pike to the postsynaptic neuron. There are many other complex
tructures in the brain, such as feedback connections (Felleman
Van Essen, 1991; Sporns & Zwi, 2004). Cross-layer feedback

onnections take the information predicted by the higher cortex
o early cortical areas to help with inference and learning. In
articular, the autapse connected to the soma (Ikeda & Bekkers,
006; Wang et al., 2017; Yin et al., 2018) applies time-delayed
eedback on the neuron’s membrane potential to regulate the
recision of the spike and network activity.
Excitatory spiking neurons are used in most current SNNs.

nce the membrane potential of the presynaptic neuron reaches
certain threshold, it releases the spike to enhance the mem-
rane potential and render the postsynaptic neurons easier to
ire. However, there exist both excitatory and inhibitory neurons
n the brain, and the dynamic balance between them is crucial
o healthy cognition and behavior (Dehghani et al., 2016; Rubin,
bbott, & Sompolinsky, 2017).
By taking inspiration from the two mechanisms described

bove, we introduce an adaptive time-delayed self-feedback
echanism (SFBM) to help regulate the membrane potential

o improve backpropagation-based SNNs. We also introduce in-
ibitory neurons to backpropagation-based SNNs. The dynamic
alance between the excitatory and inhibitory neurons accel-
rates the convergence of the neural networks and improves
heir performance. We use the combination of the two mecha-
isms to propose a deep SNN with adaptive self-feedback and
alanced excitatory–inhibitory neurons (BackEISNN). The results
f experiments on several commonly used datasets verified the
erformance of our BackEISNN. It achieved state-of-the-art per-
ormance on the MNIST, N-MNIST, and Fashion-MNIST datasets.
ur contributions here can be summarized as follows:

• We introduce the adaptive SFBM to apply time-delayed
feedback to the membrane potential of spiking neurons to
regulate the precision of spikes.

• We introduce a balanced excitatory and inhibitory neuron
mechanism (BEIM) to control the balanced firing of spikes,
which enables the network to converge more quickly and
thus perform better.
69
• We combined the SFBM and BEIM, and subjected this com-
bination to extensive experiments on the MNIST, Fashion-
MNIST, N-MNIST, and CIFAR10 datasets. The results indicate
that the proposed mechanisms can significantly improve
the performance of backpropagation-based SNNs and ac-
celerate the training of SNNs. It achieved state-of-the-art
performance on the MNIST, N-MNIST, and Fashion-MNIST
datasets, and delivered impressive performance on the CI-
FAR10 dataset while using a relatively light structure.

2. Related work

This section reviews several SNNs developed in recent years,
including those that contain biological mechanisms for better
training.

The SpikeProp algorithm (Bohte, Kok, & La Poutré, 2000) can
be viewed as the first attempt to train SNNs by using discontin-
uous spiking activities. However, the restriction of a single spike
output limits its performance on real-world tasks. O’Connor and
Welling (2016) use a spiking version of backpropagation to train
a deep SNN with rectified linear units, Wu et al. (2019) treat the
number of spikes as the surrogate for gradient backpropagation.
Lee et al. (2016) treat the membrane potentials of the spiking
neurons as differentiable signals and the instances of spiking as
noise.

However, none of these methods explicitly considers the tem-
poral correlation among neural activities. SLAYER (Shrestha &
Orchard, 2018) handles the problem of nondifferentiability of the
spike function by considering the temporal dependence between
the input and output signals. The STBP algorithm (Wu et al.,
2018) uses spatial–temporal backpropagation to train SNNs, and
an improved version of it (Wu, Deng et al., 2019) uses Ne-
uNorm and decoding voting mechanisms to improve performance
on various datasets. The HM2-BP algorithm of Jin et al. (2018)
uses hybrid macro-level/micro-level backpropagation. The micro
level is used to capture the temporal effects, and both levels
are used to compute rate-coded errors. The ST-RSBP algorithm
of Zhang and Li (2019) uses a spike-level backpropagation al-
gorithm to help train a recurrent SNN, and the long short-term
memory SNN of Bellec, Salaj, Subramoney, Legenstein, and Maass
(2018) introduces adaptive neurons in the recurrent SNN to help
it acquire knowledge in a learning-to-learn scheme. The TSSL-
BP method of Zhang and Li (2020) introduces interneuron and
intraneuron dependencies in error backpropagation to increase
the precision of temporal learning. However, the performance of
backpropagation-based SNNs still lags far behind that of DNNs
owing to the special form of spike transmission in them.

Others have taken inspiration from the structures and rules of
learning of the brain to improve network learning. LISNN (Cheng,
Hao, Xu, & Xu, 2020) introduces lateral interaction to SNNs to en-
hance the performance of the network and its robustness against
noise. The distributed coding SNN of Machingal, Thousif, Dora,
and Sundaram (2020) introduces the distributed coding layer
with inhibitory interconnections, and the weight is updated with
a self-regulated learning algorithm. In addition to the rules of
learning of the spike-timing-dependent plasticity, Zhang, Zeng,
Zhao and Xu (2018) introduce short-term plasticity and a balance
between excitatory and inhibitory neurons based on a voltage-
driven plasticity-centric SNN (Zhang, Zeng, Zhao and Shi, 2018),
but the extent of excitability has been tested by only manually
trying different ratios. Moreover, the winner-takes-all (Diehl &
Cook, 2015) and population coding (Pan, Wu, Zhang, Li, & Chua,
2019) schemes have been used for training SNNs. A gap in perfor-
mance between SNNs and DNNs persists, however, owing to the
special form of spike transmission in the former. Inspired by the
autapses as well as the balance between excitatory and inhibitory
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eurons in the brain, we introduce an adaptive SFBM as well
s a mechanism to balance excitatory and inhibitory neurons in
his study to improve the performance of backpropagation-based
NNs.

. Methods

In this section, we first introduce the basic model of the neu-
on used here, and then provide detailed descriptions of our adap-
ive SFBM and BEIM. Finally, the entire pipeline of our BackEISNN
s presented.

.1. Basic leaky integrate-and-fire neuron model

The leaky integrate-and-fire model is the model most com-
only used to describe the dynamic neural activities of spiking
eurons, including dynamic changes in the membrane potential
nd the firing process of the spikes. It can be formulated as a
ifferential formula, as in Eq. (1):
dV (t)
dt

= −V (t) + RI(t), (1)

where V (t) is the membrane potential, R is the resistance of
he membrane, τ = CR denotes the time constant, and I(t) =

N
j wj,iδj denotes the total input generated by synaptic currents

riggered by the arrival of spikes of presynaptic neurons. When
he membrane potential reaches a threshold Vth, the neuron fires
spike.
To improve the computational model, we modify Eq. (1) to

roduce a discrete form as shown in Eq. (2):

t = (1 −
1
τ
)Vt−1 +

1
C
It . (2)

When the neuron fires a spike, the membrane potential is reset
to Vreset . By assuming Vreset = 0, and C = 1 as usual, we can write
the final equation as

Vt = (1 −
1
τ
)Vt−1(1 − δt−1) + It , (3)

where δt−1 represents the spikes at time t − 1.

δt = S(Vt ) =

{
1 if Vt ≥ Vth,

0 if Vt < Vth.
(4)

When backpropagation is being performed in SNNs, spike activa-
tion cannot be derived, and this is a critical issue that restricts the
development of backpropagation-trained SNNs. Here we use the
surrogate gradient used in Wu, Deng et al. (2019) and Wu et al.
(2018) as shown in Eq. (5):

∂S(V )
∂V

=

⎧⎨⎩1 if
−1
2

≤ V − Vth ≥
1
2
,

0 otherwise.
(5)

3.2. Adaptive self-feedback mechanism

In addition to the traditional mode of information transmis-
sion in the brain, presynaptic neurons emit spikes along the axons
to the postsynaptic neurons. In particular, the autapse connects
the soma to a self-feedback loop that transmits information to
itself. As shown in Fig. 1, the autapses in the brain act on the
membrane potential to help regulate spike precision and network
activity in a time-delayed self-feedback.

Inspired by the autapses in the brain, we introduce an adaptive
SFBM for convolutional SNNs. Each convolutional layer can be re-
garded as a large neuron model, and the autapses are modeled as
self-feedback connections to control the input current. To reflect
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the modeling of the delay, we use spikes fired at the previous
timestep to regulate the input to the neurons.

As shown in Fig. 1, the spikes sent by the layer at the previous
timestep are input to the convolution operation with a sigmoid
activation function, which takes advantage of the temporal infor-
mation of SNNs. The size of the output is identical to that of the
input current received by the layer, with a value between 0 and
1. It can thus adjust the input adaptively to control the input to
the membrane potential so that the spikes fire more accurately.

A detailed description of the adaptive SFBM is shown in Eq. (6),
where f denotes the convolution operation, σ denotes the sig-
moid function, the self-feedback gate SFBt is multiplied by the
input, and ⊙ represents element-wise multiplication:{
SFBt = σ (f (δt−1)),
Vt = (1 −

1
τ
)Vt−1(1 − δt−1) + SFBt ⊙ It .

(6)

With the introduction of the SFBM, first, the postsynaptic
neurons are no longer passively receiving the input from the
presynaptic neurons. The SFBM will help to select and control
the scale of the input to the membrane potential. As a result,
the precision of the spikes can be better controlled. Second, as
can be seen in Eq. (6), the temporal dependency of Vt and Vt−1

relies mainly on the leaky term 1 −
1
τ
. As SFBt = σ (f (δt−1))

s a function of δt−1, the interaction of information from differ-
nt timesteps of the SNN is enhanced, thereby increasing the
emporal dependency of the SNN.

.3. Mechanism of balance between excitatory and inhibitory neu-
ons

Both excitatory and inhibitory neurons exist in the brain.
heir balanced combination helps with learning and inference.
s shown in Fig. 2, excitatory neurons exhibit excitatory post-
ynaptic potential, which makes it easier for the postsynaptic
eurons to fire. By contrast, inhibitory neurons exhibit inhibitory
ostsynaptic potential, making postsynaptic neurons less likely to
ire. We define excitatory neurons as neurons that release positive
pikes and inhibitory neurons as neurons that release negative
pikes to simplify their modeling. The combination of positive
nd negative spikes was first used in SpikeGrad (Thiele, Bichler,
Dupret, 2019), shown in Eq. (7):

(V ) =

⎧⎨⎩
1 if V ≥ Vth,

−1 if V ≤ −Vth,

0 otherwise.
(7)

The rules for sending positive or negative spikes are deter-
ined in advance. A positive spike occurs when the membrane
otential exceeds the positive threshold, and a negative spike
ccurs when it is below the negative threshold. In the biological
rain, the neuron does not fire a spike when the membrane po-
ential does not reach the threshold. In this article, we introduce
mechanism to determine whether the neurons are dynamically
xcitatory.
Zhu, Jiang, Yang, Hou, and Shu (2011) argued that the mem-

rane potential dynamically maintains the balance of excitatory
nd inhibitory neurons. We use the membrane potential here to
uide the generation of this balance. As shown in Fig. 2, before
eing sent to the threshold function, the membrane potential is
ent to a convolutional layer with a sign activation function to
etermine whether the neurons are excitatory. The gradient of
his challenging function is processed in the same manner as
he hard threshold function mentioned above. When we obtain
he neuron’s positive and negative attributes, and the membrane
otential reaches the threshold, we can decide whether to send
positive or a negative spike.
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Fig. 1. An autapse in the brain that connects to the soma for self-feedback (left), and the corresponding computational model (right).
Fig. 2. The balance between excitatory and inhibitory neurons in the brain (left), and the corresponding computational model (right). EPSP, excitatory postsynaptic
potential; IPSP, inhibitory postsynaptic potential.
Fig. 3. The membrane potential of neurons is involved in determining whether they are excitatory.
The details are shown in Eq. (8), where g denotes the con-
volution operation, θ denotes the sign function, and the gate
EIt , which determines whether the given neuron is excitatory or
inhibitory, is multiplied by the output:{
EIt = θ (g(Vt )),
δt = EIt ⊙ S(Vt ).

(8)

The membrane potential contains a wealth of information.
When the membrane potential is greater than the threshold, the
information transmitted is the same regardless of its specific
value. Neurons whose membrane potentials are not higher than
the threshold do not transmit information, leading to a waste of
information. As shown in Fig. 3, in addition to the membrane
potential of this neuron, the membrane potentials of peripheral
neurons are involved in the calculation of a neuron’s attributes,
which further increases the information transmission efficiency
of the SNNs.
71
3.4. BackEISNN model

The entire training process is shown in Fig. 4. The input is
sent to the spiking convolutional networks, and the two proposed
mechanisms are combined. The process of updating the leaky
integrate-and-fire neuron is shown in Eq. (9):⎧⎪⎨⎪⎩
SFBt = σ (f (δt−1)),
Vt = (1 −

1
τ
)Vt−1(1 − δt−1) + SFBt ⊙ It ,

EIt = θ (g(Vt )),
δt = EIt ⊙ S(Vt ).

(9)

Assuming that the output of the last layer is Ot at time t , for
a given time window T the mean firing rate is 1/T

∑T
t=1 Ot , yi

is the true label, and M is the number of samples, we use the
mean-squared error loss function as shown in Eq. (10):

L =
1
M

M∑
∥yi − 1/T

T∑
Ot∥

2
2. (10)
i=1 t=1



D. Zhao, Y. Zeng and Y. Li Neural Networks 154 (2022) 68–77

A
v
u
(
t

Fig. 4. The entire pipeline of our BackEISNN. The adaptive self-feedback mechanism is used to control the precise spiking of the membrane. The balanced excitatory
and inhibitory neuron mechanism is used to help the layer release spikes in a balanced manner.
Fig. 5. (a) The test accuracy on the MNIST dataset with different sizes of the kernels of the two modules. (b) The test accuracy on the MNIST dataset with different
time windows.
4. Experiments

In this section, we report experiments performed on a TITAN
100 GPU with the PyTorch framework (Paszke et al., 2019) to
erify our proposed method. We initialized the network weights
sing the default method of PyTorch. The Adam optimizer
Kingma & Ba, 2014) was used, the batch size was set to 100, and
he number of epochs was set to 200. The learning rate lr was set
to 0.001, and was reduced by 0.1lr after every 40 epochs. We set
Vth = 0.5. To illustrate the improvement brought about by them
in the capability of the network for representation, we applied
only the two modules mentioned above in the convolutional lay-
ers. We conducted the experiments on the MNIST (LeCun, 1998),
N-MNIST (Orchard, Jayawant, Cohen, & Thakor, 2015), Fashion-
MNIST (Xiao, Rasul, & Vollgraf, 2017), and CIFAR10 datasets to
illustrate the superiority of our model.

4.1. MNIST

The MNIST dataset is the most widely used classification
dataset to assess the performance of deep learning models. It
consists of 60,000 training examples and 10,000 test samples
describing handwritten digits from 0 to 9. The shape of each
sample was 28 × 28. For the static MNIST dataset, we first
converted the samples into spike trains. The normalized pixels
were converted into 1 or 0 by our comparing each pixel value
with a random number between 0 and 1. If the value of the pixel
was greater than the random number, then a spike was triggered.
The structure of our network was identical to that of ST-RSBP
of Zhang and Li (2019), which uses two convolutional layers and
two linear layers. However, in our experiments, we did not use
the elastic distortion method for data augmentation. We fixed the
time window to 20 and explored the impact of different sizes of
kernels of the two modules on the performance of the network.

As shown in Fig. 5a, when the kernel size was set to 5, the
network achieved the best performance. We then explored the
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impact of the time window on network performance with the
kernel size fixed at 5. As shown in Fig. 5b, the network delivered
the best performance when the time window T was 20.

The experiment was performed five times with different ran-
dom number seeds by use of the above-mentioned hyperparam-
eters. The test accuracy is shown in Fig. 6. Each category was well
classified.

As shown in Table 1, several backpropagation-based SNNs
were compared with our BackEISNN. Compared with the STBP
algorithm, which does not use the SFBM and the BEIM, our
method yielded an increase of 0.25 percentage points in terms
of accuracy. It outperformed all the other methods as well.

4.2. N-MNIST

The N-MNIST dataset is a neuromorphic version of the MNIST
dataset, obtained by mounting a dynamic version sensor in front
of static images of digits on a computer screen. It contains 60,000
training samples and 10,000 test samples, like the MNIST dataset.
The dynamic version sensor is moved in the direction of the three
sides of an isosceles triangle in turn to collect the two-channel
spike event triggered by a pixel change that lasts for 300 ms.
Because of relative shifts in each image, each sample of the N-
MNIST dataset is a spatial–temporal pattern with 34 × 34 × 2
spike sequences. As the time resolution was 1 µs, there were a
total of 300,000 timesteps.

To speed up the simulation, we reduced it to 100 timesteps,
which means that we recorded only one spike regardless of
the number of events occurring in the 3000 intervals. We also
tested the influence of different kernel sizes on performance. The
network achieved its best performance when the kernel size was
set to 3. The details are shown in Fig. 7.

The experiment was first conducted for 100 timesteps. As
shown in Table 2, our BackEISNN-100 achieved an accuracy of
99.57%, delivering state-of-the-art performance. Moreover, we
used the first 30 timesteps for another experiment and denote
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Fig. 6. Confusion matrix of BackEISNN on the MNIST dataset for MNIST handwritten digits 0 through 9 (as marked on the x-axis and y-axis scales). The left is for
the training dataset, and the right is for the test dataset.
Fig. 7. Confusion matrix of BackEISNN on the N-MNIST dataset. The left is for the training dataset, and the right is for the test dataset.
Table 1
Performance of backpropagation-based spiking neural networks on the MNIST dataset.
Model Structure Mean accuracy (%) Standard deviation Best accuracy (%)

SLAYER (Shrestha & Orchard, 2018) Net 1 99.36 0.05 99.41
STBP (Wu et al., 2018) Net 2 – – 99.42
HM2-BP (Jin et al., 2018) Net 2 99.42 0.11 99.49
LISNN (Cheng et al., 2020) Net3 – – 99.5
TSSL-BP (Zhang & Li, 2020) Net 2 99.5 0.02 99.53
ST-RSBP (Zhang & Li, 2019) Net 2 99.57 0.04 99.62
BackEISNN (ours) Net 2 99.58 0.06 99.67

Net 1 is 12C5-P2-64C5-p2. Net 2 is 15C5-P2-40C5-p2-300. Net 3 is 32C3-P2-32C3-P2-128.
he result by ‘‘BackEISNN-30’’. The proposed method maintained
high level of performance in this case as well.

.3. Fashion-MNIST

The Fashion-MNIST dataset is a complicated challenge com-
ared with the MNIST dataset. It consists of grayscale images of
lothing. As in the case of the MNIST dataset, this dataset was
rocessed for spike trains.
73
We also analyzed the impact of different kernel sizes on net-
work performance. It delivered the best performance when the
kernel size was 5. We then analyzed the influence of different
time windows when the kernel size was fixed to 5. Our Back-
EISNN achieved the best performance in this case when the time
window T was 30.

For the TSSL-BP model, the real-value input current was di-
rectly fed to the network. For comparison purposes, we also
used the same input to demonstrate the influence of the kernel
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Table 2
Performance of backpropagation-based spiking neural networks on the N-MNIST datset.
Model Structure Mean accuracy (%) Standard deviation Best accuracy (%)

HM2-BP (Jin et al., 2018) 400–400 – – 98.88
SLAYER (Shrestha & Orchard, 2018) Net 1 – – 99.2
TSSL-BP 30 (Zhang & Li, 2020) Net 1 99.23 0.05 99.28
TSSL-BP 100 (Zhang & Li, 2020) Net 1 99.35 0.03 99.4
STBP (Wu, Deng et al., 2019) Net 2 – – 99.44
LISNN (Cheng et al., 2020) Net 3 – – 99.45
STBP NeuNorm (Wu, Deng et al., 2019) Net 2 – – 99.53
BackEISNN-30 (ours) Net 1 99.47 0.05 99.56
BackEISNN-100 (ours) Net 1 99.5 0.06 99.57

Net 1 is 12C5-P2-64C5-P2. Net 2 is 128C3-128C3-P2-128C3-256C3-P2-1024-Voting. Net 3 is 32C3-P2-32C3-P2-128.
Table 3
Performance of backpropagation-based spiking neural networks on the Fashion-MNIST dataset.
Model Structure Mean accuracy (%) Standard deviation Best accuracy (%)

HM2-BP (Jin et al., 2018) 400–400 – – 88.99
GLSNN (Zhao et al., 2020) 256 × 8 – – 89.02
ST-RSBP (Zhang & Li, 2019) 400-R400 – – 90.13
LISNN (Cheng et al., 2020) Net 1 – – 92.07
BackEISNN-E (ours) Net 2 92.56 0.08 92.7
TSSL-BP (Zhang & Li, 2020) Net 2 92.69 0.09 92.83
BackEISNN-D (ours) Net 2 93.04 0.31 93.45

Net 1 is 32C3-P2-32C3-P2-128. Net 2 is 32C5-P2-64C5-p2-1024.
Fig. 8. Confusion matrix of BackEISNN on the Fashion-MNIST dataset. The left is for the training dataset, and the right is for the test dataset.
ize and the time window on performance. We repeated the
xperiment as mentioned above. When the kernel size was 3
nd the time window T was 20, the network achieved its best
erformance.
We performed the experiments five times using the param-

ters mentioned above as shown in Table 3. The result of the
ncoding input is denoted by BackEISNN-E and that of the direct
nput by BackEISNN-D.

To better analyze the results, we plotted a confusion matrix.
s shown in Fig. 8, our BackEISNN could clearly identify each
ategory in the training dataset. However, it was unable to dis-
inguish between images of T-shirts and shirts on the test dataset
ecause they look very similar, and even humans have trouble
elling them apart.

.4. CIFAR10

We also applied our BackEISNN to the CIFAR10 dataset. Com-
ared with the MNIST and Fashion-MNIST datasets, the CIFAR10
74
dataset is a more challenging color image dataset, in which each
image has a size of 32 × 32 × 3 pixels. It has 60,000 color
images in 10 classes: 50,000 for training and 10,000 for testing.
The dataset was normalized, randomly cropped, and horizontally
flipped for data augmentation, which is common for preprocess-
ing CIFAR10 images. We also used dropout after each layer, which
is also used in the STBP and TSSL-BP methods. The network struc-
ture was 128C3-P2-256C3-P2-512C3-P2-1024, the kernel size of
the two modules was set to 3, and the time window T was set to
20.

Table 4 shows that BackEISNN recorded an accuracy of 90.93%,
which exceeded the accuracies of SNNs trained with backpropa-
gation, decoded voting, and NeuNorm. The warm-up mechanism
was used for the TSSL-BP method when very low levels of firing
activity were observed. The network used the continuous sigmoid
function of the membrane potential to approximate the activation
so that errors could be propagated back when there was no
spike to obtain a deeper SNN. The warm-up mechanism was not
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Table 4
Performance of backpropagation-based spiking neural networks on the CIFAR10
dataset.
Model Method Accuracy (%)

STBP (Wu, Deng et al., 2019) BP and Voting 89.83
STBP (Wu, Deng et al., 2019) BP, Voting, and NeuNorm 90.53
BackEISNN (ours) BP, SFBM, and BEIM 90.93
TSSL-BP (Zhang & Li, 2020) Interneuron and Intraneuron BP 91.41

BP, backpropagation; BEIM, balanced excitatory and inhibitory neuron
mechanism; SFBM, self-feedback mechanism.

Table 5
Accuracy of BackEISNN in ablation studies on different datasets.
Dataset Baseline (%) SFBM (%) BEIM (%) Both (%)

MNIST 99.42 99.56 99.59 99.67
N-MNIST 99.09 99.26 99.46 99.55
Fashion-MNIST 92.44 92.78 93.05 93.45
CIFAR10 82.6 88.86 89.32 90.93

BEIM, balanced excitatory and inhibitory neuron mechanism; SFBM, self-
feedback mechanism.

used in our method. It also had a lighter structure, with three
convolutional layers and two linear layers. By contrast, the TSSL-
BP and STBP methods used deep networks with five convolutional
layers each.

5. Discussion

To clarify the contributions of the two modules of our algo-
ithm, we conducted ablation studies on the datasets mentioned
bove. Table 5 shows the performance of the baseline, the model
ith the adaptive SFBM introduced, the model with the BEIM

ntroduced, and the model with both the adaptive SFBM and the
EIM introduced. From the MNIST dataset to the CIFAR10 dataset,
s the complexity of the dataset increases, there is a gradual
mprovement in performance. For the CIFAR10 dataset, the ac-
uracy of the baseline was only 82.6%. With the introduction of
he SFBM, it increased to 88.86%, and rose to 89.32% with the
ntroduction of the BEIM. With both mechanisms in place, our
ackEISNN reached an accuracy of 90.93%, which shows that the
ombination of the two mechanisms improved the performance
f the network.
We also plotted the test accuracies of the baseline, the baseline

ith the SFBM, the baseline with the BEIM, and the baseline
ith both the SFBM and the BEIM. Fig. 9 shows that with the

ntroduction of the two mechanisms, the accuracy as well as the
peed of convergence of our network increased.
To better illustrate the comparative improvement in perfor-

ance due to the two modules in our method, we plotted the
onfusion matrix of the four models. As shown in Fig. 10, the
riginal model without the SFBM and BEIM modules tended to
onfuse similar objects, such as an airplane and a bird, a cat and
dog, and a horse and a deer. However, when the two modules
ere introduced, the network was able to distinguish them more
learly. BackEISNN also recorded a higher accuracy of identifica-
ion on images of other objects that are easy to distinguish. Thus,
he introduction of the adaptive self-feedback module and the
ynamically balanced excitatory and inhibitory neurons increased
he accuracy of the network not only on categories of objects that
re easy to distinguish but also on categories that are easy to
onfuse.
In addition, we randomly selected five samples from the CI-

AR10 test dataset. They were cat, ship, automobile, airplane,
nd frog, representing the third, eighth, first, zeroth, and sixth
ategories, respectively. We visualized the spikes of the output

ayer for them. Fig. 11 shows that with the introduction of the

75
Fig. 9. The test accuracy of the proposed method on the CIFAR10 dataset with
and without the self-feedback mechanism (SFBM) and the balanced excitatory
and inhibitory neuron mechanism (BEIM).

SFBM and the BEIM, the spikes of the output layer were relatively
accurate and stable at the beginning. However, for the network
without these modules, the spikes of the output layer changed
significantly. This shows that the introduction of the two modules
helped control the stability of the network and the precise release
of the spikes.

6. Conclusion

A difference in performance persists between
backpropagation-based SNNs and DNNs owing to the particular
mode of data transmission of SNNs. This suggests that using
only backpropagation is not sufficient to adequately train the
network. Inspired by autapses in the brain that connect the soma
in a self-feedback manner, we proposed applying time-delayed
feedback to the neuron’s membrane potential in this study. The
input current was gated with information on the spikes at the
previous timestep to regulate their precision and fully use the
temporal information of the SNN. We also used a mechanism to
balance excitatory and inhibitory neurons to dynamically control
the form of the output of the spiking neurons. The introduction
of the two mechanisms to SNNs trained with backpropagation
accelerated the convergence of the network and increased its
accuracy. Our proposed BackEISNN achieved state-of-the-art per-
formance on the MNIST, Fashion-MNIST, and N-MNIST datasets.
It also performed competitively against state-of-the-art SNNs on
the CIFAR10 dataset in spite of its light structure.
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