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Abstract— In agent-based traffic simulation, calibration is an
essential stage before the models applied to reproduce the indi-
vidual/group travel behaviors. While traditional methods suffer
from a high computational complexity, this paper proposes an
improved method to alleviate the computational burden for
large-scaled simulations. Specifically, we introduce variational
auto-encoder to compress the original agent state vector into
a lower dimensional hidden space, where the state transfer
probability is calculated fast. Then the probability is mapped
into the original space through a decoder, to achieve the agent
travel parameters. The dynamic calibration method is tested
with other baselines in urban travel demand analysis. Experi-
ment results demonstrate that our method brings about 19%
elevation of efficiency with the same accuracy of calibration.

[. INTRODUCTION

Urban transportation is a typical cyber-physical social
system that integrates behaviors from travelers, schedulers,
drivers and their interactions via networked machines. For
the study of such distributed systems, Agent-Based Model
(ABM) provides scientists and engineers a useful tool for
their modeling, analysis and experiment. It characterizes
behavioral modes of heterogeneous individuals/groups and
grows emergent systemic features by their interaction, com-
munication and learning from each other and from local
surrounded environments. This micro-macro way, up to now,
might be the “best” method that links the overall system
dynamics with its potential micro causalities [1]. Thus,
ABM is constantly studied by the transportation research
community [2]-[7].

When ABM is created to describe realistic system phe-
nomena, two steps are essential for its modeling and analysis.
The first is the generation of a synthetic population that is
grounded on the real target population. Research on this
problem has yielded many fruitful results [8]-[10]. The
second is to build an intelligent agent for each individual
that characterizes his cognitive and decision-making features
[11], [12]. In such a step, quantitative calibration is necessary
to validate the results as reliable. Traditionally, this process
refers to the adjustment of the model, keeping its output
approximate to realistic “stylized facts” with an acceptable
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error. Such “stylized facts” usually exploit aggregate statis-
tics from direct measurements of the real traffic system.
Representatives in the line of work include Generalized
Method of Moments (GMM) [13], Method of Simulated
Moment (MSM) [14], Simulated Minimum Distance (SMD)
[15] and Simulated Maximum Likelihood (SML) [16]. In
the calibration, a distance between the aggregation of ABM
output and the actual measured counterpart is minimized as

0" = argn:bin D(YE Y4 6)

where Y, Y4 0 stand for the selected moments from
realistic data, the selected moments from artificial results
and the parameter set respectively. D is an arbitrarily defined
distance function. In practice, the moment-based optimiza-
tion methods are easy to control since they directly treat the
evaluation criterion as the optimized objective. However, the
calibration requires many bottom-up trial-and-error iterations
as there is typically no analytical closed forms of ABM.

A second approach for ABM calibration exploits the
Bayesian estimation, which avoids complex numerical ap-
proximation to the disaggregate model [17]. In this frame-
work, modelers need to infer the “most likely” parameters
with a given observed statistics Y# by solving

0* = arg meaxp (9|YR) = arg mgLX L(YR, 0) -p(@)

where p(0) and p (6|Y ) are called the prior and posterior
distributions and L(Y ;@) is the likelihood. Generally, with
enough training and trials, Bayes theorem guarantees the
asymptotic optimality of calibration even if p(0) is arbitrarily
set. However, calculation of the likelihood over different @
in its feasible space is much computationally expensive.

A third approach for ABM calibration introduces machine
learning techniques, which successfully avoids redundant
computations in model optimization. This approach estimates
the agent parameters by using particular learning algorithms
or by training a surrogate of the target system. Classic work
of this category is surrogate learning, where a surrogate
model is constructed to be the approximation of original
ABM system via heuristic sampling and supervised learning
[18]. While the method greatly reduces necessary running
times of ABM, it suffers from the sampling bias so that
the calibrated parameters are very likely to fall into a local
optimum.

Recently, a novel method using mean-filed approach is
proposed to solve the above problems. In contrast with
the previous ones, it is an on-line calibration method from
macro to micro levels [19]. The mean-field calibration starts
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with inference of agent state transfer probabilities via the
aggregated system model. Then, each state transfer proba-
bility is used to construct a micro transfer equation, from
which the agent behavioral parameters are analytically or
numerically solved. Albeit the mean-field calibration closes
the gap between macro system metrics and micro agent
models, its deficiency lies in the possible high dimensions
of state space for large-scaled simulation, which elicits a
complicated equation solving. To improve its performance,
this paper introduces auto-encoder to compress the original
state vector into a lower dimensional hidden space. Such
a compression will greatly accelerate the model solving
process and thus removes the bottleneck of its computation.
Comparative experiments have indicated that the introduc-
tion of variational auto-encoder brings about 19% elevation
of the computational performance, with the same level of
calibration accuracies.

The organization of this paper is as follows. Section
I elucidates our proposed method in details. Section III
provides the experiment results. Specifically, we concentrate
on the training of auto-encoder and the calibration effects of
agent models. The paper concludes at last with some further
discussions to shed light on potential future work.

II. DYNAMIC CALIBRATION BASED ON
VARIATIONAL AUTO-ENCODER

Given a multi-agent system for traffic simulation, assume
each agent is defined by a set of attributes and each value
combination of all the attributes is defined as a state. An
agent can stand for an individual or a group of traveler(s),
an individual or a group of vehicle(s), etc.. To limit the scope,
an agent in this paper represents a driver whose travel mode
selects the private car. For simplicity, we assume each agent
corresponds to a vehicle (this can be easily extended by
introducing a vehicle/person travel ratio) and the attributes
are all discrete (continuous ones can be pre-processed by a
piece-wise discretization). Define a system state vector

z(t) = [z1(t)

as the number of agents in each state at time index ¢. Here, a
specific combination of the agent attributes (jlocation=node
23, age=34; for example) is defined as an agent state. N is
the total number of agent states. x;(t) stands for the number
of agents in state ¢. For ease of computation, x (¢) here is
defined as a real vector. When applied in real systems, it
needs to be rounded to represent the agent number. The state
transfer equation between adjacent time steps is

) =T) -zt —1)
{ z(0) = g M

an(t)]" e RN

where z is the initial distribution of agents. T'(t) € RN X is
the state transfer matrix in which the cell in the ¢-th row and
j-th column is denoted as T;;(t). T;;(t) means the aggregate
transfer probability from the agent state j to i. For system
observation, let

be the M -dimensional vector of detected metrics. Here we
consider a linear measurement

y(t) = B(t) - (1) 2)

where B(t) € RM*N s called a measurement matrix.
Denote the actual observation from realistic system as ().
The performance of the multi-agent system is defined as

K K
T=J) =Y wt) —g@)]" -V -yt -9®)] O
t=1 t=1
where K is the total number of observed steps and the
positive symmetric matrix V' represents the importance of
each metric.
As a discrete calculus of variation problem, the optimal
trajectory of z (t) can be calculated by Euler equation

018 | —ge = 2[B())TV[B()z* () — y(t)] = 0
2*(0) = xo

Therefore, we need to solve

{ B)z* () =g()=B@)T ({t)z" (t-1)=4(t) =0
x*(0) = xo

Since it is an under-determined system, we need to incorpo-
rate further constraints for its unique solution. The problem
here is relaxed into an optimization as

T (t) = argmin [ BOT ()" (t — 1) = g(t)ll2 + A|T(®)]x

s.t. 0 < Tyy(t) <1
4)

where )\ is a regularization parameter.

Eq. (1) to Eq. (4) define a system model where the overall
agent state transfer probability, T5;(t), is computable from
the observation in an on-line mode. For real transportation
systems, however, a lot of factors such as social networks,
personal travel costs, are all influential to individual/group’s
travels. This elicits a large dimension of x (¢), which makes
the system model solving much time consuming. To this end,
we introduce the variational auto-encoder (VAE) to compress
the state space so that the computational efficiency could
be improved. The structure of our VAE neural network is
illustrated in Fig. 1, where the encoder learns a compressed
representation in a latent space while the decoder completes
an inverse task. At first, the system state vectors from
adjacent time steps are encoded to achieve their embedded
representations. This process relies on an encoder network
with shared parameter values. Then, the state transfer equa-
tion in latent space is solved given the embedded states
z(t) and z(t —1). Estimation of the latent state transfer
probability is similar as 7" ()

P*(t) = argmin [ P(t)2(t — 1) — 2(¢)[|2 + AP ()1

As the dimension of compressed representation is much
lower than the original one, such an optimization takes far
less computational time to get a result. The achieved P (t)
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is then flattened to the decoder, which transforms the latent
state transfer probabilities into the original space. As such,
T;; (t) is calculated in an efficient way.

x(6) z2(t—1)  P®

\ z(t)

ol

TFlatten

Decoder |—| | T(t)

x(t—l)i/

2(t) = P(t) - 2(t - 1)

Fig. 1. Structure of VAE network. In each time step, adjacent states are
encoded in the latent space and a state transfer probability matrix P (t) is
computed. Then the P (¢) is reconstructed into the original space through
the decoder to get the agent state transfer probability T ().

As a supervised learning, training of the VAE network in-
volves forward computation and backward propagation. The
forward computation is explained in the last paragraph, as an
“encoding, latent transfer probability solving, and decoding”
process. Since the decoding step finally reconstructs state
transfer probabilities in the original space, the backward
propagation exploits a “real” label by directly solving Eq.
(4). We adopt the loss of mean squared error as

loss = Eynp(a) MT(t) -1 (t)Hz}

where D(x) is the training data set.

Given a reasonable solution T;; (¢), we further calibrate
the agent model by establishing an equation between its mi-
cro behavioral parameters and the state transfer probability.
Generally, there are four aspects that impact agent’s travel
behaviors: 1) individual states. This type of attributes can be
calculated from his endogenous psychological/physiological
states or his surrounded environment, such as the private
car ownership, personal estimation of traffic situation, etc;
2) dependent states. This type of attributes mainly refers to
the agent’s social relations, which are determined by other
agents. For example, a community rally or social appoint-
ment may cause individual’s travel, and the arrangement of
such events relies on the states of one’s social neighbors.
Therefore, simulating this kind of travel behaviors needs to
investigate the agent’s neighbors in his social network; 3)
decision-making models. The agent decision-making models
or algorithms map a given unified state (including both the
individual and dependent states as a whole) into a specific
action/strategy. Such models simulate human’s behavior se-
lection over his personal knowledge base. And the model
parameters, which we will calibrate in this paper, may
vary from agent to agent to reflect the heterogeneity of
individuals; 4) stochastic factors. To simulate the randomness
of human behaviors, a multi-agent system usually adopts
a stochastic number generator over particular distributions
(like the Gaussian distribution) so that some perturbations
could be introduced in the decision-making process. By
considering these four aspects, the state transfer probability

of a particular agent can be denoted as

) =T} afp Vi) 1 = . 010
6
‘a[t_l,Nei(t— 1),W=“’i»9(t_1)’4} ;

Here O(t) stands for the parameter set of decision-making
algorithms, and the stochastic factors, £, are assumed to
be independent and identically distributed (i.i.d.). Nei (t)
means the aggregate state of the agent’s neighbors and W
means his individual states. Eq. (6) provides a basis for
calculating state transfer probability of each agent, where
the right side is determined by his decision-making model
(note that the decision-making model could be represented
in various forms such as explicit mathematical equations, a
neural network or a knowledge base, etc..) and the left side is
estimated by the VAE network before. Therefore, the model
parameters can be analytically or numerically solved from
this equation.

III. EXPERIMENTS FOR AGENT-BASED TRAFFIC
SIMULATION

To validate the VAE calibration method proposed be-
fore, this section will conduct computational experiments
for urban traffic simulation. It is essential for the travel
demand prediction and the traffic control/management strat-
egy test. The experiments also incorporate several previous
approaches as benchmarks to comparatively verify the ad-
vantages of our VAE method.

A. Data Source and Experiment Setting

The test scenario is set to be the central district of
Chengdu, a western city of China. The abstract road network
contains about 37 intersections as nodes, 112 arterial roads
as links. The studied region covers about 20 km?, including
54 residential areas, 42 schools and hospitals, 25 large hotels,
malls and commercial centers, 18 government office and
central business districts, 5 libraries, stadiums and sports
centers, 4 leisure plazas and parks, 4 tourism sights (see
Fig. 2).

To analyze the individual travel demand, we develop an
agent-based simulation system based on the Simulation of
Urban Mobility (SUMO) platform, and an external calibrator
using the proposed VAE method [20]. The framework of our
experiment system is illustrated as Fig. 3. In every calibration
interval, the SUMO simulation environment collects the
number of agents in each micro state and sends aggregate
results to the VAE calibrator. The calibrator computes the
agent state transfer probabilities via a pre-trained VAE net-
work and returns to the SUMO system. Then the simulation
system changes each agent’s travel parameters according
to its received results. For evaluation, a certain number of
sensors are set in the observable links to compare calibrated
link flows with corresponding observed ones.

Our data source of experiment includes three types. The
first type is a basic synthetic population, which generates
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Fig. 2. The abstract road network covering about 37 intersections and 112
arterial roads.
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Fig. 3. Framework of the Experiment System.

initial states of all the agents before simulation. The pop-
ulation synthesis uses about 3,300 households with 10,000
individuals as a seed (accounting for 1.02%cof the total target
population) and the investigations of family, schools and en-
terprises as constraints. The final virtual agents involve these
three types of social relationships with their travels impacted
by family members and school/corporation locations. Details
of the synthesis can be referred to in [21]. The second type is
the actual daily traffic counts detected from observable links.
These data are collected from 225 loop detectors embedded
in the road surface. The loop detectors record the number
of passed vehicles every minute and send results to the
transportation management center. Since the observable links
do not cover the whole road network, the link traffic flows
can only be deemed as a partial view of the total travel
demand. Yet they could be used to reconstruct the overall OD
flows between every node pair. The third type is active taxi
locations from GPS devices installed in 13,608 taxies. When
the GPS devices are turned on, they keep transmitting the
location coordinates (represented as latitude and longitude) to

the management center at intervals of 10 seconds. We select
a raw dataset from a weekday, which contains 3,202,442
records of traffic counts and 77,645,666 records from taxis.

The data pre-processing before computational experiments
involves three aspects. First, due to the possible malfunction
of GPS devices, a small proportion of taxi records upload
zero location coordinates. Similar problems may also take
place in loop detectors, resulting in some missing data items
in particular records. For these deficient records, we simply
exclude them from our dataset. Second, some records seem
obviously abnormal (such as the speed of 200 km/h). Such
outliers are removed as well. Third, duplicate records may
arise due to some transmission problems. For this kind,
only one record would be retained and other duplicates are
removed. After the data clean, about 0.06% traffic counts
and 2.48% taxi records are filtered, which indicates that
the noise ratio stays at an extremely low level. In the final
cleaned datasets, the loop detector records mainly provide
four metrics: volume, speed, occupancy and headway. The
taxi GPS devices give latitude, longitude, direction, and
speed. GPS locations are further converted into links through
map matching and the links are connected to form the vehicle
travel paths.

Our studied time is from 6:00 to 24:00, taking every 15
minutes as a calibration cycle. For each cycle, the calibrator
estimates the total traffic flow between a given origin and
destination node pair (OD pair). This estimation is according
to Eq. (5) via the agent numbers z (¢ — 1) from SUMO and
the pre-trained VAE network. Then, the calibrator searches
all the travel paths between a given origin and destination
node pair (OD pair), and computes the path selection prob-
ability of each agent. The computation is based on Eq. (6)

Ti;(t) =

ZTk{a[t, Nei, W = 4,0,¢€] | alt — 1, Nei, W = i, @,g]}
k

where T}, means the assignment probability of the k-th path

from node ¢ to node j. To get a unique solution, we further
set each T}, to be proportional to the taxi path

Tk{a[t,Nez',W ~ 4,0, ’a[t — 1, Nei, W = i,@,g]}

Zka{a[t, Nei,W = 4,0, €] ’a[t— 1, Nei, W = i,@,g]}
ol
B Zka{W:j’W:i}

where Ni{W = j|W = i} stands for the number of taxi
trajectories through path k.

B. Experiment Results

The computational experiments are conducted for 5 times
with identical settings. We use the same amount of data to
train our VAE model and test the ultimate calibration effect.
Fig. 4 shows the training error of our VAE network, where
the MSE loss is adopted. As can be seen, the loss gets nearly
240% at the beginning and rapidly drops while the training
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goes on. It decreases to nearly zero at the 120-th epoch
around. The error curve also indicates that our training of
VAE is steady as it is monotonic without oscillation.
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Fig. 4. Training Error of VAE Network.

Fig. 5 shows the mean average errors (MAE) of 5 exper-
iments. The time intervals are numbered from 1 to 72 as
the coordinates of X axis, with each index standing for a
15-minute time span. Each error point is computed by

L
1 ActCount; — SynCount,
MAE = ~ ‘ 2
L ; ActCount;

where ActCount; and SynCount; are the observed link
traffic counts from real system and the detected traffic counts
from our SUMO simulation. L is the number of observable
links. We also include two previous calibration methods, ma-
chine learning surrogate and mean-field, as the comparative
benchmarks. Clearly, the overall MAE of surrogate method
is about 6% larger than the other two. And their errors
all decline rapidly at the beginning of simulation and then
keep stable with weak oscillations. This is because that the
vehicles in the early morning are too few, so that even a small
deviation will bring a large relative error. With the grown of
travel demand, the errors keep stable at about 16%. However,
while the proposed VAE method achieves a similar overall
accuracy as the mean-field approach (about 13%), it suffers
from greater oscillations. Fig. 6 illustrates the Root Mean
Squared Errors (RMSE) of the three methods. Similarly, the
surrogate approach gets the worst overall performance with
such indicator being about 2500. By contrast, mean-field and
VAE are 2123 and 2156, respectively, which shows a slight
elevation. And the VAE model in this metric is also less
stable than mean-field.

We further investigate the computational performance that
is listed in Table I. For running time, the surrogate calibration
takes about 26 hours while mean-field calibration costs about
23 hours. The reason behind lies in the iterative trial-and-
error process in surrogate calibration whereas the mean-field
method can dynamically conduct simulation and calibration.
By contrast, our VAE method requires only 18.5 hours
to complete the calibration with simulation. This reflects
that the latent encoding of state variables can effectively
reduce the computational complexity and thus lead to an
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Fig. 5. Mean Average Errors of Calibration for Traffic Demand Prediction.
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Fig. 6. RMSE of Calibration for Traffic Demand Prediction.

efficient calibration. In general, our method brings about 19%
improvement in the efficiency.

TABLE 1
COMPUTATIONAL PERFORMANCE OF THREE CALIBRATION METHODS

Surrogate Mean-Field VAE
Aver. Cal. | 56 11 03 Min. | 22 H 54 Min. | 18 H 27 Min.
&Sim. Time
Software: SUMO 1.3.1 + Python 3.6
OS: Windows 10 (x64)
Environment CPU: Intel Core i5-9400 (8 cores, 2.9 GHz)
GPU: Nvidia GeForce GTX 1660 Ti (6 GB)
RAM: 16 GB

I'V. CONCLUSIONS AND DISCUSSIONS

Agent-Based model provides a useful tool to analyze urban
transportation systems where travelers, schedulers, drivers
with their interactions mutually drive the system’s evolution.
Using an emergent paradigm, such type of models can
simulate the systemic dynamics and predict travel demand
for the test of traffic control/management strategies. This
paper addresses the calibration of ABM, proposing an ef-
ficient method to dynamically calculate the agent decision
parameters. The novel method introduces the variational
auto-encoder to learn a latent representation of the system
state. And such latent encoding can greatly reduce the di-
mension of system and accelerate its state transfer probability
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computation. Computational experiments based on actual
traffic data have indicated that the proposed VAE method
brings about 19% elevation of efficiency with the same
accuracy of previous calibrations.

The VAE calibration in this paper, in essence, exploits the
knowledge implied in the neural network. It can be deemed
as a pre-training mode to learn state transfer features from
samples in advance. This kind of priori will certainly im-
prove the computational performance in subsequent dynamic
calibration. In addition, the latent encoding by VAE further
accelerates this process. And that is why our experiments
achieve remarkable elevation in efficiency. However, greater
compression of state vector may lose greater information,
leading to a decrease of calibration accuracy. Therefore, we
need seek a balance between the efficiency and accuracy. The
thought of inverse learning might shed light on our future
work [22].

Experiment results in this paper have already demonstrated
that VAE model suffers from more fierce oscillation than
mean-field approach. A potential reason for this phenomenon
might be the lack of adaptability of VAE network after its
training completed. Thus, if the samples for training include
some bias that deviates from the test data, then the learned
model may not be generalizable in other test cases. In the
future work, using incremental learning or sampling for
complex networks may be a feasible solution for such a
problem [23].
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