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Abstract. How to learn pixel-level representations of human parts with-
out supervision is a challenging task. However, despite its significance, a
few works explore this challenge. In this work, we propose a contrastive
and consistent learning network (C2L) for unsupervised human parsing.
C2L mainly consists of a part contrastive module and a pixel consis-
tent module. We design a part contrastive module to distinguish the
same semantic human parts from other ones by contrastive learning,
which pulls the same semantic parts closer and pushes different semantic
ones away. A pixel consistent module is proposed to obtain spatial cor-
respondence in each view of images, which can select semantic-relevant
image pixels and suppress semantic-irrelevant ones. To improve the pat-
tern analysis ability, we perform a sparse operation on the feed-forward
networks of the pixel consistent module. Extensive experiments on the
popular human parsing benchmark show that our method achieves com-
petitive performance.

Keywords: Unsupervised human parsing · Part contrastive module ·
Pixel consistent module

1 Introduction

Human parsing aims to assign a class label to each pixel of the human body in
an image. Various applications make use of it, including human behavior analy-
sis, clothing style recognition and retrieval, clothing category classification and
so on. However, most works focus on supervised methods. A major drawback of
supervised methods is that they need pixel-wise semantic labels for every image
in a dataset. These datasets are a labor-intensive process that spends significant
amounts of time and money. To remedy this situation, weakly-supervised meth-
ods employ weaker forms of supervision, e.g., image-level labels [1], bounding
boxes [2] and scribbles [3], and semi-supervised methods use partially labeled
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Fig. 1. An illustration of the proposed contrastive and consistent learning method for
unsupervised human parsing. In this method, two views are randomly augmented from
an image, and the parts with different semantics of two views are encouraged to be
contrastive, and the pixels with the same semantics from the corresponding features of
the two views are encouraged to be consistent.

examples to train the module. Although above methods can reduce labor con-
sumption, training networks still rely on some form of supervision.

In this paper, we deal with this problem by introducing a novel unsupervised
human parsing approach, which does not need annotated training data. More
concretely, we aim to learn pixel-level representations for unsupervised human
parsing by contrastive and consistent learning that consists of a part contrastive
module and a pixel consistent module.

The major challenge of unsupervised human parsing is to identify part seman-
tics. The insight of our part contrastive module is to leverage part-level represen-
tations to learn part semantics. Recently, self-supervised representation learning
methods [4–6] show how to obtain the classification of images with unlabeled
training data. They compute features to capture the category of a whole image,
thus they cannot meet the need for the classification of parts in human parsing.
Therefore, we use multiple high-level features, capturing the semantic character-
istic of each human part. According to the characteristics, each pixel is assigned
to its corresponding category. Figure 1 shows our motivation that the same cat-
egories (e.g., upper-body) is distinguished from the other categories (e.g., lower-
body) by contrastive loss. In this way, the same semantic parts are pulled closer
and different semantic ones are pushed away.

The part-level representations cannot be effective for dense pixel classifica-
tion, because they ignore the spatial correspondence. To amend this problem, we
design a pixel consistent module. As shown in Fig. 1 that the pixels with the same
semantics from the corresponding features of the two views are encouraged to be
consistent. The module extracts the spatial correlation in each view of images,
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aiming to select semantic-relevant pixels and suppress semantic-irrelevant ones.
Specifically, we first reshape input features into patches and obtain the seman-
tic relevance of pixels. Then, we select semantic-relevant pixels and suppress
semantic-irrelevant ones by a sparse operation, which makes the module pay
attention to the foreground and improves the accuracy of prediction. In sum-
mary, our contributions are threefold:
1. We propose a novel contrastive and consistent learning (C2L) network to solve

the challenging unsupervised human parsing problem, which has attracted
less attention in human understanding community.

2. A part contrastive module is designed to distinguish the same semantic human
parts from other ones by contrastive learning, and a pixel consistent module
is presented to obtain spatial correspondence of two views of input images.

3. Extensive experiments on a popular human parsing benchmark show that our
method achieves competitive performance.

2 Related Work

Unsupervised Human Parsing. There have only been a few attempts in the
literature to tackle human parsing under a fully unsupervised setting. Hung et
al. [7] learned part features that are semantically consistent across images and
achieved good results in their paper. Lorenz et al. [8] presented a method to
disentangle object shape and appearance to obtain a part modeling result. Liu et
al. [9] followed the above methods [8] to disentangle object shape and appearance
and proposed a self-supervised part classification loss. Different from the above
methods, our C2L does not require predefined constraints, e.g., saliency map [7],
elliptical assumption of the shape of human parts [8] and background cut [9].
We are more interested in learning a model that can predict part-level semantic
information without supervision.

Contrastive Learning. Contrastive learning [4,10,11] has been developing
rapidly, which learns representations to discriminate positive image pairs (con-
structed from different augmentations of the same images) from dissimilar, neg-
ative image pairs. Varied strategies are proposed to choose appropriate negative
pairs. In MoCo [4,5], a memory buffer and a momentum encoder were designed
to provide negative samples. In SimCLR [10,11], the negative samples were the
large training mini-batches. Some papers [12,13] designed methods to allevi-
ate the bias issue caused by incorrect (false) negative images by modifying the
contrastive loss function. PC2Seg [14] sampled the negative examples strategi-
cally rather than changing the loss function. Compared with these attempts, we
choose semantic inconsistent features as negative pairs.

3 Proposed Method

3.1 Overall Framework

In this paper, we propose a new network called Contrastive and Consistent
Learning (C2L) that aims to assign every pixel a label with unlabeled training



Contrastive and Consistent Learning for Unsupervised Human Parsing 229

Backbone

Backbone
2x

Image

1x
Pixel consistent module

Layer Norm

Multi-Head
Attention

Layer Norm

Sparse 

Q K V

Contrastive

loss

Part contrastive module

g

t

Pixel consistent module

x

Fig. 2. Architecture of the proposed contrastive and consistent learning for unsuper-
vised human parsing.

data. Specifically, as shown in Fig. 2, given an input image, the random photo-
metric transforms generate two views. These views are sent into the backbone
network, e.g., ResNet [15] or any other convolutional neural network to obtain
original features, and then we send these features to the part contrastive module
and the pixel consistent module, respectively. The part contrastive module can
distinguish the same semantic human parts from other ones, at the level of the
global feature. The pixel consistent module can obtain spatial correspondence
between pixels to adaptively aggregate semantically consistent pixels, improving
the accuracy of the prediction.

3.2 Part Contrastive Module

The part contrastive module uses a 1 × 1 conv to reduce the channel number of
original features and a group convolutional layer to decrease the computation,
and then reshapes them to g = {g0, . . . , gk} and t = {t0, . . . , tk}. We define
a set of encoded keys t0, . . . , tk for each encoded query gi. The encoded keys
and queries are generated from different views of the input image, respectively.
However, here each key and query no longer represents the whole view, and
encodes a human part of a view. The positive key t+ encodes the same part
of the two views, which is one of the N feature vectors from another view of
the same image. Note that N usually corresponds to the number of labels in
a dataset. Hungarian-matching [16] is the sampling strategy to ensure that the
positive key t+ encodes the same semantic part with encoded query gi. While
the negative keys t− encode the other parts of the different view. We use a
contrastive loss function InfoNCE [17], it can pull gi close to the positive key t+
while pushing it away from other negative keys t−:

Lr =
k∑

i=0

−log
exp(gi · t+/τ)

exp(gi · t+/τ) +
∑

t− exp(gi · t−/τ)
, (1)

where τ denotes a temperature hyper-parameter as in [18].
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3.3 Pixel Consistent Module

The part-level representations generated by the part contrastive module cannot
meet the demand of dense pixel classification, because they ignore the spatial
correspondence. To implement this, we utilize the transformer encoder architec-
ture [19]. Specifically, we use the multi-head self-attention mechanism to extract
the spatial correlation of each spatial element. The transformer models the rela-
tion by refining the feature embeddings of each element with consideration to all
the other elements. Formally, we reshape original features to query Q ∈ RHW×C ,
key K ∈ RHW×C , and value V ∈ RHW×C which denote the input triplets of
the self-attention module, where H, W and C denote height, width and channel
number of the original features m, respectively. We do not use the fixed positional
embeddings in the network. Then, the spatial correspondence F ∈ RHW×C is
obtained through the standard multi-head self-attention layer, with the whole
process defined as F = multi(m). Through end-to-end training on a human
parsing dataset, the spatial correlation is obtained.

However, some works [20,21] have suggested that performing selection of
spatial correlation is critical for pattern analysis. Therefore, we employ a sparse
operation on the feed-forward networks (FFNs) in the transformer encoder. We
begin with a brief review of sparse code algorithms. Sparse code [22] aims to
learn a useful sparse representation of any given data. The mathematical repre-
sentation of the general objective function for this problem can help:

min
α∈Rk

1
2

‖x − Dα‖22 + λ‖α‖1, (2)

where x ∈ RHW×C is the given data, D ∈ RHW×k is the decoder matrix, λ is
a regularization parameter. In general, we have k < C, and the loss function
should be small if D is ”good” at representing the signal x. It is well known
that L1 loss penalty yields a sparse solution α and α ≥ 0. To prevent D from
being arbitrarily large (which would lead to arbitrarily small values of α), it is
common to constrain its columns (di)k

j=1 to have an L2 norm less than or equal
to one. We call c the convex set of matrices verifying this constraint:

c = {D ∈ RHW×ks.t.∀j = 1, . . . , k, dT
j dj ≤ 1}. (3)

We perform pixel consistent operations on the feed-forward networks (FFNs)
by extending the original sparse code to a spatial correlation. The spatial corre-
lation (the outputs of the multi-head self-attention layer F ) is the input of the
sparse code. Thus the pixel consistent loss is defined as:

Lc = min
α∈Rk

1
2

‖F − Dα‖22 + λ‖α‖1, (4)

Then, the Dα is the output of sparse code, and it connects with the outputs
of the multi-head self-attention layer by short connections as the output of our
pixel consistent module.
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Algorithm 1. C2L pseudocode
P 1

i , P 2
i : random photometric augmented version

Gi : random geometric augmented version
fθ : the backbone
Sσ, Cτ : the pixel consistent module and the part contrastive module, respectively
for (xi) ∼ D do

y1
i,:, g

1
i,: ← Sσ/Cτ (Gi(fθ(P

1
i (xi))))

y2
i,:, g

2
i,: ← Sσ/Cτ (fθ(Gi(P

2
i (xi))))

end for
μ1, z1 ← BatchKMeans(y1

ip : i ∈ [N ], p ∈ [HW ])
μ2, z2 ← BatchKMeans(y2

ip : i ∈ [N ], p ∈ [HW ])
for (xi) ∼ D do

y1
i,:, g

1
i,: ← Sσ/Cτ (Gi(fθ(P

1
i (xi))))

y2
i,:, g

2
i,: ← Sσ/Cτ (fθ(Gi(P

2
i (xi))))

Lr ← Lcontrastive(g
1
i,:, g

2
i,:)

Lview ← Lclust(y
1
i,:, μ

1, z1) + Lclust(y
2
i,:, μ

2, z2)
Lc ← Lc

Ltotal ← Lview + Lr + Lc

fθ, Sσ, Cτ ← backward(Ltotal)
end for

3.4 Pseudo Code of C2L

Algorithm 1 provides the pseudo code of C2L for this unsupervised method.
We follow PiCIE [23], for each image xi in the dataset. We randomly sample
two photometric transformations, P 1

i and P 2
i . And then, P 1

i and P 2
i are sent

into the backbone fθ and the geometric transformations Gi in different order
to improve the robustness of the network. Finally, features are sent into pixel
consistent module Sσ and part contrastive module Cτ , respectively. This yields
two features for each pixel p in each image xi:

y1
i,:, g

1
i,: ← Sσ/Cτ (Gi(fθ(P 1

i (xi)))), y2
i,:, g

2
i,: ← Sσ/Cτ (fθ(Gi(P 2

i (xi)))), (5)

We employ clustering separately in the two views to get two sets of pseudo-
labels and centroids:

μ1, z1 = arg min
z,μ

∑

i,p

∥∥y1
ip − μyip

∥∥2
, μ2, z2 = arg min

z,μ

∑

i,p

∥∥y2
ip − μyip

∥∥2
, (6)

Given these two sets of centroid and pseudo-labels, the features are adhered
to the clustering labels in a cluster loss [23]. Now that we have two views, we
want this to be true in each view:

Lview ← Lclust(y1
i,:, μ

1, z1) + Lclust(y2
i,:, μ

2, z2), (7)

Overall, the total loss for our C2L can be formulated as:

Ltotal ← Lview + αLr + βLc, (8)

where α and β are the weight to balance the two terms. α is set to 0.5 and β is
set to 0.3, which is validated by experiments.
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Table 1. Ablation study for every module. The baseline is PiCIE. Pacm denotes our
part contrastive module. Picmnosparse denotes our pixel consistent module without
the sparse code operation. Picm denotes our pixel consistent module.

# Baseline Pacm (ours) Picmnosparse (ours) Picm (ours) mIoU (%)

1 � 9.62

2 � � 12.33

3 � � � 14.61

4 � � � 16.27

4 Experiments

4.1 Datasets and Evaluation Metrics

ATR dataset [24] contains 7700 multi-person images with challenging poses and
viewpoints (6000 for training, 700 for validation and 1000 for testing). In this
paper, we merge the ground truth to the upper-body, lower-body and back-
ground, respectively, evaluating performance. Evaluation metrics for ATR, fol-
lowing supervised human parsing [25,26], the performance is evaluated in terms
of mean pixel Intersection-over-Union (mIoU).

4.2 Implementation Details and Baseline

For all experiments, we use the Feature Pyramid Network [27] with ResNet-18 [15]
backbone pre-trained on ImageNet [28]. The fusion dimension of the feature pyra-
mid is 128 instead of 256. Following PiCIE [23], the cluster centroids are com-
puted with mini-batch approximation with GPUs using the FAISS library [29].
For the baseline, we do not use image gradients as an additional input when we
use ImageNet-pretrained weight. For optimization, we adopt Adam. As for the
crop size of the dataset, we resize images to 320×320 as the input size. The mini-
batch size for k-means is 192, and the batch size for training and testing is 96.

The baseline is PiCIE [23] which is an explicit clustering method. PiCIE
clusters the feature vectors of given images and uses the cluster assignment as
labels to train the network. Since the size of images explodes the number of
feature vectors to cluster, PiCIE applies mini-batch k-means to first compute
the cluster centroids, assign labels, and then train the network.

4.3 Ablation Study

Ablation of Each Module. We conduct ablation studies with Resnet-18 as
our backbone and report all the performance on the ATR validation set. For
starters, we evaluate the performance of the baseline (PiCIE), as the result in
Tabel 1 (#1). To verify the effect of the part contrastive module, we remove the
pixel consistent module in Fig. 2. The experiment result is shown in Table 1 (#2).
This modification improves the performance to 12.33%(2.71%↑) with negligible
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Table 2. Ablation study for weight α and β. α = 0.5 and β = 0.3 achieve the best
prediction.

α mIoU (%) Acc. (%) β(α = 0.5) mIoU (%) Acc. (%)

0.0 9.62 34.58 0.0 15.17 68.44

0.3 12.01 58.60 0.3 16.27 71.32

0.5 12.33 69.30 0.5 16.06 69.02

0.7 12.06 65.21 0.7 15.33 68.51

1.0 11.63 52.13 1.0 15.32 68.05

additional parameters. We further evaluate the role of the pixel consistent mod-
ule. As for this module, we replace its sparse code with normal FFNs. The result
is shown in Table 1 (#3), obtaining the performance of 14.61%. We add sparse
code to the pixel consistent module, the accuracy has been further improved to
achieve 16.27%. Compared with the baseline, C2L achieves a great improvement.

Ablation of Hyper-Parameters. Table 2 examines the sensitivity to hyper-
parameters of C2L. The hyper-parameter α, β in Eq. (8) serve as the weight to
balance the contrastive loss and sparse code loss. We report the results of differ-
ent α, β in the left and right of Table 2, respectively. We first conduct experiments
to obtain the best α. In the left of Table 2, it shows a trend that the segmentation
performance improves when we increase the α. when α = 0.5, the performance
achieves the best result. As shown in the right of Table 2, when β = 0, our
C2L without sparse code operation. By increasing β, β = 0.3 achieves the best
prediction.

Image 2 ( )C L oursPiCIE DFF
Background Upper-body Lower-body

Fig. 3. Qualitative comparison results on ATR for unsupervised human parsing.
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Table 3. The quantitative comparison of unsupervised human parsing on ATR.

Method mIoU (%) Acc. (%)

PiCIE [23] 9.62 34.58

DFF [30] 12.63 56.15

C2L(Ours) 16.27 71.32

4.4 Comparison on Unsupervised Human Parsing

The unsupervised human parsing from unlabeled images is a challenge that has
not been well explored. DFF [30] proposes to use non-negative matrix factor-
ization upon the CNN features to obtain the semantic concepts, which need to
optimize on the whole datasets during inference to keep semantic consistency.

To visualize the part segmentation result, we show some resulting images
from ATR in Fig. 3. We can find that our method can correctly segment most
parts. What’s more, the foreground can be extracted from the complex back-
ground. This is because our part contrastive module can distinguish the same
human parts from other ones by contrastive learning and our pixel consistent
module obtains spatial correspondence in each view of images to improve fore-
ground extracting. Results in Table 3 validate the effectiveness of our method.

5 Conclusion

In this paper, we propose contrastive and consistent learning (C2L), a novel
unsupervised human parsing method. It encourages human parts with different
semantics of two views to be contrastive and the pixels from the corresponding
features of the two views to be consistent. C2L mainly consists of two modules,
including a part contrastive module and a pixel consistent module. Both the
quantitative and qualitative results demonstrate the superiority of C2L.
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