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A B S T R A C T

Automatic question tagging is a crucial task in Community Question Answering (CQA) systems such as Zhihu
or Quora, as it can significantly enhance the user experience by improving the efficiency of question answering
and expert recommendations. Graph-based collaborative filtering models show promising performance on this
task, as they can exploit not only the semantics of text content but also the existing relations between questions
and tags. However, existing approaches typically encode each question into a single vector, which may not
be able to capture the diverse semantic facets of questions in CQA systems. To address this challenge, we
propose a novel question-tagging framework, named Tri-Relational Multi-Faceted Graph Neural Networks
(TRMFG) for Automatic Question Tagging. In TRMFG, a tri-relational graph structure is designed to better
model the question-tag relations. We also propose tri-relational question-tag GNN to extract hidden latent
representations of questions and tags. Specially, the Multi-Faceted Question GNN helps capture the diverse
semantics of questions from relevant tags. Then we build a multiple matching component to capture more
complex matching patterns of the questions based on the diverse semantics. Our experimental results on three
benchmark datasets demonstrate that TRMFG significantly improves question tagging performance for CQA,
outperforming the state-of-the-art methods.
1. Introduction

In recent years, Community Question Answering (CQA) websites
such as Zhihu1 and Stack Overflow2 have gained substantial popularity
as reliable sources of information for users seeking answers to a wide
variety of questions [1–4]. In CQA systems, questions are typically
associated with multiple tags, which help users find the content they
need. This not only aids users in discovering relevant information,
but also enhances the functionality of various applications such as
recommendation systems [5–7], expert-finding systems [8–10], and
search engines [11–13] within CQA websites. However, a frequently
encountered issue in CQA websites is the incomplete question tags
assigned by users, resulting in a large number of questions lacking
sufficient tags. While most CQA websites provide users with the option
to tag their questions through the provided interface, it is insufficient
in addressing the tagging inadequacy. For newly raised questions, only
a few users may come across and tag them. What is more, when users
tag the questions, they may be careless and miss some crucial tags.

∗ Corresponding author.
E-mail address: qfang@bupt.edu.cn (Q. Fang).

1 https://www.zhihu.com/
2 https://stackoverflow.com/

To address the problem mentioned before, Automatic Question
Tagging (AQT) has emerged as a promising solution to enhance the
tags provided by users [14,15]. The definition of AQT is summarized in
Fig. 1. With inputting a question with a small amount of user-assigned
tags, AQT requires the question tagging model to retrieve additional
related tags from the tag database.

Within CQA websites, relation information helps us learn hidden
features of questions and tags. Tag-tag relations represent tag hierar-
chies, while question-tag relations reveal the user-assigned tags related
to questions. These relations facilitate the representation of CQA web-
site data in the form of graphs. Consequently, GNN-based approaches
are employed for automatic question tagging. Researchers work on
popular GNN-based collaborative filtering approaches to address the
problem. Tian et al. [16] came up with a novel GNN-based collabora-
tive filtering model to denoise unreliable interactions in social network
graphs. Some heterogeneous graph models incorporate attention mech-
anisms with heterogeneous graph neural networks to learn the weights
vailable online 11 January 2024
925-2312/© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.neucom.2024.127250
Received 17 August 2023; Received in revised form 31 December 2023; Accepted 7
 January 2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:qfang@bupt.edu.cn
https://www.zhihu.com/
https://stackoverflow.com/
https://doi.org/10.1016/j.neucom.2024.127250
https://doi.org/10.1016/j.neucom.2024.127250
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.127250&domain=pdf


Neurocomputing 576 (2024) 127250N. Xu et al.
Fig. 1. The definition of AQT. Questions in CQA websites may be assigned with incomplete tags by users. So the question tagging model will help retrieve more tags for the
question.
Fig. 2. Examples of questions and tags in CQA. (a) shows that existing methods focusing on only one facet of questions may fail in acquiring semantics from relevant tags for
questions. (b) shows how our proposed method tempts to get multiple semantics of relevant tags by adapting multiple facets in the model.
of various relations. The heterogeneous graph transformer (HGT) [17]
is a typical example. The heterogeneous graph model can learn new
features for each node by utilizing various meta paths. Consequently,
the HGT model can assist nodes in acquiring various types of features
when utilized for recommendation tasks. Nie et al. [18] attempted
to apply tag hierarchy to question tagging tasks, but disregarded the
existing question-tag relations.

Despite numerous attempts to employ GNN-based collaborative fil-
tering methods for question tagging tasks, the existing models still
exhibit several limitations. In CQA websites, tag hierarchies are sup-
posed to indicate both parent and child tag nodes for each tag. Diverse
questions may already encompass specific concepts from child tags and
require shared concepts from parent tags, and vice versa. As a result,
making effective use of tag hierarchies plays an important role in the
question tagging task. Additionally, questions posted on CQA websites
may lack crucial semantics present in user-assigned tags, which is
essential for the question tagging process. Existing methods [18,19]
mainly concentrate on relations from parent tag nodes to child tag
nodes, and only rewarding positive question-tag pairs instead of fully
utilizing them. Inadequate utilization of these relations can result in
an incomplete structure of questions and tags within CQA websites.
Therefore, we have to face Challenge 1: how to appropriately make
use of existing relations in CQA websites for further question tagging?

Moreover, traditional question tagging methods [18,19] often con-
centrate on the original question semantics. For instance, the question
‘What once common ingredients have faded out of Chinese recipes?’
has semantics of ‘recipe’ and ‘ingredient’. So the traditional question
tagging models may retrieve tags such as ‘recipe’ or ‘ingredient’ for the
question. While in Fig. 2(a), its relevant tags are ‘Delicacy’, ‘History’,
and ‘Trivia’ in CQA websites. This problem indicates that we should
also take the semantics of relevant tags into consideration when retriev-
ing more tags. Meanwhile, in common GNN-based question tagging
models, as illustrated in Fig. 2(a), the question ‘What once common
ingredients have faded out of Chinese recipes?’ may retrieve wrong tags
2

‘River’ and ignore relevant tags ‘Delicacy’ and ‘History’. Although the
question has a large range, it still fails to capture proper semantics from
relevant tags. These wrong semantics will disturb the question tagging
task. Therefore, we need to address Challenge 2: how to better learn
the diverse semantics inherent in questions by relevant tags?

To address the above challenges, we propose a novel question-
tagging framework named Tri-Relational Multi-Faceted Graph Neu-
ral Networks (TRMFG) for Automatic Question Tagging. To tackle
Challenge 1, a Tri-Relational Question-Tag Graph is constructed to
effectively represent and facilitate information propagation between
question and tag nodes by emphasizing three crucial relations. By
taking both parent–child tag relations and child–parent tag relations
into consideration, we extract valuable features from the hidden latent
representation of all the tag nodes. Specially, we apply Multi-Faceted
Question GNN to tag-question relations so as to capture multiple facets
of semantics from tags to questions. It is worth noting that the se-
mantics of questions do not influence the semantics of tags, since the
tags remain static in CQA websites. Also, there is no question–question
relation in CQA websites. Instead, users should seek related questions
by employing search mechanisms based on relevant tags. Then, we
use Tri-Relational Question-Tag GNN for message passing within the
graph. Specially, we introduce the concept of Multi-Faceted Question
GNN, designed to capture multiple facets of semantics so as to tackle
Challenge 2. As depicted in Fig. 2(b), in our proposed method, we
encode each question into multi-faceted features. This approach allows
for greater flexibility and provides a higher likelihood of extracting
semantics from relevant tags. Through these multiple facets, we capture
multiple domain features for the question, derived from relevant tags.
In Fig. 2(b), the question acquires domain features such as ‘Delicacy’
and ‘Trivia’, distinctly disparate from the domain feature ‘History’. This
approach allows for a more comprehensive representation of the ques-
tion, encompassing various facets and their corresponding semantic
meanings.
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For evaluation, we conduct comprehensive experiments to verify the
effectiveness of our model. The performance comparison with the state-
of-the-art methods confirms the superiority of our proposed model on
three real-world datasets for automatic question tagging.

In this paper, our main contributions can be summarized as fourfold:

• We propose a Tri-Relational Multi-Faceted Graph Neural Net-
work, namely TRMFG, to effectively perform the question tagging
task in CQA websites. It generates Tri-Relational Question-Tag
Graph and Tri-Relational Question-Tag GNN that help capture the
underlying relations between questions and tags.

• We design a Tri-Relational Question-Tag Graph to model the
questions, tags, and relations in CQA websites. By analyzing the
characteristics of CQA websites, we construct the questions and
tags as a heterogeneous graph for further study.

• We design a Tri-Relational Question-Tag GNN to learn infor-
mative node features for questions and tags in CQA websites.
Specially, we design a Multi-Faceted Question GNN, which serves
to extract multiple facets of semantics from related tags for ques-
tions. Also, the whole Tri-Relational Question-Tag GNN does
message passing and learns latent representations of questions
and tags.

• We validate the effectiveness of our model using three real-
world datasets in experiments, i.e., Zhihu, Stack Overflow, and
Zhuanzhi. These datasets are obtained from authentic CQA web-
sites. Comprehensive experiments demonstrate the effectiveness
of our model compared to state-of-the-art methods for automatic
question tagging.

2. Related work

In this section, we provide an overview of the relevant literature
associated with our framework. We introduce the work about question
tagging tasks and graph neural networks.

2.1. Question tagging

AQT holds significance across various functions such as recom-
mendation systems [5–7], expert-finding systems [8–10], and search
engines [11–13] within the context of CQA websites.

In fields of recommendation systems, tags play an important role in
the extraction of essential question information, facilitating the provi-
sion of appropriate answers for questions [20–23]. Recommendation
system platforms enhance repository organization through tag-based
systems, offering users comprehensive suggestions to optimize user ex-
perience and content accessibility. Izadi et al. [24] have proposed work
for tagging software projects of recommendation system platforms.
They have found that implementing appropriate tags significantly in-
creases repository visibility on these platforms, thereby affirming the
advantageous role of AQT in enhancing CQA tasks. Moreover, in expert-
finding systems, which demand access to extensive information, these
question-specific tags empower users to determine whether the re-
trieved information aligns with their specific requirements [25–28].
Interactions within expert-finding systems involve highly specialized
questions and answers, often necessitating additional illumination for
comprehension. Employing tags for questions within these systems will
facilitate the extraction of key information, thereby enhancing the effi-
ciency of information retrieval processes. Costa et al. [29] have devised
approaches focusing on tags to make expert recommendations. Through
the strategic tagging of questions and identification of the greatest
expertise associated with these tags, their methodologies work in expert
recommendation systems. When it comes to search engines, tags enable
users to quickly find the information they need [13,30,31]. The vast
and fragmented nature of information on Internet poses challenges for
search engines in generating precise results. However, by leveraging
3

tags, search engines can significantly improve their ability to pinpoint
relevant information, enhancing the persuasiveness and relevance of
search results for users. Tsai et al. [32] have extracted multiple object
tag information from images, enabling users to perform image searches
that yielded better results in comparison to those common search en-
gines. Hence, there is significant value in comprehending and exploring
AQT within CQA websites.

Numerous scholarly works have extensively examined various tag-
ging methods that effectively integrate supplementary information.
For example, simplified GCNs [33] capture complex transitions of
items with session sequences to fulfill the tagging tasks. Likely, Wang
et al. [34] have explored the construction of multi-relation edges be-
tween items, resulting in a more comprehensive understanding of users’
sequential behaviors. Knowledge graphs can also help tag texts. Wang
et al. [35] built the relation graphs by knowledge graph and apply
attention mechanism to the model. These methods enable the model
to effectively tag long-form text, which can be treated as extended
questions.

In recent years, researchers tempted to focus more on the question
tagging tasks themselves rather than on common text classification
tasks. These question-tagging methods mostly depend on graph-based
structures. Nie et al. [18] can be regarded as the first batch of re-
searchers to utilize the novel topic to tag questions in the CQA websites.
They constructed a Directed Acyclic Graph (DAG) for the tags to trans-
fer knowledge by regularizing their hierarchical relations. Then the
model cannot only learn tag and question embedding but recommend
the tags to questions based on the embedding interaction as well.
However, the state-of-the-art method, PROFIT, only concentrates on
the semantics of the question, while ignoring the user-assigned tags
which can provide complementary information for the question. With
hierarchical learning taxonomy [14], questions can be searched based
on their chapters or topics. Also, Zhang et al. [19] presented a tag
ranking model called HERE so as to tag the questions with unseen tags.
Through the incorporation of a DAG-based information propagation
module, their proposed framework enables the effective transmission
of meaningful information from parent tags to their respective child
tags. Therefore, the unseen tags in the tag database can be better rep-
resented. The state-of-the-art method HERE [19] mainly concentrates
on relations from parent tag nodes to child tag nodes, neglecting the
pivotal roles of mutual information propagation. Furthermore, it only
rewards positive question-tag pairs instead of fully utilizing them.

Different from the above methods, we propose a novel automatic
question tagging method to sufficiently exploit the semantics of user-
assigned tags and different relations between the question and tags.
Specifically, we construct a Tri-Relational Question-Tag Graph to model
relations among the input question, the user-assigned tags, and the
candidate tags. Then, we propose a Tri-Relational Question-Tag GNN
to learn informative node features for questions and tags, improving
the effectiveness of the semantic match between the input question and
candidate tags.

2.2. Graph Neural Networks

Recently, Graph Neural Networks (GNNs) have shown promis-
ing abilities to analyze graph-structured data [36–39]. In social net-
works [40], the data often exhibits a natural structure that can be
effectively represented as graph data structures. Consequently, re-
searchers have extensively explored various graph neural network
architectures to represent different relations in CQA websites.

After the convolutional neural networks (CNNs) are applied to
graph-structured data, GCN [41] models perform well. Defferrard et al.
[42] managed to generalize the CNNs directly to graphs. Their pro-
posed technique offered the same linear computational complexity
and constant learning complexity as classical CNNs, being universal
to any graph structure. Wu et al. [33] simplified the GCN model that

it can convert large filters to small ones. With the explosive growth
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Fig. 3. The framework of TRMFG: (1) We preprocess the question, user-assigned tags and tag database to get question embedding, tag embedding and related tag graph; (2)
we construct Tri-relational Question-Tag Graph to model the three types of relations within the CQT framework; (3) we propose Tri-relational Question-Tag GNN to do the
message passing between questions and tags. Particularly, we design the Multi-Faceted Question GNN to encode questions into multiple facets and extract diverse semantics from
tags to questions. Also, we design Tag-Tag Relations GNN for message passing between tags; (4) Finally, we propose Tri-Relational Matching Loss Function to optimize our model.
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of social network data, GraphSAGE [43] is the first to attempt to do
node-wise sampling coupled so that node embedding can be trained in
mini-batches.

After the attention mechanism [44] comes into the vision of re-
searchers, it has been widely used to decode the data so that the
most relevant vectors will get higher weights. Therefore, Velickovic
et al. [45] manage to integrate this idea into GCNs. When aggregating
the information, the neighborhood will acquire different weights for
each node. Brody et al. [46] put forward a new version of GAT, which
change the weights into dynamic to get better attention results.

While social networks may have different types of entities and rela-
tions, the social graphs consist of different nodes and edges, which can
be regarded as heterogeneous graphs. Chen et al. [47] projected metric
embedding to heterogeneous graphs to capture first-order and second-
order proximities. In HeGAN [48], Hu et al. sampled the heterogeneous
graphs more effectively and efficiently and captures the rich semantics.
The variants of the GCN models help better filter the information and
adapt to various scenarios. NGCF [49] is the first try to design GCN
under collaborative filtering settings. It deals with a user–item bipartite
graph and do the recommendation. Then, He improves the NGCF model
and simplifies the layers, which is called LightGCN [50]. GMCF [51]
distinguishes the inner interactions and cross interactions to exploit the
information carried by the different interactions. The denoising module
consists of hard and soft denoising strategies. SGC [33] also makes the
NGCF model simpler by removing nonlinearities. Li et al. [52] also
improve the GCN-based CF models by proposing SGGCF to capture
the high-order interactions. ITSM-GCN [53] is designed to sample
positive training data. By the similarity-based samplers and score-based
samplers, it outperforms other models.

In our work, we model the questions and tags in graph structure
and apply the graph neural networks to aggregate information under
the framework of graph neural networks.

3. Problem formulation

We introduce the notations used in this paper. For questions and
tags in CQA websites, they can be represented as a heterogeneous
graph 𝐺 = (𝑉 ,𝐸,𝑀), where 𝑉 = 𝑉𝑞 ∪ 𝑉𝑡 is the union of question
nodes set 𝑉𝑞 = {𝑞1,… , 𝑞𝑘} and tag nodes set 𝑉𝑡 = {𝑡1,… , 𝑡𝑛}. 𝑘 is the
number of questions and 𝑛 is the number of tags. The question and
tag nodes within the graph are both products of embedding features,
originating from the questions and tags sourced from CQA websites. We
present the preprocessing method in Section 5.1 to analyze the details.
𝐸 = 𝐸𝑡−𝑞 ∪𝐸𝑡−𝑡 is the set of edges that represents the relations between
nodes. 𝐸 = {(𝑡, 𝑒, 𝑞)|𝑡 ∈ 𝑉 , 𝑒 ∈ 𝑀 , 𝑞 ∈ 𝑉 } is the set of edges
4
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Table 1
The main symbols and their meaning in TRMFG.

Notation Definition

𝐺 = (𝑉 ,𝐸,𝑀) Question-tag graph
𝑉 Node set
𝐸 Edge set
𝑀 Relation set
 The original question embedding
 The original tag embedding
𝑊𝑗 Trainable matrix of a linear projection
𝑏𝑗 Trainable bias for question embedding
𝐹𝑗 Question facet
𝑝 Number of facets
(𝑡, 𝑒, 𝑞) Tag-question edge, where t is tag node and q is question node
(𝑠𝑡, 𝑒, 𝑡𝑡) Tag-tag edge, where st is source tag node and tt is target tag node
𝐾 𝑖 K-linear projection
𝑊 𝑎𝑡𝑡

𝑒 Matrix for edge
𝑄𝑖 Q-linear projection
𝜇𝑒 Prior tensor
𝐺(𝑙) Updated embedding layer
𝑄′ The final feature of question embedding
𝑇 ′ The final feature of tag embedding
 Loss function

between user-assigned tags and corresponding questions, where 𝑀𝑡−𝑞 is
he set of question-tag relations. 𝐸𝑡−𝑡 = {(𝑠𝑡, 𝑒, 𝑡𝑡)|𝑠𝑡 ∈ 𝑉𝑡, 𝑒 ∈ 𝑀𝑡−𝑡, 𝑡𝑡 ∈
𝑡} is the set of edges between tags and tags in the tag database, where
𝑡−𝑡 is the set of tag-tag relations.
The core of our TRMFG model is to learn a retrieval function: T =

((𝑞, 𝑡); 𝑞, 𝐸𝑡,𝑞), which takes the question along with the user-assigned
ags as the input and outputs the retrieved tags for the question. By
earning the question and tag features by our model, we calculate the
imilarity score between each tag and the question, and get the tags
ith higher scores for the question as the retrieved tags.

The main notations of this work are summarized in Table 1.

. Methodology

In this section, we present Tri-Relational Multi-Faceted Graph Neu-
al Networks (TRMFG) for Automatic Question Tagging. The archi-
ecture of our model is illustrated in Fig. 3, which consists of Tri-
elational Question-Tag Graph and Tri-Relational Question-Tag
NN, which is composed of Multi-Faceted Question GNN and Tag-
ag Relations GNN. The Tri-Relational Question-Tag Graph models
he relations between parent tags and child tags, child tags and parent
ags, as well as tags and questions. Each of these relations serves the
urpose of distributing information between the corresponding nodes.
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Fig. 4. Examples of tri-relational graph structure. (a) shows that in common tri-relational graph structures, questions already have relations with user-assigned tags, while they
have bidirectional relations with unseen tags. (b) shows that in our models, we encode questions into multiple facets, while conserving their relations with the user-assigned tags.
Then we develop the Tri-Relational Question-Tag GNN for message
passing between the relations. In particular, we propose Multi-Faceted
Question GNN for tag-question relations. By encoding questions into di-
verse vectors, with each vector designed to emphasize different poten-
tial tags. This approach facilitates a more comprehensive representation
of the underlying meaning embedded within the questions. Through the
process of message passing, we get the extraction of multiple facets of
semantics for each question.

In the final stage of retrieving proper tags for questions, we employ
a scoring mechanism to evaluate tags in relation to the different facets
of questions. Individual scores are calculated for tags in comparison to
each question facet, and these scores are recorded. The highest scoring
matches are then identified based on these scores.

4.1. Tri-relational Question-Tag Graph

In our question tagging model, we construct a Tri-Relational Graph
Structure to effectively represent the three key relations in CQA web-
sites. These relations play a significant role in our CQT framework and
are crucial for extracting the hidden latent representation of questions
and tags. The first relation is the parent–child tag relation, which trans-
mits global features from parent tag nodes to child tag nodes, providing
them with shared semantic information. Conversely, the child–parent
tag relation transmits side features from child tag nodes to parent
tag nodes. Lastly, the tag-question relation establishes unidirectional
connections from tag nodes to question nodes. Through these types
of relations, questions can acquire semantics and relevant information
from user-assigned tags.

However, we do not take question-tag relations into consideration.
Since the tags in CQA websites remain static, extracting semantics
from questions to tags becomes unattainable within this framework.
It is worth noting that CQA websites lack question–question relations.
Instead, users should seek related questions by employing search mech-
anisms based on relevant tags. This enables them to discover additional
questions related to the same tags.

Additionally, we preprocess the questions and tags to obtain ques-
tion and tag embeddings. The preprocessing method is discussed in
Section 5.1. As shown in Fig. 4(a), the common tri-relational question
graph we construct in our AQT model contains bidirectional relations
between parent and child tag nodes, along with unidirectional relations
extending from tags to questions. The user-assigned tags may have
relations with unseen tags, which are in the database but not assigned
to any question.

With the objective of enabling our model to capture multiple facets
of semantics from tags, we employ the Multi-Faceted Question GNN
discussed in Section 4.2.1 to effectively encode the questions. The
Fig. 4(b) shows the tri-relational graph structure with multiple facets
of questions. Meanwhile, the tags maintain their connections with the
original questions. The multiple facets will not disturb the question-tag
graph we build.
5

4.2. Tri-relational Question-Tag GNN

After we develop the Tri-Relational Graph Structure to represent
the three key relations in CQA websites, we propose the Tri-Relational
Question-Tag GNN to learn the hidden node representation.

4.2.1. Multi-Faceted Question GNN
Questions in CQA websites may have user-assigned tags. We try to

do GNN message passing from user-assigned tags to the question, so
the question can generate more comprehensive representations from
user-assigned tags and retrieve multiple semantics. Therefore, we try to
capture the diverse facets of questions by considering the contribution
of different tags to different facets.

We utilize  = {𝑞𝑖 ∈ R𝑚}𝑘𝑖=1 from question nodes set 𝑉𝑞 to
represent the original question embedding, where 𝑘 is the number of
questions and 𝑚 is the dimension of question embedding. To capture the
diverse facets of questions, we encode the origin questions into multiple
vectors.

𝐹𝑗
𝑗=1,…,𝑝

= 𝑊𝑗 + 𝑏𝑗 ∈ R𝑚, (1)

where 𝑝 is the number of facets. 𝑊𝑗 ∈ R𝑚×𝑚 is a trainable matrix of a
linear projection. Each question feature gets a trainable bias 𝑏𝑗 ∈ R𝑚

to approach to related tags and enables the acquisition of semantics
from that particular tag. This approach ensures that a broader range of
question facets is captured and represented.

Then, for each question facet 𝐹𝑗 , we hope to acquire the semantics
from related tags. We first calculate different attention weights of each
tag-question edge (𝑡, 𝑒, 𝑞) ∈ 𝑀𝑡−𝑞 :

Att𝑖𝐹𝑗 (𝑡, 𝑒, 𝑞) = (𝐾 𝑖(𝑡)𝑊 𝑎𝑡𝑡
𝑒 𝑄𝑖(𝑞)𝑇 ) ⋅

𝜇𝑒
√

𝑚
∈ R, (2)

where 𝑡 is the source tag node and 𝑞 is the target question node, and
𝑒 is the edge from source tag node to target question node. 𝐴𝑡𝑡𝑖𝐹𝑗 (𝑡, 𝑒, 𝑞)
represents the 𝑖𝑡ℎ attention head of the edge. 𝐾 𝑖(𝑡) is a linear projection:
R𝑚 → R

𝑚
ℎ that projects tag to the key vector, where ℎ is the number of

attention heads. 𝑄𝑖(𝑞) is a linear projection that projects a question to a
query vector. The 𝑊 𝑎𝑡𝑡

𝑒 ∈ R
𝑚
ℎ × R

𝑚
ℎ is the matrix for tag-question edge

to calculate the dot product between the query and key vector. And
𝜇𝑒 ∈ R|𝑒| is a prior tensor to denote the general significance of each
tag-question relation, serving as an adaptive scaling to the attention.

Then, we concatenate all the attention heads together to evaluate
the importance of the source tags set 𝑁(𝑞):

Att𝐹𝑗 (𝑡, 𝑒, 𝑞) = Sof tmax
∀𝑡∈𝑁(𝑞)

( ∥
𝑖=1,…,ℎ

ATT𝑖
𝐹𝑗
(𝑡, 𝑒, 𝑞)) ∈ Rℎ, (3)

where ∥ represents concatenation, and ℎ is the number of heads for the
edge. When we gather all the attention from its user-assigned tag nodes
𝑁(𝑞) for each 𝑞, Sof tmax fulfills ∑

𝐴𝑡𝑡 (𝑡, 𝑒, 𝑞) = ⊮ ∈ Rℎ.
∀𝑡∈𝑁(𝑞) 𝐹𝑗
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Meanwhile, we manage to pass the message from user-assigned tag
nodes to the question node. In the tag-question edge, the message
propagation can be formulated as follows:

Msg𝑖𝐹𝑗 (𝑡, 𝑒, 𝑞) = M_Linear𝑖𝑡(𝐺
(𝑙−1)[𝑡])𝑊 𝑚𝑠𝑔

𝑒 ∈ R
𝑚
ℎ , (4)

Msg𝐹𝑗 (𝑡, 𝑒, 𝑞) = ∥
𝑖=1,…,ℎ

Msg𝑖𝐹𝑗 (𝑡, 𝑒, 𝑞) ∈ Rℎ⋅ 𝑚ℎ , (5)

where the M_Linear𝑖𝑡 is the linear projection: R𝑚 → R
𝑚
ℎ that projects

he tags into the tag-question messages, and ℎ is the number of heads
or the edge. 𝐺(𝑙−1)[𝑡] is present tag embedding layer. The 𝑊 𝑚𝑠𝑔

𝑒 ∈
𝑚
ℎ ×R

𝑚
ℎ is the matrix to incorporate the edge dependency. ∥ represents

concatenation of all the messages for the (𝑡, 𝑒, 𝑞) edge.
In our model, the updated vector of the target question embedding

in 𝐹𝑗 is calculated using the following formula:

�̃�𝐹𝑗 = ∥
𝑖=1,…,ℎ

(
∑

𝑡∈𝑁(𝑞)
Att𝑖𝐹𝑗 (𝑡, 𝑒, 𝑞) ⋅Msg𝑖𝐹𝑗 (𝑡, 𝑒, 𝑞)

)

∈ R𝑚, (6)

where the �̃�𝐹𝑗 is the update feature of 𝐹𝑗 and 𝑁(𝑞) is the set of source
tags. We concatenate all the information from all the source tag nodes.

Then we map the vectors back to the former layer to get the output
of 𝑙𝑡ℎ question layer of 𝑗𝑡ℎ facets:

𝐺(𝑙)
𝐹𝑗
[𝑞] = �̃�𝐹𝑗 + 𝐺(𝑙−1)

𝐹𝑗
[𝑞], (7)

where 𝐺(𝑙) is the updated embedding layer.
And we set 𝐿 to be the final layer of question embedding and get

the 𝑗𝑡ℎ facets of question embedding:

𝑄′
𝐹𝑗

= 𝐺(𝐿)
𝐹𝑗

[𝑞] ∈ R𝑚, (8)

where 𝑄′
𝐹𝑗

is the final feature of the 𝑗𝑡ℎ facets of question embedding.

4.2.2. Tag-tag relations GNN
In the tri-relational question-tag graph, message passing for all

tag nodes is bi-directional. Parent nodes provide global features to
their child nodes, while child nodes transmit side features to their
parent nodes. For each tag node within the question-tag graph, we
gather hidden latent representations from all the connected tag nodes,
regardless of whether they are parent nodes or child nodes. We utilize
 = {𝑡𝑖 ∈ R𝑚}𝑛𝑖=1 from tag nodes set 𝑉𝑡 to represent the original tag
embedding, where 𝑛 is the number of tags and 𝑚 is the dimension of
tag embedding.

Firstly, we aim to compute its attention vectors of concerning
tag-tag edge (𝑠𝑡, 𝑒, 𝑡𝑡) ∈ 𝑀𝑡−𝑡:

Att𝑖(𝑠𝑡, 𝑒, 𝑡𝑡) = (𝐾 𝑖(𝑠𝑡)𝑊 𝑎𝑡𝑡
𝑒 𝑄𝑖(𝑡𝑡)𝑇 ) ⋅

𝜇𝑒
√

𝑚
∈ R, (9)

here 𝑠𝑡 is the source tag node and 𝑡𝑡 is the target tag node from  𝑚.
is the edge between source tag node and target tag node. 𝐴𝑡𝑡𝑖(𝑠𝑡, 𝑒, 𝑡𝑡)

epresents the 𝑖𝑡ℎ attention head of the tag-tag edge. 𝐾 𝑖(𝑡) is the linear
rojection: R𝑚 → R

𝑚
ℎ . It projects the source tag to the key vector. And

the 𝑄𝑖(𝑞) is the linear projection that projects the target tag to query
ector of the attention mechanism. 𝑊 𝑎𝑡𝑡

𝑒 ∈ R
𝑚
ℎ × R

𝑚
ℎ is the matrix for

ag-tag edge to calculate the dot product between the query and key
ector. 𝜇𝑒 ∈ R|𝑒| is a prior tensor to denote the general significance of
ach tag-tag relation, serving as an adaptive scaling to the attention.

Then all the attention heads are concatenated for evaluating impor-
ance of the source tag.

tt(𝑠𝑡, 𝑒, 𝑡𝑡) = Sof tmax
∀𝑠𝑡∈𝑁(𝑡)

( ∥
𝑖=1,…,ℎ

Att𝑖(𝑠𝑡, 𝑒, 𝑡𝑡)) ∈ Rℎ, (10)

where ∥ represents concatenation, and ℎ is the number of heads for the
edge. When gathering all the attention from its source tag nodes 𝑁(𝑡𝑡)

∑

𝐴𝑡𝑡(𝑠𝑡, 𝑒, 𝑡𝑡) = 1 .
6

for each target tag node 𝑡𝑡, Sof tmax fulfills ∀𝑠𝑡∈𝑁(𝑡) ℎ×1 i
Meanwhile, when evaluating the importance of source tag node,
we transmit the messages to target tag node. The message passing of
tag-tag edge is:

Msg𝑖(𝑠𝑡, 𝑒, 𝑡𝑡) = M_Linear𝑖𝑠𝑡(𝐺
(𝑙−1)[𝑡])𝑊 𝑚𝑠𝑔

𝑒 ∈ R
𝑚
ℎ , (11)

Msg(𝑠𝑡, 𝑒, 𝑡𝑡) = ∥
𝑖=1,…,ℎ

Msg𝑖(𝑠𝑡, 𝑒, 𝑡𝑡) ∈ Rℎ⋅ 𝑚ℎ , (12)

here the M_Linear𝑖𝑠𝑡 is the linear: R𝑚 → R
𝑚
ℎ that projects source tag

nodes into the 𝑖𝑡ℎ messages, and 𝑊 𝑚𝑠𝑔
𝑒 ∈ R

𝑚
ℎ × R

𝑚
ℎ is the matrix to

incorporate the edge dependency. 𝐺(𝑙−1)[𝑡] is present tag embedding
layer. ∥ represents concatenation for all the messages from all the
source tag nodes.

Then, we update the feature of tag embedding by aggregating all
the source tag nodes with their attention weights.

�̃� = ∥
𝑖=1,…,ℎ

(
∑

𝑠𝑡∈𝑁(𝑡𝑡)
Att𝑖(𝑠𝑡, 𝑒, 𝑡𝑡) ⋅Msg𝑖(𝑠𝑡, 𝑒, 𝑡𝑡)

)

∈ R𝑚, (13)

where the �̃� is the update feature of  and 𝑁(𝑡𝑡) is the set of source
tags.

We map the feature back to the former layer to get the output of 𝑙𝑡ℎ
ag layer 𝐺(𝑙):
(𝑙)[𝑡] = �̃� + 𝐺(𝑙−1)[𝑡], (14)

here 𝐺(𝑙) is the updated embedding layer. Then we set 𝐿 to be the
inal layer of tag embedding.
′ = 𝐺(𝐿)[𝑡] ∈ R𝑚, (15)

here 𝑇 ′ is the final tag features. After acquiring the hidden latent
epresentations of various facets, we will employ these outputs to
redict the relations between questions and tags.

.3. Tri-relational matching loss

Due to the diverse facets of question semantics, we implement a
ean-max pooling component in our design to keep related represen-

ations close. Different semantics from different tags may be unrelated.
n cases where semantics are quite different, we hope to identify the
nique characteristics of each question. Therefore, we apply the max
ooling method to get these semantics.
′
𝑚𝑎𝑥 = MaxPooling

𝑗=1,…,𝑝
(𝑄′

𝐹𝑗
), (16)

here (𝐺(𝑙)
𝐹𝑗
[𝑞]) is the 𝑗𝑡ℎ facets of final question embedding. Max-

ooling focuses on the side semantics and helps us get the most related
emantics of questions.

However, it is important to consider that in some cases, tag se-
antics may be interconnected, given that the tags associated with

uestions are interrelated. Therefore, acquiring a comprehensive under-
tanding of the global semantics, encompassing all facets of the ques-
ions, becomes crucial. To achieve this, we employ the Mean-Pooling
ethod.
′
𝑚𝑒𝑎𝑛 = MeanPooling

𝑗=1,…,𝑝
(𝑄′

𝐹𝑗
), (17)

here (𝐺(𝑙)
𝐹𝑗
[𝑞]) is the 𝑗𝑡ℎ facets of final question embedding.

Then we combine the Max-Pooling results and Mean-Pooling results
ogether to preserve better information.
′ = ∥(𝑄′

𝑚𝑒𝑎𝑛, 𝑄
′
𝑚𝑎𝑥), (18)

here ∥ represents concatenation. The Eq. (16) shows the mean-max
ooling method to capture potential semantics.

When evaluating the loss function for the question tagging task, it
s crucial to consider that each question may be related to only a lim-

ted number of tags. Consequently, while conducting model sampling,
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it should maintain an abundant proportion of negative and positive
samples, ideally numbering one hundred or more.

We refer to the study of Hu et al. [54] to sample the negative
sets and calculate the loss. To better maximize the mutual information
between questions and their predicted tags, we try to sample the set of
negative tags from tag nodes set 𝑉𝑡 with uniform distribution. The loss
function of the tri-relational GNN 𝑡𝑟 can be defined as the following
formula:

𝑡𝑟 = −
∑

(𝑞𝑖 ,𝑡𝑗 )∈𝐸
E{𝑡𝑘}∼ {𝑝(𝑡)}𝑙𝑜𝑔

𝑒𝑓𝑠(𝑞𝑖 ,𝑡𝑗 )

𝑒𝑓𝑠(𝑞𝑖 ,𝑡𝑗 ) +
∑

𝑡𝑘
𝑒𝑓𝑠(𝑞𝑖 ,𝑡𝑘)

, (19)

where 𝑓𝑠(𝑞𝑖, 𝑡𝑗 ) computes the dot product between question 𝑞𝑖 ∈ 𝑄′ and
tag 𝑡𝑗 ∈ 𝑇 ′. The E{𝑡𝑘}∼ {𝑝(𝑡)} samples a set of negative tags vertices from
tag nodes set 𝑉𝑡 with uniform distribution.

Also, we use L2 normalization for the Tri-Relational GNN. When
calculating the L2 loss 𝐿2, we set the weight 𝛹𝐿2 to be 10−4. Then,
the tri-relational matching loss for our TRMFG model is:

𝑡𝑟𝑔 = 𝑡𝑟 + 𝛹𝐿2𝐿2 (20)

4.4. Multiple matching component

During the TRMFG model evaluation process, we employ data ob-
tained from CQA websites. It is worth noting that each question is
treated as an independent entity since there is no information propaga-
tion between questions in our proposed model. It enables the model to
retrieve related tags for a new input question without any redundant
interactions with other questions, thereby enabling real-time inference.

Considering the diverse facets of question semantics, the challenge
lies in effectively retrieving appropriate tags that suit each question. To
address this, we utilize a dot product score to measure the similarity
between tags and each semantic facet of the question. This enables us
to match the most suitable tags to the questions. The dot product score
function is supposed to be:

𝑠(𝑞, 𝑡) = 𝑓𝑠(𝑞, 𝑡) (21)

Then we use the function to calculate all the scores for each question
and tag:

S𝑗 = {𝑠(𝑞, 𝑡)|𝑡 ∈ 𝑇 ′, 𝑞 ∈ 𝑄′
𝐹𝑗
}, (22)

where S𝑗 is the scores set of the 𝑗𝑡ℎ facets of questions and tags.
Finally, we compare all the scores of questions in each facet and

tags, then reserve the tags with the highest scores for each question:

T = {𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(S1,… , S𝑝)}, (23)

where 𝑝 is the number of facets. The T is the set of predicted tags. We
finally retrieve the proper tags for each question.

5. Experimental results

To investigate the effectiveness of our proposed method, we conduct
extensive experiments on three datasets.

5.1. Experimental setup

Datasets: We evaluate our model on three datasets: Zhihu, Stack
Overflow, and Zhuanzhi. The Stack Overflow dataset is created based
on a public dataset on StackLite.3 Since the original dataset lacks
tag-tag relations, we filter the tags and reconstruct the dataset.

The Zhihu dataset is compiled and derived from Zhihu website,
encompassing a collection of published questions along with their
related tags. The questions and tags cover almost all fields in our daily
life. We have obtained data from the website before February 2022. To

3 https://www.kaggle.com/datasets/stackoverflow/stacklite
7

Table 2
Statistics of three datasets.

Dataset # Questions # Tags # Q-T # T-T

Zhihu 30 102 73 285 108 258 133 522
Stack overflow 8141 10 976 31 865 18 761
Zhuanzhi 4987 5603 10 466 6335

create this dataset, the RoBERTa-base model4 is utilized to generate
embeddings for both the questions and tags. The Stack Overflow
dataset contains question IDs and question-tag relations. We use GloVe5

to embed the tags. Then we build the tag-tag relations based on the
embedding similarity and consider the relations with scores above the
threshold. The Zhuanzhi dataset closely resembles the Zhihu dataset.
We collect the published questions and their corresponding tags from
the Zhuanzhi website before February 2022. Embeddings are generated
for both the questions and tags in a manner similar to the Zhihu dataset.

Polysemy, homonymy and misspelled words within question texts
have the potential to introduce disruptions in comprehending the se-
mantics of the questions. To relieve these problems, we adopt RoBERTa
[55] pretrained on large-scale Internet corpus to encode questions,
which facilitates the robust comprehension of polysemy, homonymy,
and misspelled words in a context-aware manner. The RoBERTa model
is to comprehend the overall semantics of questions, while our pro-
posed method is designed to extract fine-grained semantics from the
tags associated with these questions. Focusing on the automatic ques-
tion tagging task in this paper, we do not include the typo-fixing
procedure in our experiments for all compared methods.

The statistics of the adopted datasets are summarized in Table 2.
Setup: We divide the question-tag relations into three sets: training,

validation, and testing. For each dataset, 50% of the tag nodes have
been allocated as seen tags, while the remaining 50% are categorized
as unseen tags. Then half of the question-tag relations associated with
seen tags are combined with all those originating from the unseen tags
to form the test set. Following this partitioning, 10% of the remaining
question-tag relations associated with the seen tags are pointed as the
validation set, serving the crucial purpose of fine-tuning our model.
Subsequently, the remaining question-tag relations are allocated to the
training set.

In our experimental setup, we ensure that the three sets: training,
validation, and testing maintain complete independence from each
other. This partitioning strategy is crucial. It enables us to accurately
assess the model’s capability to proficiently address unseen tags within
the context of CQA websites.

Metrics: For retrieval tasks, researchers usually adopt two met-
ics [56]: Recall score and Normalized Discounted Cumulative Gain
NDCG) score. We also adopt Precision score to evaluate the TRMFG
odel. In our automatic question tagging task, the Precision score

ssesses the proportion of retrieved tags that are successfully predicted
ut of all the retrieved tags. Recall score assesses the proportion of
etrieved tags that are successfully predicted out of all the actual
elevant tags. Normalized Discounted Cumulative Gain (NDCG) score
ssesses the quality of the retrieved tags by considering the relative
ositions of the true relevant tags in the retrieved tag list. By calculating
he Discounted cumulative gain (DCG) and Ideal DCG (IDCG) of the
etrieved tags list, we can get the NDCG scores. By assessing the per-
ormance of the compared models using Precision, Recall, and NDCG
cores, we can ascertain the overall effectiveness of the automatic
uestion-tagging task.

4 https://huggingface.co/roberta-base
5 https://nlp.stanford.edu/projects/glove/

https://www.kaggle.com/datasets/stackoverflow/stacklite
https://huggingface.co/roberta-base
https://nlp.stanford.edu/projects/glove/
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Table 3
The question tagging results on three datasets. The bold indicates the best scores.

Datasets RESULT GCN GAT APPNP RGCN HGT HERE PROFIT TRMFG (ours)

Zhihu

PRECISION@5 0.005 0.002 0.043 0.008 0.068 0.025 0.011 0.092
PRECISION@10 0.004 0.002 0.037 0.008 0.049 0.018 0.008 0.064
PRECISION@15 0.004 0.003 0.032 0.007 0.040 0.015 0.007 0.050
RECALL@5 0.012 0.002 0.082 0.023 0.137 0.086 0.032 0.173
RECALL@10 0.016 0.004 0.138 0.041 0.193 0.131 0.051 0.239
RECALL@15 0.022 0.009 0.182 0.060 0.232 0.164 0.068 0.281
NDCG@5 0.014 0.002 0.069 0.018 0.122 0.074 0.029 0.158
NDCG@10 0.016 0.003 0.092 0.026 0.146 0.093 0.037 0.187
NDCG@15 0.018 0.004 0.108 0.032 0.159 0.105 0.043 0.202

Stack overflow

PRECISION@5 0.039 0.042 0.043 0.006 0.018 0.028 0.038 0.045
PRECISION@10 0.024 0.026 0.025 0.005 0.011 0.019 0.024 0.027
PRECISION@15 0.018 0.019 0.019 0.004 0.009 0.015 0.018 0.020
RECALL@5 0.069 0.074 0.072 0.011 0.076 0.050 0.071 0.083
RECALL@10 0.084 0.090 0.082 0.015 0.096 0.068 0.092 0.104
RECALL@15 0.091 0.101 0.092 0.017 0.111 0.079 0.104 0.119
NDCG@5 0.066 0.077 0.080 0.011 0.071 0.049 0.070 0.088
NDCG@10 0.074 0.084 0.084 0.013 0.078 0.056 0.080 0.094
NDCG@15 0.076 0.088 0.088 0.013 0.084 0.061 0.085 0.100

Zhuanzhi

PRECISION@5 0.002 0.010 0.011 0.008 0.008 0.013 0.010 0.015
PRECISION@10 0.001 0.006 0.010 0.008 0.009 0.013 0.009 0.017
PRECISION@15 0.006 0.004 0.011 0.009 0.010 0.012 0.008 0.013
RECALL@5 0.001 0.036 0.038 0.018 0.011 0.034 0.003 0.043
RECALL@10 0.004 0.041 0.049 0.033 0.027 0.045 0.034 0.072
RECALL@15 0.005 0.054 0.062 0.045 0.039 0.079 0.075 0.083
NDCG@5 0.001 0.027 0.036 0.013 0.009 0.022 0.003 0.042
NDCG@10 0.001 0.029 0.037 0.019 0.012 0.029 0.014 0.063
NDCG@15 0.002 0.033 0.039 0.023 0.017 0.039 0.027 0.072
5.2. Implementation details

We randomly hold 10% of the training set to form the validation
set. By referring to the hyperparameters in original papers of baselines
and utilizing grid-search, we cross-validate the hyperparameters of all
experimented methods. In the question tagging task, the three datasets
comprise thousands of question and tag nodes organized within a
heterogeneous graph. This characteristic makes the data large-scale,
considering the significant number of interconnected nodes and their
complex relationships. We employ Adam optimizer as our choice of
optimization algorithm while training the model, and the learning rate
was set to 2e−3. Additionally, we utilized a gamma value of 0.99 in
he optimization process. For all the datasets, we set the batch size as
000.

For the parameters in the model, we set the layer number of TRMFG
s 2, and the facets number as 4. The head number of edges is set to 4.
he output embedding dimension is consistent with the corresponding
riginal embedding dimension.

Our experiments are conducted on the Linux operating system:
buntu 20.04.1 OS. We employ the NVIDIA RTX 3090 for training our
odel and the PyTorch framework for code development. Furthermore,
e utilize the Conda environment management system to execute our

odes.
Our data6 and code7 are publicly available.

.3. Baselines

We select 7 state-of-the-art methods for automatic question tagging
s our baselines:

1. GCN [41] is a deep convolutional network designed for graph-
structured data. It is often used for node classification and link
prediction tasks.

6 https://anonymous.4open.science/r/question-tagging-6D63/data/
7 https://anonymous.4open.science/r/question-tagging-6D63/
8

2. GAT [45] applies attention function to GCN. It allocates differ-
ent weights to each neighbor node, then the more significant
neighbor node can be distinguished.

3. APPNP [57] associates PageRank with GCN. Referring to the
node propagation mode of PageRank, an improved adjacent
feature propagation mode is proposed.

4. RGCN [58] is a simple attempt of GCN on heterogeneous graph.
It aims at solving problems on heterogeneous graphs that have
heterogeneous nodes.

5. HGT [17] makes full use of the attribute information of the
heterogeneous graph. It comes up with the idea of sharing the
parameters for better generalization.

6. HERE [19] is a graph-guided topic ranking model. It tags ques-
tions in CQA websites.

7. PROFIT [18] is an end-to-end interactive embedding model to
tag the questions. It learns the embedding of questions and tags
by projecting them into the same space.

Among the baseline methods, GCN, GAT, and APPNP are isomorphic
graph networks, while RGCN and HGT are heterogeneous graph mod-
els. HERE and PROFIT are question tagging methods in the real world.
These GNN models focus on different relations of questions and tags to
capture the hidden latent representation.

5.4. Results and discussion

We conduct experiments to investigate the effectiveness of our
TRMFG model. For Precision, Recall, and NDCG scores, we set the
number of retrieved tags to 5, 10, and 15 to identify the model’s
performance in retrieving tags and explore potential improvements
associated with an increased number of retrieved tags. The results of
all compared methods on three datasets are presented in Table 3.

From Table 3, we can get the following observations:

1. The graph neural networks perform poorly. Although they make
use of different relations in CQA websites, they cannot capture

or cannot capture semantics from user-assigned tags well.

https://anonymous.4open.science/r/question-tagging-6D63/data/
https://anonymous.4open.science/r/question-tagging-6D63/
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Fig. 5. Crucial difference diagram of the Nemenyi test for Precision and Recall on three datasets and three numbers of retrieved tags.
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2. Our proposed TRMFG model outperforms all baselines in the
metrics. Compared with second-best score, our model achieves
increase of 35.29%, 30.61%, 25.00%, 26.28%, 23.83%, 21.12%,
29.51%, 28.08%, 27.04% of PRECISION@5, PRECISION@10,
PRECISION@15, RECALL@5, RECALL@10, RECALL@15,
NDCG@5, NDCG@10, NDCG@15 on the Zhihu dataset, 4.65%,
9.21%, 8.33%, 7.21%, 10.00%, 11.90%, 13.64% on the Stack
Overflow dataset and 15.38%, 13.16%, 60.00%, 5.06%, 16.67%,
70.27%, 84.62% on the Zhuanzhi dataset.

3. Compared with HERE, the-state-of-the-art method, our model
achieves increases of 268.00%, 255.56%, 101.16%, 82.44%,
71.34%, 113.51%, 101.08%, 92.38% of PRECISION@5, PRE-
CISION@10, PRECISION@15, RECALL@5, RECALL@10, RE-
CALL@15, NDCG@5, NDCG@10, NDCG@15 on the Zhihu datase
60.71%, 42.11%, 33.33%, 66.00%, 52.94%, 50.63%, 79.59%,
67.86%, 63.93% on the Stack Overflow dataset and 15.38%,
30.77%, 8.33%, 26.47%, 60.00%, 5.06%, 90.91%, 117.24%,
84.62% on the Zhuanzhi dataset. The HERE model does not take
child–parent tag relations into consideration, and it also does not
acquire multiple semantics from user-assigned tags for questions.

4. Compared with PROFIT, the other the-state-of-the-art method,
our model achieves increases of 736.36%, 700.00%, 614.29%,
440.63%, 368.62%, 313.24%, 444.83%, 405.41%, 369.77% of
PRECISION@5, PRECISION@10, PRECISION@15, RECALL@5,
RECALL@10, RECALL@15, NDCG@5, NDCG@10, NDCG@15
on the Zhihu dataset, 18.42%, 12.50%, 11.11%, 16.90%, 13.04%,
14.42%, 25.71%, 17.50%, 17.65% on the Stack Overflow dataset
and 50.00%, 88.89%, 62.5%, 1333.33%, 111.76%, 10.67%,
1300.00%, 350.00%, 166.67% on the Zhuanzhi dataset. The
PROFIT model focuses on parent–child relations more than
child–parent tag relations, while it also does not acquire multiple
semantics from user-assigned tags for questions.

ur model introduces a novel graph network aimed at enhancing
eature learning. Within this framework, the Multi-Faceted Question
NN component enables the extraction of hidden latent representa-

ions from related tag nodes for selected question nodes. Furthermore,
ur approach introduces an innovative AQT method designed to im-
rove the question-tagging method and provide valuable contributions
o CQA websites. In contrast to the baseline models of GNN, our
ethod demonstrates superior proficiency in learning node features.
dditionally, we make full use of relations present in CQA websites,
istinguishing our model from existing state-of-the-art models.

To verify whether our TRMFG model is significantly better than
ther methods, we adopt the Friedman test and Nemenyi test [59] to
urther compare the performance of TRMFG with the baselines. We
erform the Friedman test at the 0.05 significance level under the null
ypothesis which states that the performance of all algorithms is the
ame on all datasets and all metrics. We regard that the average ranks
f all algorithms are equivalent.

The average ranks of TRMFG and baselines when using different
9

valuation metrics are summarized in Fig. 5. We can see that the null
hypothesis is rejected on these two evaluation metrics. We also note
that TRMFG performs better than baselines since the lower rank value
is better. We also perform the Nemenyi test, which states that the
performance levels of two algorithms are different if the corresponding
average ranks differ by at least one critical difference (CD). Fig. 5
provides the CD diagrams, where the average rank of each algorithm
is marked along the axis (lower ranks to the right). We observe that
our TRMFG model achieves a comparable performance against APPNP,
HGT, and HERE, and outperforms PROFIT, GAT, RGCN, and GCN.

5.5. Ablation experiments

In this section, we conduct ablation experiments to assess the effec-
tiveness of the two important components in our model: Multi-Faceted
Question GNN and Tri-Relational Question-Tag Graph. We show that
removing any component from the model leads to a degradation in
performance.

We compare our model with four variations:

• w/o Multi-Faceted The TRMFG model without the Multi-Faceted
Question GNN.

• w/o Q-T The TRMFG model without Tag-Question Relations.
• w/o C-P The TRMFG model without Child–Parent Tag Relations.
• w/o P-C The TRMFG model without Parent–Child Tag Relations.

The results of these variations are presented in Table 4, providing
vidence that the three relations within TRMFG are indeed functional.
he impact of different relations on the performance is evident from
ur experiments. With no tag-question relations in the model, it can
e regarded as a common isomorphic graph network and has poor
erformance. Upon removing the parent–child tag relations from the
odel, a notable decrease in performance is observed. What is more,

he child–parent relations yield further enhancement in results due to
he frequent usage of child tags in CQA contexts. Despite these improve-
ents, the performance of them still falls short of the Tri-Relational
NN benchmark. Also, without the multiple facets, the performance is
lso poor. The results of the ablation experiments yield the following
nsights:

• Multi-Faceted Question GNN Multiple facets Question GNN
plays a crucial role in enhancing the accuracy and overall effec-
tiveness of our model in the question tagging task. By capturing
the multiple facets of questions, it enables robust question-tag
matching.

• Tri-Relational Question-Tag Graph The performance highlights
the crucial role played by Tri-Relational Question-Tag Graph in
capturing the relations between questions and tags. It leads to
improved accuracy in addressing the question tagging challenge
in CQA websites.
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Table 4
The question tagging results w/o Multi-Faceted Question GNN and Three Relations. The bold indicates the best scores.

Dataset Results w/o Multi-Faceted w/o T-Q w/o C-P w/o P-C TRMFG (ours)

Zhihu

PRECISON@5 0.068 0.003 0.077 0.080 0.092
PRECISION@10 0.049 0.002 0.052 0.051 0.064
PRECISION@15 0.040 0.003 0.044 0.041 0.050
RECALL@5 0.137 0.002 0.156 0.166 0.173
RECALL@10 0.193 0.004 0.219 0.227 0.239
RECALL@15 0.232 0.009 0.259 0.268 0.281
NDCG@5 0.122 0.002 0.141 0.152 0.158
NDCG@10 0.144 0.003 0.168 0.178 0.187
NDCG@15 0.159 0.004 0.182 0.193 0.202

Stack overflow

PRECISON@5 0.018 0.043 0.040 0.038 0.045
PRECISION@10 0.011 0.026 0.022 0.020 0.027
PRECISION@15 0.009 0.019 0.016 0.017 0.020
RECALL@5 0.076 0.074 0.043 0.050 0.083
RECALL@10 0.096 0.090 0.056 0.066 0.104
RECALL@15 0.111 0.101 0.067 0.076 0.119
NDCG@5 0.071 0.077 0.042 0.048 0.088
NDCG@10 0.078 0.084 0.049 0.056 0.094
NDCG@15 0.084 0.088 0.052 0.060 0.100

Zhuanzhi

PRECISON@5 0.010 0.010 0.009 0.010 0.015
PRECISION@10 0.009 0.008 0.008 0.010 0.017
PRECISION@15 0.007 0.004 0.007 0.008 0.013
RECALL@5 0.011 0.036 0.030 0.043 0.043
RECALL@10 0.027 0.041 0.041 0.055 0.072
RECALL@15 0.039 0.054 0.047 0.061 0.083
NDCG@5 0.009 0.027 0.021 0.025 0.042
NDCG@10 0.012 0.029 0.025 0.030 0.063
NDCG@15 0.017 0.033 0.027 0.032 0.072
Table 5
Statistics of Runtime.
Dataset GCN GAT APPNP RGCN HGT HERE PROFIT TRMFG (ours)

Zhihu 6.01 s 6.46 s 6.03 s 6.17 s 6.65 s 7.49 s 6.77 s 14.22 s
Stack overflow 0.87 s 1.08 s 0.81 s 0.92 s 1.31 s 1.30 s 1.14 s 2.75 s
Zhuanzhi 0.29 s 0.33 s 0.28 s 0.30 s 0.39 s 0.35 s 0.36 s 1.28 s
Table 6
Statistics of parameters.
Model GCN GAT APPNP RGCN HGT HERE PROFIT TRMFG (ours)

Params 1.68M 1.69M 1.12M 3.38M 12.39M 66.60M 8.44M 14.66M
Table 7
Time complexity of GAT, HGT, and TRMFG.
Model GAT HGT TRMFG (ours)

Complexity O((𝑞 + 𝑡)𝑑2 + 𝑡𝑒𝑑) O((𝑞 + 𝑡)(𝑑2ℎ + 𝑒𝑑)) O((𝑝𝑞 + 𝑡)(𝑑2ℎ + 𝑒𝑑))
5.6. Analysis of runtime and scalability

We conduct further investigations on the runtime and scalability of
TRMFG to analyze the cost implications associated with our model.

Runtime We conduct experiments on the testing set to determine
the average runtime of both baseline models and our model TRMFG,
with the objective of evaluating the cost implications.

The results of the runtime in Table 5 provide the following insights:

• During the time cost assessment, our TRMFG model demonstrates
longer processing time compared to the baseline models across
all three datasets. This can be attributed to the inherent complex-
ity of our model, which incorporates multiple facets, while the
baseline models feature one facet.

• The time required for testing is related to the number of tags. Our
evaluation process requires the computation of scores for each tag
in response to a given question and identifies the most optimal
tags.

Scalability We also investigate the number of parameters of our
odel and baselines.
10
The analysis of the parameters presented in Table 6 provides the
following insights:

• Our model TRMFG exhibits a higher degree of complexity when
compared to the GNN baselines, as it boasts a larger parameter
count than the majority of these baseline models. However, it is
important to note that the overall parameter count remains within
reasonable limits.

• Compared with the state-of-the-art model HERE, our model fea-
tures a reduced parameter count. This observation indicates that
our model offers enhancements and is suitable for practical appli-
cations.

We analyze the time complexity of our TRMFG model. We assume
that 𝑡 is the number of tag nodes and 𝑞 is the number of question nodes.
The dimension of input and output vectors is 𝑑. The average number of
neighbors is 𝑒 and the number of attention heads is ℎ. For our TRMFG
model, we assume the number of facets is 𝑝. We analyze the time
complexity of our TRMFG model compared to GAT and HGT, which are
graph neural networks with attention mechanisms (see Table 7). Thus,
the time complexity of TRMFG is on the same order of magnitude as
the time complexity of the baselines, which is acceptable.
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Fig. 6. Loss vs. NDCG@5 of our TRMFG model.
Fig. 7. Analysis of Multiple Facets.
5.7. Analysis of convergence

We investigate the convergence of our TRMFG model by evaluating
the loss value and the NDCG@5 scores with increasing epochs.

As shown in Fig. 6(a), the loss of the Zhihu dataset decreases a lot in
the first 10 epochs, followed by a steady decline until reaching conver-
gence. Concurrently, the NDCG@5 demonstrates a consistent upward
trend. The loss of the Stack Overflow dataset decreases a lot in the first
50 epoch while the NDCG@5 displays continuous enhancement. These
results indicate that our TRMFG model exhibits a good convergence
property.

5.8. Analysis of multiple facets

We conduct further investigations to assess the impact of varying
the number of facets on our model. The results on the Zhihu dataset
are presented in Fig. 7.

NDCG@5 We first analyze the quality of the predicted tag. It
is worth noting that the model’s performance of NDCG@5 improves
significantly when utilizing four facets compared to other configura-
tions. The results show a gradual improvement from one facet to four
facets. However, beyond the four facets, there is a slight reduction
in performance. These results suggest that the number of facets plays
an important role in enhancing the model’s performance, while four
facets are adequate for the question tagging task. The application of our
model in CQA websites, where relations can be complex and contain
considerable noise, demonstrates the benefits of including multiple
facets in the analysis.

Retrieved tags per question In addition to achieving accurate
esults, we also investigate the correlation between the number of facets
11

nd the number of retrieved tags for each question. To conduct this
analysis, we employ a score threshold to filter the scores between tags
and questions, focusing on the more relevant tags. It becomes evident
that the TRMFG model with a higher number of facets exhibits a consis-
tent trend of retrieving more tags for each question. This observation
highlights the significance of including multiple facets in the TRMFG
model, which leads to a more comprehensive understanding of the
semantics of questions.

Consequently, the proposed model exhibits the capability to gener-
ate a wider array of relevant tags, leading to an improved overall re-
trieval performance. By appropriately increasing the number of facets,
the questions can obtain more relevant and accurate tags, thereby
positively impacting the question tagging task.

5.9. Case study of tri-relational question-tag graph

We select the results from our model TRMFG and the existing
question tagging model HERE to demonstrate the necessity of relations
in the question tagging task.

From the results in Fig. 8, we have the following observations:

• In the first example, the presence of the seen tag ‘Movie’ con-
tributes to the accurate tagging of the question with ‘Movie Com-
mentary’, ‘Movie Recommendation’. With the semantic ‘young’
in the question, the true tag ‘Youth Movie’ is also retrieved for
the question. Although other retrieved tags like ‘Japanese drama’
and ‘Korean Drama’ are not the ground truth, they are reasonable
for users. However, the HERE model, which only focuses on tag
relations from parent nodes to child nodes, produces inappropri-
ate tags like ‘Drama’. What is more, completely unrelated tag
like ‘Comprehensive and Progressive Trans Pacific Partnership
Agreement’ is retrieved by the HERE model. It may be attributed

to other retrieved tags ‘American Drama’ and ‘Korean Drama’.
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Fig. 8. Case Study of Tri-Relational Question-Tag Graph.
• In the second example, even though no seen tag is available, the
semantic contexts of the question enable the TRMFG model to
correctly identify and assign the tags ‘Canon’ and ‘Canon Camera’.
On the oppose, the HERE model also associates some parent nodes
of the ground truth such as ‘Numerical Code’, to tag the question,
which is not contextually relevant to the question.

• In both examples, the TRMFG model performs well with or with-
out user-assigned tags. While the HERE model has possible inter-
ference from unimportant information.

With the tri-relational question-tag graph, our model can focus on
both relations and semantic context to provide more accurate and
contextually appropriate tags compared to the HERE model.

5.10. Qualitative results

We conduct a visualization analysis of our models and some base-
lines to demonstrate the effectiveness of our model. Specifically, we
select three questions and their tags from the Zhihu dataset. To conduct
a comparative evaluation, we include four baseline models alongside
our TRMFG model. The selected baselines comprise the following:

1. GCN - chosen for its isomorphic graph network characteristics.
2. APPNP - due to its improved adjacent feature propagation capa-

bilities.
3. HGT - as it is a heterogeneous graph neural network.
4. HERE - as it is an existing question-tagging model.

In Table 8, the experimental results of our model are more accurate,
with the ground truth tags not only retrieved but have high priority,
while other baselines cannot retrieve tags exactly. We have some
observations of the qualitative results according to Table 8:

• For all the questions in the table, the isomorphic graph network
GCN and APPNP fail to retrieve the ground truth tags. It indicates
that focusing on original question semantics only is not enough
for automatic question tagging.

• It is worth noting that in certain cases, such as Questions 1
and 2, the HGT model might perform as well as our TRMFG
12

model because it also takes relations from tags to questions into
consideration. However, it still struggles to focus on the most
significant semantics. In Question 3, other tags may have higher
priority to the ground truth in HGT model.

• The HERE model shows better results by being able to retrieve
the ground truth tags, while these tags are mostly parent tags, as
seen in Question 1 and Question 2. This could be attributed to the
HERE model’s focus on relations from parent tags to child tags.

Overall, the TRMFG demonstrates better performance, verifying the
effectiveness of our proposed model.

5.11. Analysis of question routing

AQT is anticipated to augment the effectiveness of CQA-related
tasks, such as question routing. To further investigate the effectiveness
of our proposed model, we present visualization results of question
routing on Zhihu dataset.

We have some observations of the qualitative results according to
Fig. 9:

• The initial question ‘Which delicacy in the novel do you always
remember?’ retrieves two tags: ‘Novel’ and ‘Delicacy’.

• For users interested in the retrieved tag ‘Novel’, the CQA website
recommends the question ‘Which novel has a brilliant ending?’,
which retrieves another tag ‘Literature’. Then another question
‘Who is your favorite writer?’ is recommended to users interested
in tag ‘Literature’.

• Similarly, for users interested in the retrieved tag ‘Delicacy’, the
CQA website recommends the question ‘What delicacy did you
accidentally make?’, which retrieves another tag ‘Cooking’. Then
another question ‘What clever cooking techniques do you have?’
will be recommended to users interested in tag ‘Cooking’.

As illustrated in Fig. 9, we employ our model to retrieve relevant tags
for the input questions. Subsequently, CQA websites can recommend
questions related to the common tags to users.

5.12. Analysis of polysemy and homonymy

We have discussed the polysemy and homonymy problems in Sec-
tion 5.1 Datasets. Specifically, we have tried to deal with the problem
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Table 8
Visualization of the model results. The ground truth tags are bold if they appear in the model results.

Question TRMFG GCN APPNP HGT HERE Ground truth

What are some
precautions
when accepting
a phone
interview?

Interview Junior college
students

Contact Interview Interview Interview

Telephone Information
Technology (IT)

Head-hunting
company

Interview Skills Resume delivery

Consulting
service

Postgraduate
recommendation

Headhunting Contact Post

Website Subject Interview Skills Internship Contact

Language Signal
communication

Recruitment
Skills

Workplace Telephone

What are some
Podcast
programs worth
recommending?

Podcast
program

Movies Video Recom-
mendations

Podcast
program

Podcast
program

Podcast program

Talk Show Information
Technology (IT)

Broadcast
production

Internet Selection and
Beauty (Podcast)

Study Ying Ku Radio program Social networks The Way of
Taste (Podcast)

(Hi) story
(Podcast)

Subject MTV Music variety
shows

Popular
communication
(Podcast)

IOS Podcast app Life, Art,
Culture, and
Activities

Radio Programs Lifestyle Crazy casting
circle (Podcast)

Which
bookstores in
Guangzhou are
more distinctive?

Bookstore Taobao online
merchant

Beijing,
Shanghai,
Guangzhou

Life Life Bookstore

Life Double 11
Shopping
Carnival

Beijing,
Shanghai,
Guangzhou,
Shenzhen

Bookstore Shenzhen City

Page Layout Beijing Provincial
capital

Chinese cities Life attitude

Read Living abroad Chain bookstore Consumption Guangzhou Life

Café Buying Books Bookstore
recommendation

Book Shenzhen Life
Fig. 9. Example of question routing. For the original question, AQT models retrieve tags to describe questions. Subsequently, questions assigned with the same tags are recommended
to users in CQA websites.
13
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Fig. 10. Example of dealing with polysemy problem.
Fig. 11. Example of correcting closed questions.
of homonymy through the utilization of RoBERTa model. Moreover,
to investigate the effectiveness of our TRMFG model in handling the
polysemy problem of tags, we analyze the results on Zhihu dataset.

We have some observations of the qualitative results according to
Fig. 10:

• In the first example, the words ‘Steve Jobs’ and the user-assigned
tag ‘Silicon Valley’ exhibit associations with Apple Company.
Therefore, the expected tag ‘Apple (company)’ receives a signifi-
cant score of 122.27, surpassing that of the tag ‘Apple (fruit)’.

• In the second example, the phrase ‘artificial intelligence’ in the
question and the user-assigned tag ‘Machine Learning’ enable the
model to learn that the question focuses on data coding. Then it
assigns a higher score to the tag ‘Python (Code)’.

• In the third example, the user-assigned tag ‘Operating System’
aids the model in comprehending the question’s semantics, lead-
ing to the retrieval of the tag ‘Windows (Operating System)’.

Therefore, our model demonstrates a capacity to distinguish the poly-
semy of tags. The experimental results that tags with accurate meanings
receive higher scores from our TRMFG model emphasize its capability
14
to address the challenges of polysemy and homonymy within the
domain of AQT.

5.13. Analysis of closed questions

In CQA websites, some questions may have incorrect assigned tags
and be closed due to the lack of visibility. Thus, we select examples
from results on the Zhihu dataset to validate the ability of our TRMFG
model to correct such instances by retrieving proper tags for questions
that initially have incorrect user-assigned tags.

We have some observations of the qualitative results according to
Fig. 11:

• In the first example, the wrong tag ‘Novel’ misinterprets the
semantics of the question. On the oppose, our model retrieves
the proper tags ‘World History’ and ‘Historical Figure’, which
accurately describe the question.

• In the second example, the question centers around geographi-
cal knowledge, and the tags ‘Geography’ and ‘Natural Science’
retrieved by our model are precise.
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• In the third example, the wrong tag focuses solely on the word
‘exchange’ in the question. However, our model TRMFG can learn
the context of the question and retrieve the correct tags ‘Culture’
and ‘Cultural Exchange’ for the question.

hese experimental results indicate that our model can incorporate tag-
uestion relations and retrieve relevant tags for questions, even in cases
here the questions initially have incorrect user-assigned tags.

. Limitation and threats to validity

Although our TRMFG approach models the questions, tags, and re-
ations as well as learns informative node features for question tagging
n CQA websites, it still has some limitations: (1) We do not consider
he concept of continual learning within the TRMFG framework. In
nstances where a substantial volume of new tags is introduced into the
atabase, it may undertake the retraining of the model to update the
eatures associated with tag nodes. (2) Furthermore, our model does
ot account for open-domain challenges. In situations where certain
QA websites are constrained in users’ ability to freely create new
ags, we have conducted experiments focusing exclusively on existing
ags within the dataset we have collected. We will try to work on
pen-domain challenges to deal with missing tag information in future
ork.

. Conclusion

In this paper, we propose the Tri-Relational Multi-Faceted Graph
eural Networks for Question Tagging (TRMFG) approach, facilitating

he automatic question tagging task in CQA websites. We design the
ri-Relational Question-Tag Graph to model the questions and tags in
QA websites. Also, we propose Tri-Relational Question-Tag GNN to
andle diverse types of relations between questions and tags, allowing
or the capture of hidden latent representation from complex relations.
pecially, we design Multi-Faceted Question GNN to capture seman-
ics from user-assigned tags for questions. By encoding questions into
ultiple facets of vectors, our model provides questions with a higher

ikelihood of extracting semantics from user-assigned tags, leading to
mproved performance in the automatic question tagging task. Through
xtensive experiments, we demonstrate that our TRMFG model can
utomatically tag questions in CQA websites with improved accuracy,
alidating the effectiveness and utility of our proposed approach in
ddressing the automatic question tagging challenge in CQA websites.
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