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ABSTRACT

Skeleton-based action recognition methods which utilize
graph convolution networks (GCNs) have achieved remark-
able success in recent years. However, action recognizer can
be easily confused by the ambiguity caused by different ac-
tions with similar skeleton sequences when only skeleton data
is trained. Introducing appearance information can effectively
eliminate the ambiguity. Based on this, we introduce a two-
stream network for action recognition. One trained on RGB
images extracts appearance information. The other trained
on skeleton data models motion information and adaptively
captures appearance information of action areas at action-
related intervals via a specially tailored attention mechanism.
Our architecture is trained and evaluated on two large-scale
datasets: NTU RGB+D and NTU RGB+D 120, and a small
scale human-object interaction dataset Northwestern-UCLA.
Experiment results verify the effectiveness of our method and
the performance of our method exceeds the state-of-the-art
with a significant margin.

Index Terms— Action recognition, skeleton data, RGB
images, attention.

1. INTRODUCTION

Action recognition has received a significant amount of atten-
tion in recent years, as it plays a significant role in a number of
real-world applications. It is can be used in human-computer
interaction, intelligent video surveillance, robot vision, etc.

With the development of different kinds of accurate and
affordable sensors, multiple modalities are used for action
recognition. Recent years have witnessed an emergence of
works [1–3], using various data modalities for action recog-
nition, such as RGB, skeleton, and multi-modality fusion.
Among these modalities, skeleton data which encodes the tra-
jectories of human body joints is succinct and efficient for ac-
tion recognition and is robust to variations of clothing textures

typing on a keyboard reading

Fig. 1. Difficult action pairs with similar poses like 11 and
30 in NTU RGB+D dataset. The first line shows RGB im-
ages of typing on a keyboard and reading, and the second line
shows the skeleton visual images of typing on a keyboard and
reading.

and backgrounds. Due to these advantages, skeleton-based
action recognition methods have attracted much attention in
the research community. More recently, many GCN-based
action recognition methods [4,5], which explore how to build
a better topology and how to update the features of node have
been proposed and achieved better performance. Neverthe-
less, according to our analysis of action recognition results
based on Shift-GCN [5], we conclude that there is ambiguity
in some actions with similar poses, i.e., reading, typing on a
keyboard as shown in Fig. 1. To better recognize this kind of
action, we need to add appearance information of the action-
related areas for action recognition.

In general, RGB data is easy to collect and contains abun-
dant appearance information of the captured scene context.
RGB-based action recognition methods [6, 7], have mostly
learnt to exploit contextual information (e.g., scene class,
dominant objects, and background motion). Whereas they
rarely pay attention to understanding the human action itself.
As a consequence, we need to add appearance information of
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the areas associated with the action for action recognition.
Based on this, we propose a two-stream network to learn

action features which include not only the specific features
of dynamic skeleton modality but also the detailed appear-
ance features of action-related areas at key intervals when the
action occurs. Firstly, in order to obtain the appearance infor-
mation of the action-related areas, we divide the human body
into three partitions according to where the action takes place.
Secondly, AFP (Appearance Features Process) module is used
to process appearance features, and a tailored attention mech-
anism is used to select the features of the action-related areas
in key intervals. Specifically, skeleton features are used as
global information to generate corresponding weight values
for different partitions in different times. At last, the dynamic
skeleton information and the appearance information of the
action-related areas in key intervals are used to determine the
action category. The major contributions of this method lie in
three aspects:

• According to the main areas where the action take
place, we divide the human body into three partitions.

• We propose a customized attention mechanism which
uses skeleton features as global information to calcu-
late the response values of different body partitions at
different times.

• On two human activity datasets and a human-object in-
teraction dataset, the proposed model achieves superior
performances compared to the earlier methods.

2. RELATED WORK

RGB. 3D CNN-Based methods simultaneously model the
spatial and temporal context information in videos. Tran et
al. [8] extended 2D convolution kernels to 3D convolution
kernels to learn spatio-temporal features for action recogni-
tion. However, it brought a lot of parameters to train. To
decrease the computational cost, [7,9] factorized 3D convolu-
tion to 2D spatial convolution layer followed by 1D temporal
convolution layer. Similarly, Lin et al. [10] proposed a Tem-
poral Shift Module (TSM), which shifts the channels along
the temporal dimension both forward and backward, thus the
information is exchanged between adjacent frames, and the
complexity is maintained to the level of 2D CNNs.

Skeleton.With the development of deep learning, data-
driven methods have become the mainstream methods.
Method [11] based on CNN modelled the skeleton data as a
pseudo-image, which manually design transformation rules.
Method [12] based on RNN modelled the skeleton data as a
sequence of coordinate vectors which represent human body
joints. These methods failed to fully represent the structure
of the skeleton data as the skeleton data are naturally embed-
ded in the form of graphs. So there been have many works

using graph convolution to process skeleton data. [4, 13] di-
rectly preformed the convolution filters on the graph vertexes
and their neighbors.

RGB+Skeleton. Different modalities usually have dis-
tinct strengths and limitations for action recognition. It is an
inevitable choice to fuse data of multiple modalities and take
advantage of these advantages in action recognition. These
modalities must be processed by different kinds of network
to show their effectiveness, owing to they are heterogeneous.
[14] proposed a new hierarchical bag-of-words feature fusion
technique based on multi-view structured sparsity learning
to fuse atomic features of two disparate modalities. [15] ex-
tracted spatial features from a middle frame using two atten-
tion modules, a self-attention and a skeleton-attention mod-
ule. Temporal features are extracted from skeleton sequence
by a BI-LSTM sub-network. The spatial features and the tem-
poral features are combined for action recognition. These
simple multi-modal fusion strategy limits their performance.
As a result, many methods driven by skeleton data used at-
tention mechanism to make RGB modality focus on the fea-
tures of action. [16] used LSTM which is used to extract fea-
tures from skeleton data to learn spatial and temporal atten-
tion weights, then the weights were multiplied with the fea-
ture map extracted from RGB data. VPN [17] had 2 key com-
ponents which were an attention network and a spatial em-
bedding.

But these methods have some flaws: 1) The attention
module neglect the action is related to a small part of the hu-
man body. 2) These methods only end up relying on features
from RGB videos for action recognition. Thus, they pay more
attention to appearance information than dynamic of skeleton
data.

3. METHODOLOGY

In this section, we explain the proposed two-stream network
in detail. Firstly, we briefly present the overall pipeline of our
proposed framework. Secondly, we describe the strategy of
dividing the human body into three partitions based on where
the action takes place. Finally, we introduce AFP module and
tailored attention mechanism.

3.1. Pipeline Overview

In order to obtain skeleton features and appearance features,
we devise a two-stream network architecture for action recog-
nition, as shown in Fig.2. Firstly, we introduce the input and
feature extraction backbone of the network. The inputs of our
proposed model consist of the RGB images (randomly sam-
pling 8 human body frames) and the joint coordinates. The
skeleton data is extracted from motion-capture device. For
RGB data, we use TSM [10] to extract the appearance repre-
sentation f . f is a feature map of dimension T ×W ×H×C,
where T denotes the temporal dimension, W × H the spa-
tial scale and C the channels. The skeleton data is processed
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by Shift-GCN [5] to extract skeleton features g. The dimen-
sion of g is 1 × D1. Secondly, we use the AFP module to
process features f to generate partition features f ′′ and f ′′′.
Features f ′′ and f ′′′ serve as Q and V of the tailored attention
mechanism. The dot product of skeleton features g′ and fea-
tures f ′′ is input into softmax function to learn the spatial and
temporal attention weights of partitions. Finally, final appear-
ance features are obtained by using average pooling to process
weighted appearance features along the temporal dimension.
We concatenate final appearance features and skeleton fea-
tures g for action recognition. The final features include not
only the pose information, but also the appearance informa-
tion of the action-related areas in key intervals.

3.2. Human Body Partition

For confusing actions which have similar posture, we need to
add appearance information of the areas associated with the
action to assist skeleton data for action recognition. Accord-
ing to the areas where the action occurs, we can simply divide
the human body into three partitions as shown in Fig.3. The
exact location of each partition is determined by the coordi-
nates of the upper left corner and the size of the partition.
Firstly, according to the skeleton data, the human body is cut
on the corresponding image. The upper left corner of the hu-
man body is the minimum value of the abscissa and the mini-
mum value of the ordinate in all joints of the human body, and
the lower right corner is the maximum value of the abscissa
and the maximum value of the ordinate among all joints of the
human body. Secondly, we locate the position of each parti-
tion. The three partitions are equal in length to the human
body. For the first partition, the width is the ordinate of the
neck minus the ordinate of the upper left corner of the human
body and the upper-left coordinate is the upper-left coordinate
of the human body. For the second partition, the width is the
difference between the ordinate of the middle torso and the
ordinate of the neck, and the upper-left coordinate is the same
as the lower-left coordinate of the first partition. For the third
partition, the width is the difference between the ordinate of
the lower right corner of the human body and the ordinate of
the middle torso, and the upper left coordinate is the same as
the lower lower-left coordinate of the second partition.

3.3. AFP Module and Attention Mechanism

How should we deal with the appearance features? We use
the AFP module to process f shown in Fig.3 to generate
f ′′ and f ′′′. Firstly, the upper left corner coordinate, length
and width of each partition obtained in Section 3.2 are used
as the input of ROIPooling [18] to obtain the features fi
(P ∈ RT×W1×H1×C), where i ∈ (1, 2, 3), of the correspond-
ing ith partition at different times from the features f. Sec-
ondly, average pooling is used to process the features fi to
get features f ′

i . Finally, we use two branches to process the
features f ′

i to obtain f ′′
i and f ′′′

i . Features f ′
i is followed by Fc

Layer, a non-linear mapping function and Fc Layer to obtain
f ′′
i . Here we choose tanh as the non-linear mapping function.

These features are defined as:

f ′′
i = Fc (tanh (Fc (f ′

i))) , (1)

where Fc is the full connection layer. Features f ′
i are followed

by two Fc Layers to obtain f ′′′
i , which can be defined as:

f ′′′
i = Fc (Fc (f ′

i)) , (2)

Features f ′′ and f ′′′ are obtained by the concatenation of f ′′
i

and f ′′′
i . For simplicity, the processing of the skeleton features

g is quite simple and g is followed by only one Fc Layer and
a non-linear mapping function:

g′ = tanh(Fc(g)), (3)

Next, we use the attention mechanism to adaptively select
the appearance features of the areas associated with the action
in key intervals, where features g′ are used as K, features f ′′

are used as Q and f ′′′ is used as V. We use the following for-
mula to calculate the weights of the ith partitions at different
times:

wi =
f ′′
i · g′∑3

i=1 f
′′
i · g′

, (4)

where wi is the temporal weights of the ith partition. After-
wards, the features f ′′′

i are multiplied by its corresponding
weights wi to generate the weighted appearance features fwi

of the ith partition.

fwi = wif
′′′
i . (5)

So far, the weighted appearance features F ′ concatenat-
ing the weighted appearance features of the three partitions
pay more attention on the relevant partitions where the action
occurs in key intervals. At last, we concatenate the final ap-
pearance features F that average pooling is used to process to
process F ′ on the temporal dimension and the skeleton fea-
tures g to form the final features. It not only contain pose in-
formation but also detailed information about the areas where
the action occurs in key intervals. Through the above process-
ing, we take the final features as classifier input to recognize
action.

4. EXPERIMENTS

4.1. Setup and Dataset

NTU RGB+D. NTU RGB+D [19] is a large-scale action
recognition dataset containing 56,880 skeleton sequences and
video samples, which are performed by 40 distinct subjects,
captured from 3 different camera view angles and categorized
into 60 classes. Each skeleton sequence contains 25 body
joints. Each sample contains an action and is guaranteed

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 15,2022 at 01:39:28 UTC from IEEE Xplore.  Restrictions apply. 



RGB images

Skeleton data

…
…
…
…

AFP

TSM

Shift-GCN

Average 

pooling

f′′  (3× T)×D

f′′′  (3× T)×D

g  1× D1
1× (3D + D1)

softmax

0.10

0.11

0.20

0.03

0.60

0.01

0.10

0.11

0.20

0.03

0.60

0.01

…
…
…
…

softmax

scores

Fc

CC

1× D

Average 

pooling

Fc tanh
g′  1× D

Fig. 2. The architecture of our proposed two-stream network. It consists of the RGB stream and the skeleton stream. The
skeleton stream models dynamics of posture from skeleton sequences and the RGB stream extracts spatio-temporal appearance
features from images. Posture motion features are used as global information to guide appearance features to select features of
the action-related partition in key intervals.

Fig. 3. There are some examples of human-object interac-
tion. The solid red boxes show the area where the action takes
place, and the green dashed boxes represent three partitions.

Fc FcT× W× H× C

T× W1× H1× C

f′  (3× T)× C

ROI 

Pooling

Average 

pooling

Fc Fc

f′′′  (3× T)× D

f′′  (3× T)× D

Tanh

f

Fig. 4. The process method for appearance features extracted
from RGB backbone. The components in process features:
extraction of partition feature and partition feature processing.

to have at most 2 subjects, which is captured by three Mi-
crosoft Kinect v2 cameras from different views concurrently.
The author of this dataset recommends two benchmarks: 1)
cross-subject (X-sub) benchmark: the 40 subjects are split
into training and testing data, training data is obtained from
20 subjects and testing data is obtained from the other 20 sub-
jects. 2) cross-view (X-view) benchmark: the 3 views are split
into training and testing data, training data is obtained from
the camera views 2 and 3, and the testing data is obtained
from the camera view 1.

NTU RGB+D 120. NTU RGB+D 120 [20] extends NTU
RGB+D by adding another 57600 video samples and skele-
ton sequences, which are performed by 106 distinct subjects,
captured from 32 setups that each setup denotes a specific lo-
cation and background and categorized into 120 classes. This

dataset is the largest dataset with 3D joints annotations for ac-
tion recognition. The author of this dataset recommends two
benchmarks: (1) cross-subject (X-sub) benchmark: the 106
subjects are split into training data and testing data contain-
ing 53 subjects respectively. (2) cross-setup (X-setup) bench-
mark: the 32 setups are split into training data with even setup
IDs and testing data with odd setup IDs.

Northwestern-UCLA. Northwestern-UCLA [21] is cap-
tured by three Kinect cameras. It contains 1494 video clips
covering 10 categories. Each action is performed by 10 ac-
tors. We adopt the same evaluation protocol in [18] : we use
the samples from the first two cameras as training data and
the samples from the other camera as testing data.

Experiment Settings. All models use SGD with momen-
tum 0.9 when training the model. The total epochs is 60. Ini-
tial learning rate is set to 0.01 and dropped by 0.1 at epoch
20, 40. For NTU-RGB+D [19] and NTU-RGB+D 120 [20],
the batch size is set to 8. We employ ImageNet pre-training
when training TSM [10].

4.2. Ablation Study

In this subsection, we first show that appearance informa-
tion can significantly improve the performance of model only
based on skeleton data. Then we demonstrate the effective-
ness of our method. In order to verify appearance informa-
tion can assist skeleton data for action recognition, we con-
catenate features g and features f ′ named L1, where are con-
catenated by f ′

1, f ′
2 and f ′

3. As shown in Table 1, concatenat-
ing multi-modality features can improve the classification of
actions (upto 2.2% than TSM and 4.6% than Shift-GCN) on
NTU RGB+D X-sub (CS) and (upto 2% than TSM and 0.7%
than Shift-GCN) NTU RGB+D X-view (CV ). As shown in
Table 1, concatenating multi-modality features with ours is
more effective (up to 1.7% on NTU RGB+D X-sub and 1.1%
on NTU RGB+D X-view). This phenomenon indicates that
concatenating all appearance features bring some misleading
information. Our method pays more attention to the parti-
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Fig. 5. The figure shows the weights of the different partitions obtained using our method in different times.

tions that can distinguish actions to reduce the interference of
misleading information.

Table 1. Performance comparison of different fusion strate-
gies on X-sub benchmark and X-view benchmark of NTU
RGB+D.

Method Att CS CV
TSM × 90.12 93.55

Shift-GCN × 87.71 94.82
L1 × 92.30 95.59

ours
√

94.02 96.68

4.3. Comparison with The State-of-the-art

We compare our method with the state-of-the-art on NTU
RGB+D, NTU RGB+D 120, and N-UCLA in Table 2, 3,
and 4. The performance of our method is superior to other
methods in three datasets. In Table 2, for input modality
RGB+skeleton, our method improves the state-of-the-art by
up to 0.5% on NTU RGB+D CS and CV. To make a fair
comparison, VPN [10] uses I3D as the backbone to process
RGB data, so we replace TSM with I3D. The performance
is 96.50% on CV. Compared with single mode, the perfor-
mance is also improved, which proves the effectiveness of our
method.

Table 2. Comparisons of the validation accuracy with state-
of-the-art methods on the NTU RGB+D dataset.

Method Ske. RGB Att CS CV
STA-Hands

√ √ √
82.5 88.6

altered STA-Hands
√ √ √

84.8 90.6
PEM

√ √
× 91.7 95.2

Separable STA
√ √ √

92.2 94.6
P-I3D

√ √ √
93.0 95.4

VPN
√ √ √

93.5 96.2
ours

√ √ √
94.0 96.7

Compared to the state-of-the-art results, the improve-
ments of 1.5% and 0.5% on NTU RGB+D 120 X-sub (CS1)
and X-setsub (CS2) respectively are significant as shown in
Table 3. For N-UCLA which is a small-scale dataset, we also
get state-of-the-art performance in Table 4. Our approach is
1.1% better than VPN [10]. At last, we visualized the weights

learned by our method, as shown in Fig.5. It can be seen from
this figure that the weights learned by the third and second
partitions in drop trash action is relatively large, which is in
line with our expectations. In addition, we can observe that
weights predicted at action-related intervals are much larger
than those of action-unrelated intervals (0.2586 vs 0.0005),
which further proves the effectiveness and reasonability of
our approach.

Table 3. Comparisons of the validation accuracy with state-
of-the-art methods on the NTU RGB+D 120 dataset.

Method Ske. RGB Att CS1 CS2

ST-LSTM
√

×
√

55.7 57.9
Two stream Att LSTM

√
×

√
61.2 63.3

PEM
√

×
√

64.6 66.9
2s-AGCN

√
×

√
82.9 84.9

Two-streams+ST-LSTM
√ √

× 61.2 63.1
Separable STA

√ √ √
83.8 82.5

VPN
√ √ √

86.3 87.8
ours

√ √ √
91.6 91.9

Table 4. Comparisons of the validation accuracy with state-
of-the-art methods on the N-UCLA.

Method Ske. RGB Att CV
Glimpse clouds

√ √ √
90.1

Separable STA
√ √ √

92.4
P-I3D

√ √ √
93.1

VPN
√ √ √

93.5
ours

√ √ √
94.9

5. CONCLUSION

In this work, we propose a novel two-stream network which
consists of RGB stream and skeleton stream. Our methods put
forward a special attention module which is designed to learn
the weights of three partitions in different times. Through our
method, the information of areas associated with the action in
key interactions can be selected accurately.
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