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Abstract It is a significant research direction for highly complex musculoskeletal robots that how to

develop the ability of motion learning and generalization. The cooperations of multiple brain regions are

crucial to improving motion performance. Inspired by the neural mechanisms of structures, functions,

and interconnections of basal ganglia and cerebellum, a biologically inspired integration model for

motor learning of musculoskeletal robots is proposed. Based on the neural characteristics of the basal

ganglia, the basal ganglia actor network, which mainly simulates the dorsal striatum, outputs motion

commands, and the basal ganglia critic network, which simulates the ventral striatum, estimates action-

state values. Their network parameters are updated using the soft actor-critic method. Based on

the sensorimotor prediction mechanism of the cerebellum, the cerebellum network evaluates the state

feature extraction quality of the basal ganglia actor network and then updates the weights of its

feature layer. This learning method is proven to converge to the optimal policy. Furthermore, drawing

on the mechanism of dopaminergic dynamic regulation in the basal ganglia, the adaptive adjustment of

target entropy and the dopaminergic experience replay are proposed to further improve the integration

model, which contributes to the exploration-exploitation trade-off of motor learning. The bio-inspired

integration model is validated on a musculoskeletal system. Experimental results indicate that this

model can effectively control the musculoskeletal robot to accomplish the motion task from random

starting locations to random target positions with high precision and robustness.
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1 Introduction

Robots that can achieve dexterous, flexible and high-precision operations have extensive
application requirements in modern industrial systems[1–4]. Accomplishing general and diverse
tasks is both a challenge and an opportunity for robotics research. In addition to traditional
joint-link rigid robots, musculoskeletal robots that simulate biological characteristics have been
focused on improving robot operating performance in recent years[5–7]. Musculoskeletal robots
are tendon-driven systems modeled after the arrangement of bones and muscles of organisms.
The robots are driven by muscle units, and common driving methods include motor drive
and pneumatic drive[8]. There exist many typical musculoskeletal robot platforms, such as
ECCEROBOT[9], Kengoro[10], Pneuborn[11], ZAR5[12], lower-limb robot with multifilament
muscles[8], robot hand with SCP actuators[13], etc.

Musculoskeletal robots have some irreplaceable advantages. Firstly, with a variety of dif-
ferent joint rotations and muscle coordination, the musculoskeletal robots are able to complete
operating tasks flexibly and smoothly. Secondly, due to the inherent feedback from skele-
tal models to muscle models, the musculoskeletal systems have anti-interference capability[14].
Therefore, musculoskeletal robots are given high expectations to achieve highly sophisticated
motions by imitating human motion characteristics. But it should not be ignored that such
robots are also complex nonlinear and multi-redundant systems[15]. The muscle force produced
by a muscle unit is a highly complex function of muscle length, muscle contraction velocity, and
muscle activation[16]. One muscle may have multiple attachment points on several bones, which
increases the difficulty of analytically solving joint torques. The output force of each muscle
will affect the rotation of multiple joints, and conversely the rotation of each joint is affected by
multiple muscles, so it is impossible to control each muscle individually to complete the overall
motion tasks. There are many sets of muscle excitation patterns for a musculoskeletal robot
to complete one motion task, so it is urgent to effectively explore the action space to obtain
optimal or suboptimal control signals.

One of the key issues in musculoskeletal robot research is to improve the ability of motion
learning and generalization to complete high-precision and high-reliability tasks. Many repre-
sentative methods have been proposed to improve the performance of musculoskeletal robots.
The model-based methods explicitly analyze the kinematics and dynamics of musculoskeletal
systems, and solve muscle forces or muscle control signals according to desired joint torques.
Thelen, et al.[17] proposed the computed muscle control (CMC) method, which uses static op-
timization along with feedforward and feedback controls to drive a musculoskeletal model to
achieve the desired motion trajectory. It is a classic algorithm for solving muscle excitation
signals. Jäntsch, et al.[18] demonstrated the adaptability of CMC on a hardware platform with
eleven tendon-driven compliant muscles. Furthermore, for constrained musculoskeletal sys-
tems, Stanev and Moustakas[19] proposed the Task Space Dynamic Inverse Kinematics method
to solve the inverse kinematics, and the Task Space Computed Muscle Control method to solve
the muscle excitations for forward dynamics simulation, which provides a new way to deal with
musculoskeletal problems from the perspective of task space. Additionally, Jäntsch, et al.[20]
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established models of muscle force and actuator velocity, and then used the Dynamic Surface
Control method and an adaptive neural network to compensate for the friction terms of joints
and muscles, which effectively improved the trajectory tracking capability of a musculoskele-
tal robot. However, as the number of muscles increases and their arrangement becomes more
diverse, it is more difficult to establish accurate musculoskeletal models. Thus model-based
methods are not suitable for complex musculoskeletal robots. In contrast, model-free methods
use data-driven approaches to guide robot learning without building realistic models. Advanced
control theories are used in the research of musculoskeletal robot control. Combining control
theory with the concept of motion primitives to improve skill learning capabilities has been
widely studied[21–23]. Li, et al.[21] proposed a skill learning-based hierarchical control strat-
egy, which learns motor skills from demonstrators by fusing dynamic motion primitives and
Gaussian mixture models, and then ensures that the exoskeleton robot can complete complex
interactive tasks by using an adaptive neural controller. Adaptive impedance control[24, 25]

has achieved remarkable results in the compliant interaction between upper or lower limb ex-
oskeleton robots and humans. Li, et al.[24] designed an optimal reference impedance model and
proposed an adaptive neural network combined with a high-gain observer, which approximates
robot dynamics and deadzone effects, drive the robot to track desired trajectories. In addition,
deep reinforcement learning methods, such as deep deterministic policy gradient (DDPG)[26],
trust region policy optimization (TRPO)[27], and proximal policy optimization (PPO)[28], were
used to control the lower limb musculoskeletal model to walk in multiple directions with vary-
ing speeds[29, 30]. But model-free methods usually require a large amount of exploration and
iteration to obtain the optimal control policy, resulting in low learning efficiency and poor
generalization performance.

In recent years, the interdisciplinary research of information science and neuroscience has
provided new ideas for motion learning and control of musculoskeletal systems, and the effective-
ness of neural heuristic methods to improve motion performance has also been confirmed[31–38].
Based on the time-varying muscle synergy mechanism of the central nervous system, Chen
and Qiao[33] constructed phasic and tonic muscle synergy models to characterize the features
of muscle excitations, and used a radial basis function network to obtain muscle excitations
signals by combining modulated muscle synergies according to different movement goals. In-
spired by the gain primitive model of cortical network, Zhong and Wu[37] proposed a recurrent
neural network modulated by gain primitives to achieve the control dimensionality reduction
of musculoskeletal robots from the number of actuators to the number of primitives, where
a parameter adaptation algorithm regulated by monoamine mechanism is applied to improve
the learning efficiency of gain primitives, and the prior motion experiences and learned primi-
tives are introduced to enhance motion generalization ability. Drawing on the speed-accuracy
trade-off theory in neuroscience and behavioral sciences, Zhou, et al.[38] proposed a hierarchical
movement learning framework, in which a basal ganglia network is modeled to realize adaptive
motion planning on the basis of Fitts’ Law, and an improved policy gradient algorithm is used
to generate muscle excitations via muscle co-contraction policy. However, these methods still
have some shortcomings. Firstly, some neural heuristic methods lack feedback control, and the
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utilization of environmental states needs to be strengthened. Secondly, the neural mechanism
mainly originates from one brain region, and the cooperation of multiple brain regions needs to
be considered to accomplish complex movements. Thirdly, the motion task of musculoskeletal
robots is to reach from a fixed position to random positions, which needs to be generalized to
the task of reaching from random starting positions to random target positions.

The solutions to the above issues are as follows. In an effort to accomplish the random
reaching task of the end-effector, feedback of environment state needs to be added to the con-
troller. In reinforcement learning, the widely used actor-critic architecture essentially belongs
to feedback control. Correspondingly, in computational neuroscience, the basal ganglia are
often modeled using the actor-critic method[39–41]. Thereby the basal ganglia serve as the pri-
mary controller. Then the complementary roles of different brain regions in motor learning
and control are considered. The basal ganglia process the reward prediction error, calculated
as the difference between the expected and received reward of an action, while the cerebellum
is responsible for the sensory prediction error, calculated as the difference between the pre-
dicted and effective sensory feedback[42]. That is, neural processing in the basal ganglia is more
relevant to the task, while that in the cerebellum is more relevant to environmental sensory.

There have been several studies combining the basal ganglia and cerebellum to control
robotic systems. Dasgupta, et al.[43] constructed a reservoir actor-critic network of basal ganglia
and an input correlation learning model of cerebellum, and then used a reward modulated
heterosynaptic plasticity rule of thalamus to dynamically add the outputs of these two learning
systems. Wang, et al.[44–46] used an actor-critic model and a motivated developmental network
to establish models of basal ganglia and cerebellum respectively, in which radial basis function
network and Q-learning are employed to be the actor and the critic respectively, and then used
a thalamic model to combine the outputs from two models in an adaptive ratio. Ruan, et al.[47]

modeled the cerebellum and basal ganglia using an actor and a critic model respectively, and
established a thalamus model using a tropism mechanism, which serves as a relay bridge to
cooperate with the information interaction between the cerebellum and basal ganglia in the
motor cortex and participates in processing reward signals. To further study the combination
scheme of these two brain areas, the integration model should be considered to be improved
from the following aspects. Firstly, draw on the anatomical structures of brain regions to
design the basal ganglia network and cerebellum network, so that these models are biologically
interpretable and credible. Secondly, simulate the subcortical interconnections of two brain
regions to design their communication, rather than just letting them work in parallel and then
combining their outputs through the thalamus. Thirdly, introduce the neural mechanisms of
brain areas in movement regulation to facilitate the exploration-exploitation trade-off during
the learning process.

The motivation and purpose for this paper is how to propose a novel biological plausible
integration model of these two brain areas and its learning rules, which can control the mus-
culoskeletal robot to accomplish the random reaching task with high movement precision and
fast learning efficiency. The main contributions of this article are as follows:

1) The bio-inspired integration model of basal ganglia and cerebellum is proposed, and the
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convergence of the method is proved. The biologically plausible integration model is designed
inspired by the anatomy of basal ganglia and cerebellum and their subcortical interconnections.
Based on the neural mechanism of the basal ganglia, the basal ganglia network is divided into
an actor network and a critic network, which are learned using the soft actor-critic method.
The cerebellum network evaluates the quality of feature extraction in the basal ganglia actor
network and updates the network weights of its feature layer. Then the cerebellum network
weights are updated according to the difference of the optimization function of actor network
parameters. By alternately using policy evaluation and policy improvement, it is demonstrated
that the method can converge to the optimal policy.

2) The adaptive adjustment method for target entropy is proposed. Drawing on the neural
relationship the entropy of action signals and the dopamine proportion in the basal ganglia,
the formula for target entropy with respect to dopamine proportion is derived. This proportion
as a hyperparameter changes exponentially with the relationship between target entropy and
policy entropy, regulating the exploration-exploitation trade-off in motor learning.

3) The dopaminergic experience replay method is proposed. Following the principle of em-
phasizing the utilization of distinguished experience, the recent experience set and the optimal
experience set are designed from the replay buffer respectively, and then a mini-batch of tran-
sitions for network updates are sampled from these two sets. By borrowing the dopamine
proportion again, the ratio of different types of transitions is adjusted. The recent and optimal
experiences are enhanced while older experiences are taken into account, which also promotes
the exploration-exploitation trade-off.

The remainder of this paper is organized as follows. In Section 2, the structures and func-
tions of the basal ganglia and cerebellum, as well as their interconnections, are introduced
sequentially, which lays the foundation for proposing biological heuristic methods. In Section 3,
the construction and learning rules of the bio-inspired integration model are described in detail,
and then performance improvement methods are proposed, including adaptive adjustment of
target entropy and dopaminergic experience replay. The experimental verification is carried out
in Section 4. Differences from similar previous studies are discussed in Section 5. Finally, the
full text is summarized in Section 6.

2 Preliminaries

2.1 Basal Ganglia

The basal ganglia, located at the base of the forebrain and the top of the midbrain, are
a group of subcortical nuclei. The neural pathways of the basal ganglia are as follows[48, 49].
The striatum, as the largest structure in the basal ganglia, is the input nucleus of the basal
ganglia. The substantia nigra pars reticulata (SNr) and the internal globus pallidus (GPi)
usually work synergistically, and can be regarded as a complex, which are the outputs of the
basal ganglia. The striatum receives signals from the cerebral cortex. The dorsal striatum (DS,
consisting of the caudate nucleus and the putamen) then transmits signals to other parts of the
basal ganglia through both direct and indirect pathways. In the direct pathway, the DS sends
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inhibitory signals to the SNr-GPi complex. In the indirect pathway, the DS firstly projects
inhibitory signals to the external globus pallidus (GPe), which in turn sends inhibitory signals
to the subthalamic nucleus (STN). The STN then relays excitatory signals to the SNr-GPi.
Finally, the signals are output by the SNr-GPi to the thalamus, and then transmitted to the
cerebral cortex and other brain regions. In addition, the ventral striatum (VS, consisting of the
nucleus accumbens and the olfactory tubercle) receives dopaminergic input from the substantia
nigra pars compacta (SNc) and the ventral tegmental area (VTA). The neural connections of
the basal ganglia are shown in Figure 1.
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Figure 1 Neural circuits of basal ganglia, cerebellum, and their interconnections. Green and yellow

lines indicate direct and indirect pathways of dorsal striatum respectively. Red lines indicate

interconnections of basal ganglia and cerebellum. The investigation and summary of neural

circuits and mechanisms are used to design network structures and learning rules

The basal ganglia are essential brain structures for motor control. Their main functions
are as follows[50, 51]. Firstly, the basal ganglia play an important role in action selection. The
basal ganglia make decisions about which of several possible actions to perform at a given
time. They are able to select desired actions while suppressing unwanted potentially competing
actions. Secondly, the basal ganglia have the function of motor learning. They are frequently
modeled as reinforcement learning models in the motor learning research. In trial-and-error
training, they achieve skill learning and motor adaptation based on reward prediction errors.
In addition, they also have an important effect on motor tasks such as eye movements, voluntary
movements, and executive functions, and have advanced cognitive functions such as working
memory and emotion regulation.

2.2 Cerebellum

The cerebellum is located in the posterior cranial fossa. Its structure is as follows[52, 53].
The input signals to the cerebellum come from mossy fibers (MF) and climbing fibers (CF),
and the sole output of the cerebellum is deep cerebellar nuclei (DCN). The MF encode sensory
information such as environment and motion, which transmits signals to the DCN through
two pathways. On the one hand, the MF project signals directly to the DCN. On the other
hand, they also transmit signals to granule cells (GC), and then to Purkinje cells (PC) through
parallel fibers (PF). The PC, as the only output of the cerebellar cortex, eventually send
inhibitory signals to the DCN. The CF, originated from inferior olivary (IO) nucleus, mainly
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encodes error signals. They project these signals to the PC and DCN. At last, the signals
output by the cerebellum are transmitted through the thalamus to the motor cortex or other
brain regions, thereby affecting the firing of their neurons. The neural circuit of the cerebellum
is shown in Figure 2.

Target
Cerebellum Model

Basal Ganglia Model

Muscle
Excitation

Musculoskeletal Robot

State

Policy Iteration

Adaptive Entropy 
Adjustment

Dopaminergic 
Experience Replay

Replay Buffer
Update

Transition

Figure 2 Framework of bio-inspired integration method for motion learning of musculoskeletal robot.

The integration model of basal ganglia and cerebellum serves as the controller, generating

muscle control signals to drive the movement of the musculoskeletal robot. The adaptive

adjustment of target entropy trade-offs the exploration-exploitation of network learning.

Dopaminergic experience replay samples the recent and optimal experiences for gradient

update. Policy iteration combines the above modules and is proved to converge to the

optimal policy

The cerebellum also plays an important role in motor control. With the assistance of the
cerebellum, the precision and adaptability of movements can be significantly improved. Its main
functions are described below[50, 54]. Firstly, the cerebellum is capable of motor correction. The
cerebellum does not generate motor control commands, but instead regulates or compensates
motor signals from other brain regions to effectively coordinate movement. Secondly, the cere-
bellum also has the function of motor learning. During trial-and-error training, the cerebellum
continuously learns from sensory prediction errors, thereby improving the ability of motion
evaluation and correction. Thirdly, the cerebellum also plays an important part in predicting
movement results, coordinating voluntary movements, and maintaining posture balance. In
addition, it also involves cognitive functions such as language, emotion, and attention.

2.3 Interconnections of Basal Ganglia and Cerebellum

The basal ganglia and cerebellum jointly regulate the processes of motion learning and
control. The traditional view is that the basal ganglia and cerebellum transmit their respective
outputs to the same cerebral cortical area for information interaction through different cortico-
thalamic pathways. So they used to be considered as two separate subcortical systems with
only cortical-level communication. However, recent studies have found that there also exist
subcortical interactions between them.

Anatomically, a series of studies using retrograde transneuronal transport of rabies virus
revealed two disynaptic pathways between the basal ganglia and cerebellum[55–57]. On the one
hand, the STN of the basal ganglia firstly transmits signals to the pontine nuclei (PN), and then
the PN transmits signals to the cerebellar cortex. On the other hand, the dentate nucleus (DN)
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of the cerebellum projects to the intralaminar thalamic nuclei (ITN), which in turn projects to
the putamen and caudate of the basal ganglia. Actually, the DN is the largest nucleus in the
DCN, and the putamen and caudate make up the DS. The above interaction mode is shown in
Figure 1.

Moreover, the complementary roles of the basal ganglia and cerebellum in motion regu-
lation can also demonstrate the above connections, which bring reference and inspiration to
network modeling and learning rules. Firstly, the GC in the cerebellar cortex, in addition to
being traditionally thought to encode the sensorimotor context, also encode information about
reward expectation and are involved in reward-based learning[58]. This finding corroborates
with the pathway from the STN to the cerebellar cortex. Secondly, the disynaptic pathway
projecting from the DCN to the DS may convey cerebellar predictions to the basal ganglia
with short latency. This type of communication not only engages the striatum in sensorimotor
adaptation[56], but also facilitates more rapid coordination between these two brain regions to
cope with complex environments[59, 60]. Meanwhile, this pathway can guide changes in striatal
plasticity[59]. The above research reveals the significance of this pathway. Thirdly, dopaminer-
gic signals from the basal ganglia, which are associated with predicting rewards, not only act
on the VS, but also project to the nucleo-olivary pathway. In this way, the IO encode teaching
signals from the basal ganglia to drive motor learning in the cerebellum[42, 61].

The basal ganglia and cerebellum coordinate with each other to collectively improve the
quality and adaptability of movements[42]. Inspired by their structures, functions and intercon-
nections, a neural heuristic control model will be constructed.

3 Methods

3.1 System Framework

Borrowing ideas from neural mechanisms such as the mutual communication between the
basal ganglia and the cerebellum, dopaminergic modulation of the target policy entropy and the
experience replay, the bio-inspired integration model of the basal ganglia and the cerebellum
is proposed, which effectively improves the learning efficiency and motion adaptability of the
musculoskeletal robot.

The system framework of this study is shown in Figure 2. The process of system operation
is as follows. In each episode, a target position is randomly given. At each timestep t, the
coordinates of the target are combined with other current environmental information, such as
the joint angles and joint angular velocities of the musculoskeletal arm, the energy of muscle
signals, etc., to compose the observation state st. The bio-inspired model acts as a controller
that generates the muscle command at based on the current state st. Then this command
at is projected to the cerebral cortex through the thalamus to drive the end-effector of the
musculoskeletal model to the target position. One timestep later, the reward signal r (st,at)
and the next state st+1 are obtained. Together with the current state st and muscle command
at, they form a transition (st,at, r(st,at), st+1) and are stored in the replay buffer D ←
D∪{(st,at, r(st,at), st+1)}. By using a batch of samples extract from the buffer, the stochastic
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gradients are calculated for the motion learning of the bio-inspired model. Furthermore, the
adaptive regulation methods based on dopamine proportion are proposed. Based on the change
of this proportion, the value of the target policy entropy and the samples of experience replay
are dynamically adjusted to realize the exploration-exploitation trade-off in the motor learning
process. Through the above approaches, the musculoskeletal model can be accurately controlled
to reach any target point.

3.2 Modeling and Learning of Basal Ganglia Network and Cerebellum Network

A bio-inspired integration model of the basal ganglia and cerebellum is proposed to generate
the muscle control signal a based on the state s. In the following, the modeling methods of
the basal ganglia network and the cerebellum network, the interconnection mode of the two
networks, and the learning rules of the integration model are introduced in sequence, and then
the convergence of network learning is proved.

The basal ganglia network is established based on the connection of nuclei in the basal
ganglia. The modeling and learning of the basal ganglia network refer to the soft actor-critic
(SAC) method[62, 63]. The neural argument for using SAC is as follows. Firstly, the basal ganglia
and the actor-critic architecture share similarities[39–41]. DS, GPe, and STN focus on motion
learning, while SNr and GPi are related to action selection and command output, so they have
similar functions to the actor. VS is responsible for value estimation, while SNc and VTA are in
charge of computing temporal difference (TD) errors, so they have similar functions to the critic.
Secondly, the output of basal ganglia is the probability density function of action[64]. Thus, the
algorithm needs to output stochastic policy instead of deterministic policy. Thirdly, entropy is
often introduced as a measure of the probabilistic irregularity of basal ganglia neuron activity
over timescales[64, 65]. Entropy reflects changes in dopamine proportion, which has important
implications for the exploration-utilization tradeoff during motor learning. Therefore, based
on the above biological mechanisms, the use of SAC is reasonable. πφ(a|s) and Qθ(s,a) are
used to denote the actor and critic of the basal ganglia network respectively, where φ and θ are
network parameters. πφ(a|s) and Qθ(s,a) are shown in Figure 3.

Figure 3 Network architecture of bio-inspired integration model of basal ganglia, cerebellum, and

interconnections
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The cerebellum network μω(x) is also designed in the same way as the connection of nuclei in
the cerebellum, where ω represents the network parameters. In the cerebellum network, sensory
signals are transmitted forward along MF-DCN pathway and MF-GC-PC-DCN pathway, and
error signals are encoded in the IO to modify the network weights ω. μω(x) is shown in Figure 3.

Analogous to the information processing flow, the indirect pathway of πφ(a|s) can be di-
vided into two stages, namely environmental feature extraction DS-GPe-STN and action se-
lection STN-SNr/GPi[66]. The quality of feature extraction is related to the effect of the next
action selection. Consequently, the cerebellum network μω(x) is introduced to monitor the
sensorimotor context in order to improve the feature extraction capability of the basal ganglia
network. According to the interconnection modes of the two brain areas, the communication
methods of these networks are constructed as shown in Figure 3. The results of feature ex-
traction are passed from the STN to the GC, and the outputs of the cerebellar evaluation is
transmitted from the DCN to the DS. Let νψ(s) represent the DS-GPe-STN network, where ψ
is its parameters.

After setting up the network structures, the learning rules are designed as follows. The
basal ganglia network is designed to learn a tractable policy πφ(a|s) and a soft Q-value function
Qθ(s,a). Part of the calculation rules for Q and π are derived from the SAC method[62, 63].
The training objective of π is to maximize both expected return and entropy:

J(φ) = max
πφ

E(st,at)∼pπφ

[
T∑
t=0

γt (r (st,at) + αH (πφ (at|st)))
]
, (1)

where pπ is the marginal distribution following the policy π, γ ∈ [0, 1] is discount factor, α > 0
is the temperature parameter, and H(π) = Eπ [− lnπ] is the policy entropy. According to the
Bellman equation, the soft Q-value function Q (st,at) is defined as follows:

Q (st,at) = r (st,at) + γEst+1∼pπ [V (st+1)] . (2)

The relationship between the soft Q-value function Q (st,at) and the soft state value function
V (st) is as follows:

V (st) = Eat∼π [Q (st,at)− α lnπ (at|st)] . (3)

For each update timestep t, after the robot interacts with the environment, the basal ganglia
critic network dominated by VS, namely Qθ (s,a), is firstly updated. The training objective of
Qθ (st,at) is to minimize the soft Bellman residual:

JQ(θ) = E(st,at)∼D

[
1
2

(
Qθ (st,at)− Q̂ (st,at)

)2
]

= E(st,at)∼D

[
1
2
(
Qθ (st,at)−

(
r (st,at) + γEst+1∼pπ

[
Vθ (st+1)

]))2]
,

(4)

where Q̂(st,at) is the target value ofQθ(st,at), and Vθ(st) = Eat∼πφ
[Qθ(st,at)−α lnπφ(at|st)]

is implicitly parameterized by (3). Qθ (st,at) is the soft Q-value target function, and θ ←
τθ + (1 − τ)θ is the exponentially moving average, which is beneficial to the stability of the
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training process. τ is the smoothing coefficient. The gradient of JQ(θ) is estimated with an
unbiased estimator:

∇̂θJQ(θ)=∇θQθ (st,at)
(
Qθ (st,at)−

(
r (st,at)+γ

(
Qθ (st+1,at+1)−α lnπφ (at+1|st+1)

)))
. (5)

Thus, the parameters of Qθ (s,a) are updated as follows:

θ ← θ − λQ∇̂θJQ(θ), (6)

where λQ and the following λπ, λν , λμ, λα are the respective learning rates.
Then, the basal ganglia actor network dominated by DS, namely πφ(a|s), is updated. The

training objective of πφ(a|s) is to minimize the Kullback-Leibler divergence:

J̃π(φ) = DKL

(
πφ (at|st)

∥∥∥∥exp
(

1
αQθ (st,at)

)
Z (st)

)

= DKL

(
πφ (at|st)

∥∥∥∥ exp
(

1
α
Qθ (st,at)− lnZ (st)

))

= Est∼D,at∼πφ

[
ln

(
πφ (at|st)

exp
(

1
αQθ (st,at)− lnZ (st)

)
)]

= Est∼D,at∼πφ

[
lnπφ (a|st)−

1
α
Qθ (st,at) + lnZ (st)

]
,

(7)

where Z (s) =
∑

a exp
(

1
αQ (s,a)

)
is the partition function to normalize the distribution. To

simplify the calculation, multiply J̃π(φ) by α, and remove the constant lnZ (st) that does not
affect the gradient:

Jπ(φ) = Est∼D,at∼πφ
[α lnπφ (at|st)−Qθ (st,at)] . (8)

The approach to minimize Jπ(φ) makes use of the reparameterization trick, which uses a neural
network transformation fφ to evaluate πφ(a|s):

a = fφ (s, ε) , (9)

where ε is independent noise, sampled from some fixed distribution. In practice, actions are
obtained by a squashed Gaussian policy:

a = tanh (χφ (s) + σφ (s)� ε) , (10)

where χφ is the mean output by a Gaussian network, σφ is standard deviation derived from
lnσφ output by the Gaussian network, and ε ∼ N (0,1). The reparameterization trick rewrites
the expectation over actions as the expectation over noise, so that the expectation in Jπ(φ) no
longer depends on the policy parameters, which effectively reduces the variance of the gradient
estimator. Jπ(φ) is rewritten as follows:

Jπ(φ) = Est∼D,εt∼N [α lnπφ (fφ (st, εt) |st)−Qθ (st, fφ (st, εt))] , (11)
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where πφ is implicitly defined in terms of fφ. Then Jπ(φ) is optimized with unbiased gradient
estimation:

∇̂φJπ(φ) = ∇φα ln (πφ (at|st)) + (∇atα ln (πφ (at|st))−∇atQθ (st,at))∇φfφ (st, εt) . (12)

Thereby, the parameters of πφ(a|s) are updated to φπ for the first time:

φπ ← φ− λπ∇̂φJπ(φ). (13)

Next, the basal ganglia network interacts with the cerebellum network, and the network
parameters are further updated. In the STN-GC pathway, state feature νψ(st) encoded in the
STN is projected to the cerebellum network μω(x). The cerebellum network outputs μω(νψ(st))
after evaluating the quality of feature extraction. In the DCN-DS pathway, μω(νψ(st)) is
projected to the DS as a loss to modify the network weights ψ in the feature extraction stage
νψ(s). Before updating ψ, save the complement φπ of ψ in φπ :

φ′π ← φπ \ ψ, (14)

ψ is updated as follows:
ψ ← ψ − λν∇̂ψμω(νψ(st)). (15)

Sequentially, the parameters of πφ(a|s) are updated to φ for the second time:

φ← ψ ∪ φ′π . (16)

The effect of two updates of πφ(a|s) is measured by using (11):

ΔJπ = h
(
Jπ(φ)|at=fφ(st,εt) − Jπ(φπ)|at=fφπ (st,εt)

)
, (17)

where h is any squashing function. h limits ΔJ to a finite range to prevent its gradient from
being too large. Here h = tanh(·) is used. The calculation process of φ involves the cerebellum
network parameters ω, so Jπ(φ) is helpful for optimizing ω. Although φπ bears no relation to
ω, Jπ(φπ) can serve as a baseline to stabilize the learning process. Measurement error ΔJπ is
computed in the basal ganglia and then projected to the cerebellum. The IO encodes this error
signal to guide the learning of μω(x):

ω ← ω − λμ∇̂ωΔJ. (18)

In practical implementation, to avoid the problem of Q-value overestimation bias, two differ-
ent Q-value networks Qθi (s,a) with parameters θi are used to approximate Qθ (s,a), and they
are trained independently[67]. Their minimum is used for the gradient updates of (5) and (12):

Qθ (s,a) = min
i∈{1,2}

Qθi (s,a) . (19)

Correspondingly, the minimum of two different Q-value target networks Qθi
(s,a) is also used

to calculate Qθ (s,a) of (5):
Qθ (s,a) = min

i∈{1,2}
Qθi

(s,a) . (20)
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In the stage of motor evaluation, consistent with the performance of brain regions[42], the
basal ganglia critic network Qθ (s,a) and the cerebellum network μω(x) no longer participate
in updating network parameters, and the basal ganglia actor network πφ(a|s) outputs control
signals at.

Last but not least, as the foundation of the bio-inspired integration model, it is proved that
by repeatedly alternating policy evaluation and policy improvement, policy iteration ensures
that any policy π will converge to the optimal policy π∗. See the Appendix for proofs.

Lemma 3.1 (Policy evaluation) Let the soft Bellman backup operator in the basal ganglia
model be T π, the soft state-action value function Q : S × A → R with ‖A‖∞ <∞, and define
Qk+1 = T πQk. Then given any policy π, the sequence Qk will converge to Qπ as k →∞.

Lemma 3.2 (Policy improvement) Let πold ∈ Π and let πnew be the new policy optimized
by the integration model. Then Qπnew (st,at) ≥ Qπold (st,at) for all (st,at) ∈ S × A with
‖A‖∞ <∞.

Theorem 3.3 (Policy iteration) Through repeatedly applying the policy evaluation and
policy improvement in the integration model, any policy π ∈ Π will converge to an optimal
policy π∗ such that Qπ

∗
(st,at) ≥ Qπ (st,at) for all π ∈ Π and (st,at) ∈ S × A, assuming

‖A‖∞ <∞ and reward is bounded.

3.3 Adaptive Adjustment of Target Entropy

For this bio-inspired integration model, it is crucial to realize the exploration-exploitation
trade-off of the learning process. By further analyzing (1), the two variables, namely α and
H(π), have an important impact on the learning process, and determine different behavior
patterns of the robot. On the one hand, smaller α or H(π) corresponds to more exploitation.
If these two parameters are too small, the basal ganglia actor network πφ(a|s) will be more
inclined to learn greedy deterministic policy and thus the network learning will fall into a local
optimal. In extreme cases, as α→ 0, the maximum entropy termH(π) becomes useless, and the
problem of (1) gradually degenerates into the standard maximum expected return objective.
On the other hand, larger α or H(π) corresponds to more exploration. These large parameters
make the policy behavior too random throughout the learning process, which is either not ideal
in most situations.

In order to achieve an exploration-exploitation balance, the method to automatically adjust
the regularization parameter α is introduced[63]. Formally, the objective of (1) is transformed
into a conditional optimization problem, where the expected return is maximized and the policy
satisfies the minimum entropy constraint:

max
π0,··· ,πT

Epπ

[
T∑
t=0

γtr (st,at)

]

s.t. H(πt) ≥ H∗, ∀t,

(21)

where H(πt) = γtE(st,at)∼pπ
[− ln (πt (at|st))], and H∗ is the target entropy, i.e., the desired

minimum policy entropy. Here let H∗ = −|A|, namely the negative dimension of the action
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space A. The above problem is solved as follows:

J(α) = Eat∼πφ
[−α lnπφ (at|st)− αH∗] . (22)

Hence, α is updated as follows:
α← α− λα∇̂αJ(α). (23)

The SAC method with automating adjustment of α shows great performance in most challenging
tasks[63, 68].

This method still has some deficiencies that need to be further improved. This method
focuses on the adjustment of α, but ignores the regulation of H∗. The Lagrange multiplier
method sets the target entropy H∗ to a constant when solving the dual problem of constrained
optimization. This leads to the fact that the policy entropyH(πt) obtained is not the maximum
value, but only approaches the constant target entropy H∗. This is inconsistent with the
optimization objective of maximizing policy entropy in (1). For the sake of solving the above
issue, a bio-inspired adaptive adjustment rule of target entropy H∗ modulated by dopamine
ratio ρ is proposed.

Neuroscience research has found that the activity levels of dopamine in the basal ganglia can
affect the probability distribution of output signal, which plays a significant role in regulating the
exploration-utilization trade-off in the learning process. The relationship between the entropy
of the basal ganglia output signal and the dopamine proportion can be described by an affine
function[64], which inspires the way to establish the formula for the two.

The method of solving the upper and lower bounds of the target entropyH∗ is as follows. For
the purpose of network optimization, each control signal a in the action space A is normalized
to the [−1, 1] interval. When the robot interacts with the environment, these actions a should
be rescaled to the [0, 1] interval to control the musculoskeletal model normally. Such a box-
constrained space is denoted as A = Box ([−1, 1], |A|). As recommended in [63], the lower
bound is H∗

min = −|A|. The upper bound H∗
max occurs when all actions are uniformly sampled

within the action space A, and thus the corresponding stochastic policy function πmax (a|s) is
as follows:

πmax (a|s) = 2−|A|. (24)

Then the maximum value of the target entropy is calculated:

H∗
max = E(s,a)∼pπ

[− ln (πmax (a|s))]

= −
∫
A
πmax (a|s) ln (πmax (a|s)) da

= −
∫
A

2−|A| ln 2−|A|da

= −2−|A| ln 2−|A| · (1− (−1))|A|

= |A| ln 2.

(25)

Therefore, the function of the target entropy H∗ with respect to the dopamine proportion ρ, as
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shown in Figure 4, is obtained as follows:

H∗(ρ) = −ρ|A| ln 2e + |A| ln 2, ρ ∈ [0, 1]. (26)

Figure 4 Target entropy function H∗ with respect to dopamine proportion ρ. According to neuro-

science research, their relationship conforms to an affine function. After determining the

maximum and minimum values of the target entropy, the analytical formula of the target

entropy function can be obtained. If the entropy is large, the learning tends to explore; On

the contrary, the learning tends to exploit. Here let |A| = 9

The algorithm of adaptive adjustment of target entropy is described as follows. For each
update timestep t, it is judged whether |H∗(ρ)−H(πt)| ≤ ξ is satisfied, where ξ > 0 is the
threshold. If this condition is met, the dopamine proportion ρ is updated while ensuring that
it does not exceed the maximum value:

ρ← min{ρ · ι, 1}, (27)

where ι is the exponentially increasing factor. To avoid the singularity of adjustment, let the
initial dopamine proportion ρinit be 0.01. In addition, with the aim of making H∗(ρ) change
smoothly rather than always being stuck at a certain value, the above update process is forced
to be executed once after κ timesteps since the last update.

Under the action of this method, combined with (23), the policy entropy H(π) approaches
the target entropy H∗ continuously, and then correspondingly H∗ decreases gradually, which
in turn makes H(π) decrease along with it. In the early stage of training, H(π) is relatively
large, making policy exploration more random. On the contrary, in the later stage of training,
H(π) is relatively small, and the stability policy is gradually obtained. Thus, the exploration-
exploitation trade-off is achieved, which also improves the performance of motor learning.

3.4 Dopaminergic Experience Replay

The bio-inspired integration model, as a type of off-policy reinforcement learning, requires
the use of effective experience replay. Experience replay is a replay memory technique, where
the experience (st,at, r(st,at), st+1) of the agent is stored in a replay buffer D at each timestep
t, and then a mini-batch of experiences are sampled from this buffer D with certain strategies for
updating the learning rules. It is a valid mechanism to improve sample efficiency and algorithm
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stability[69]. Instead of uniform sampling that treats all past transitions equally, better sample
and utilization of valuable transitions in the buffer is conducive to the performance improvement
of reinforcement learning[70, 71].

Dopamine has long been implicated in working memory. Dopaminergic levels can intervene
and improve working memory, thereby affecting the functional activity in basal ganglia[72, 73].
Drawing on the above neural mechanism, the Dopaminergic experience replay (DAER) method
is proposed, where the experience replay is modulated by the dopamine proportion ρ. The core
idea of DAER is that firstly the recent experience set Br and the optimal experience set Bo
are constructed from D, and secondly mini-batch transitions are sampled from the two sets
for gradient update according to the proportion allocated by ρ. Here, the function symbol
gs (S, nS) is defined as sampling nS transitions from the set S with a strategy S.

With the increase of learning timesteps, the motion performance of the robot is gradually
improved. So the more recent experiences are of higher value. Due to the poor learning effect
at the beginning, utilization of older experiences should be reduced. Thus, the most recent
experiences are sampled to construct Br:

Br = gr (D,min {�nD · ρ� , nr}) , (28)

where nD is the capacity of D, nr < nD is the capacity of Br, and �x� = max{z ∈ Z|z ≤ x} is
the floor function. As the learning process progresses, ρ gradually approaches 1, so Br gradually
stores all transitions. But by adding the restriction nr, the oldest samples are always excluded.

In order to further take advantage of experiences with excellent performance in recent mo-
ments, the optimal experience set Bo is constructed:

Bo = go (gr (D, 2m) ,m) , (29)

where m is the number of mini-batch samples. The construction of Bo is divided into two steps.
Firstly, the most recent 2m transitions are sample from D, that is, B′

r = gr (D, 2m). Secondly,
the optimal m transitions are selected by sorting these 2m transitions, that is, Bo = go (B′

r,m).
The basis for sorting is the absolute TD error of a transition, denoted as |δ|. Since two Q-value
networks are used, |δ| is obtained by calculating the average absolute TD error of two networks:

|δ| = 1
2

2∑
i=1

∣∣∣Qθi (st,at)− Q̂ (st,at)
∣∣∣

=
1
2

2∑
i=1

∣∣Qθi (st,at)−
(
r (st,at) + γ

(
Qθ (st+1,at+1)− α lnπφ (at+1|st+1)

))∣∣ .
(30)

At last, a total of m transitions are uniformly sampled from Br and Bo in proportion to ρ:

Bm = gu

(
Br,
⌊
m ·

(
1− ρ

Γ

)⌋)
∪ gu

(
Bo,
⌈
m · ρ

Γ

⌉)
, (31)

where Γ > 1 is a constant for regulating the ratio, and �x� = max{z ∈ Z|z ≥ x} is the ceiling
function.
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The advantages of DAER are analyzed as follows. Firstly, the recent and optimal experi-
ences are sampled with a higher probability than older ones. Assuming uniform sampling is
used alone, since all experiences have the same probability of being sampled, older experiences
will be sampled more times than newer ones, which is not desirable. As the agent continues to
explore the action space and improve its action policy, newer data, which contain more valu-
able information than old ones, deserves enhanced use. Secondly, older experience still has a
certain probability of being extracted. As ρ increases, Br gradually stores stores most of tran-
sitions of D, so older data also have a chance to be sampled. This ensures that the integration
model does not only estimate the value functions from recent transitions and avoids overfit-
ting. Thirdly, this method facilitates the exploration-exploitation trade-off for the integration
model. Considering (31), when ρ is smaller, Br provides more experiences, allowing the agent
to explore more different states and actions; when ρ is larger, the sample size provided by Bo
gradually increases, strengthening the agent’s exploitation of superior experiences to achieve
desired motion. Therefore, by using DAER in network learning rules, the learning efficiency
and generalization performance of the integration model will be further improved.

4 Experiments

4.1 Experiment Setup

The bio-inspired integration model is used for motion learning and control of a musculoskele-
tal robot. The biomechanical robotic system is implemented in MuJoCo[74], which has functions
of robot kinematics and dynamics simulation and provides tools for modeling biological muscles.
The robot system is built by simulating the arrangement of bones and muscles in the human
upper limb, as shown in Figure 5(a). Nine muscles are used here, each of which is an actuator.
Movement is generated by these muscles pulling rigid bones through tendon attachment points,
where one degree of freedom is set in the shoulder joint and one at the elbow joint. The actual
force of each muscle is

FM = F0 · (act · FL(L) · FV (V ) + FP (L)) , (32)

where the constant F0 is the peak active force at zero velocity, FL is the active force function
of scaled muscle length L, FV is the active force function of scaled muscle velocity V , FP is
the passive force function that is always present regardless of activation, and act is the muscle
activation signal. FL, FV , and FP are all complex nonlinear functions[16]. Therefore, the
musculoskeletal robot is a strongly nonlinear system. It is very challenging that how to control
such a robot to achieve high-precision and high-robust motion tasks.

The experimental task is that the bio-inspired model generates a set of sequential muscle
excitation signals, which can drive the end-effector of the upper limb musculoskeletal robot
from random starting locations to random target positions with high precision, as shown in
Figure 5(b). The range of motion is limited to a circle O in the vertical plane. The center of
the circle O is P0 = (0.177 m, 0.461 m), which is the middle of the wrist when the shoulder
angle is −10◦ and the elbow angle is 90◦. The radius of the circle O is r = 0.14 m, which is the
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farthest movement distance of the end-effector.

Figure 5 Experimental platform for musculoskeletal robot. (a) The musculoskeletal robot contains

nine muscle actuators and two degrees of freedom. (b) The experimental task is to control

the end-effector of the musculoskeletal robot from random starting locations to random

target positions within a circle

4.2 Random Reaching Task

Inspired by the anatomical structures and interconnection manner of the basal ganglia
and the cerebellum, the basal ganglia actor network πφ(a|s), the basal ganglia critic network
Qθ(s,a), and the cerebellum network μω(x) are constructed as Figure 3, and their learning
rules are proposed. Each type of nucleus corresponds to a layer of network. The parameters
of these networks are shown in Table 1. For each episode of movement, the initial coordinates
of the end-effector and the coordinates of the motion target are randomly given inside the
circle O. The maximum duration of each episode is 500 ms, where each environment timestep
is 1 ms. For each timestep t, the environment state st, as the input of πφ, contains the joint
angles qt and joint angular velocities q̇t of the robot, the coordinates of the target point x∗ and
the end-effector xt, the vector between the target point and the end-effector x∗ − xt, and the
energy of muscle control signals ‖at‖22. According to the state st, πφ outputs the action com-
mand at to control the robot to interact with the environment, thereby obtaining a transition
(st,at, r(st,at), st+1). at is a vector containing 9 elements, corresponding to the excitation
signals of 9 muscles. The reward signal r(st,at) is designed as follows:

rt = −η1 ‖x∗ − xt‖2 − η2 ‖vt‖2 − η3 ‖at‖
2
2 − η4ζ, (33)

where [η1, η2, η3, η4] = [10, 1, 0.01, 1]. vt is the velocity of the end-effector. ζ denotes the addi-
tional reward when the end-effector reaches the target point, which is beneficial for improving
the performance of the motion reaching task:

ζ =

⎧⎨
⎩−1000, if ‖xt − x∗‖ ≤ δ,

0, if ‖xt − x∗‖ > δ,
(34)
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where δ = 3 mm is the distance threshold. This transition is then pushed to the repaly buffer
D, mini-batch of which are sampled through the dopaminergic experience replay method for
unbiased gradient updating of network weights. Meanwhile, the automating entropy adjustment
mechanism also plays a role to modulate network learning.

Table 1 Parameters of bio-inspired integration model

Parameter Symbol Value

Number of network hidden units Nh 256

Adam learning rate λQ, λπ, λν , λμ, λα 3 × 10−4

Discount factor γ 0.99

Target smoothing coefficient τ 0.005

Dopamine proportion increasing factor ι 1.001

Entropy threshold ξ 0.01

Timestep threshold κ 2000

Replay buffer size nD 106

Recent buffer size nr 105

Sampling ratio Γ 3

Minibatch size m 256

Target update interval nu 1

Gradient steps ng 1

After training, the reward curve is drawn as shown in Figure 6(a). For special attention
whether the robot reaches the target point, the distance error at the end of each episode is
shown in Figure 6(b). Therefore, the integration model can control the musculoskeletal robot
to accomplish the motion goal from random starting points to random target points. To evaluate
the adaptive adjustment effect of policy entropy, the change in entropy and dopamine ratio are
shown in Figure 7(a) and Figure 7(b) respectively. The policy entropy H(π) follows the target
entropy H∗(ρ) from the maximum to the minimum gradually, thus ensuring the exploration-
exploitation trade-off of model learning.

Figure 6 Learning curves of bio-inspired integration model. (a) and (b) are the curves of reward and

distance error during the learning process respectively
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Figure 7 Adaptive adjustment process of target entropy. (a) Orange and blue lines show the changes

in target entropy and policy entropy respectively. (b) The change in dopamine proportion

is shown. Corresponding to the curves of reward and distance error in Figure 6, in the early

stage of network learning, the dopamine proportion and entropy change dynamically; When

learning converges, the dopamine proportion and entropy do not change substantially

Next, the effect of movement learning is evaluated. 20 pairs of starting positions and target
positions are randomly set inside the circle O, and the trained network πφ is used to generate
the control command a. The motion trajectories of the robot end-effector are shown in Figure 8,
and the average movement distance error is 2.147± 0.176 mm. Hence, the bio-inspired model
can control the musculoskeletal robot to accomplish movements with high precision and high
generalization.

Figure 8 Motion trajectories of end-effector from random starting positions to random target po-

sitions during the evaluation process. Circles represent starting positions, stars represent

target positions, and the same color indicates one movement

In order to better analyze the learning ability of the proposed method, comparison experi-
ments are carried out between this bio-inspired method and other typical reinforcement learning
methods, such as DDPG[26], PPO[28], and SAC[62, 63]. They have been proven to achieve good
results in controlling complex robotic systems. The comparison experiment is still the task of
controlling the end-effector of this musculoskeletal robot to reach arbitrary positions within the
circle O. The design of comparison methods, such as action space, environment space, reward
function, etc., are consistent with the bio-inspired model mentioned above. The model param-
eters of DDPG, PPO, and SAC are shown in Tables 2, 3, and 4, respectively. The experimental
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results on rewards and distance errors are shown in Figure 9. The bio-inspired model evaluates
not only state-action information by using the basal ganglia network, but also state feature ex-
traction by using the cerebellum network. Besides it also realizes the exploration-exploitation
trade-off of motor learning in terms of both policy entropy and experience replay with the help
of dopaminergic modulation. Consequently, compared with DDPG, PPO, and SAC, the bio-
inspired integration model can achieve higher precision motion tasks with fewer iterations and
more stable convergence.

Table 2 Parameters of deep deterministic policy gradient

Parameter Value

Number of network hidden layers 2

Number of network hidden units 256

Adam learning rate 3 × 10−4

Discount factor 0.99

Target smoothing coefficient 0.005

Exploration noise N (0, 0.12)

Replay buffer size 106

Minibatch size 256

Table 3 Parameters of proximal policy optimization

Parameter Value

Number of network hidden layers 2

Number of network hidden units 256

Adam learning rate 3 × 10−4

Discount factor 0.99

GAE parameter 0.95

Number of epochs 10

Clip ratio 0.2

Minibatch size 256

Table 4 Parameters of soft actor critic

Parameter Value

Number of network hidden layers 2

Number of network hidden units 256

Adam learning rate 3 × 10−4

Discount factor 0.99

Target smoothing coefficient 0.005

Target entropy −9

Replay buffer size 106

Minibatch size 256

Target update interval 1

Gradient steps 1
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(a) (b)

Figure 9 Comparison of different learning methods for musculoskeletal robot. (a) and (b)

are the curves of reward and distance error during the learning process respectively.

Compared with other reinforcement learning methods, the bio-inspired integration

model has faster convergence speed and higher stability, and its motion error is smaller

after learning converges

4.3 Ablation Study

In the bio-inspired integration model, the basic component is the basal ganglia network
(abbreviated as BG), others contain the cerebellum network (abbreviated as CB), adaptive
adjustment of target entropy (abbreviated as H), dopaminergic experience replay (abbreviated
as DAER). Thus it needs to be examined that the individual contribution of each component
to performance. In the ablation study of the integration model, CB and DAER are removed
separately. But H cannot be removed alone because the change of ρ in DAER depends on H.
If H is removed, DAER cannot be used. The experiment tasks are described in Subsection 4.2.
The results are shown in Figure 10. When CB or DAER is removed, the average performance
decreases dramatically and fluctuates widely. With the joint promotion of all components, the
learning process of the bio-inspired integration model converges faster, becomes more stable,
and provides more rewards. Therefore, all the components are of great significance to improving
motion performance.

(a) (b)

Figure 10 Ablation study of bio-inspired integration model for musculoskeletal robot. (a) and (b)

are the curves of reward and distance error during the learning process respectively.

If the CB or DAER component is removed, the performance in terms of stability and

motion accuracy will be significantly reduced. Ablation experiments demonstrate that

all components of the integration model are necessary
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4.4 Robustness of Controller

In the actual environment, the controller has a high probability of suffering from noise
disturbances from other electronic devices. Thereby it is necessary and meaningful to study
the anti-interference ability of the bio-inspired model. The noise is added to the control com-
mands output by the basal ganglia action network πφ. The noise signal obeys a uniform
distribution. The noise duration is from 10 ms to 100 ms. As shown in Figure 11, (a) is the
case of no noise, and (b)–(f) correspond to noise distributions of N (0, 0.5), N (0, 0.75), N (0, 1),
N (0, 1.5), and N (0, 2) respectively. The average distance errors of (a)–(f) are 2.372±0.123 mm,
2.271±0.014 mm, 3.148±0.818 mm, 2.368±0.144 mm, 4.706±2.295 mm, and 5.547±2.347 mm
respectively. When the noise amplitude |ı| is not greater than the maximum of the action space,
that is, |ı| ≤ 1, the end-effector can still maintain the motion trajectories toward the targets
and obtain higher motion accuracy. On the contrary, that is, |ı| > 1, the motion trajectories
are greatly deflected by noise disturbances, but most motion tasks still reach the targets with
high accuracy.

(a) (b) (c)

(d) (e) (f)

Figure 11 Motion trajectories of end-effector under noise disturbance. (a) is a situation with-

out noise, and (b)–(f) are situations under noises with N (0, 0.5), N (0, 0.75), N (0, 1),

N (0, 1.5), and N (0, 2) respectively. During the application of noise disturbances, the

larger the noise amplitude is, the more serious the deviation of motion trajectories is.

After noise disturbances end, the end-effector can still reach the targets with high accu-

racy. The integration model is robust

The noise disturbance experiments are analyzed as follows. Firstly, the reason why the
robot can still achieve high-precision movement despite noise disturbances is as follows. Noise
disturbances cause more or less fluctuations in the motion of the end-effector. But when the
noises are terminated, the integration model starts from the current environment state to do
motion control from random points to random points, so that the robot can accurately reach
the targets. Secondly, the reason why the trajectories are widely deviated to the upper left
when the noise disturbances are too large is as follows. Under the action of large noises, the
original control signals may easily reach the maximum or minimum value of the action space,
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which causes muscles to be fully contracted or relaxed. Hence the musculoskeletal upper limb
moves to its limit positions, that is, the trajectories are biased to the upper left.

The bio-inspired model can still accomplish motion tasks with high accuracy and reliability
under the influence of noise disturbances, so it has strong robustness.

5 Discussion

This research involves an integration method of the basal ganglia and cerebellum (i.e., the
research method) and a musculoskeletal robot (i.e., the research object). In both respects, this
research differs from previous papers[31–38, 43–47] in method designs and experimental tasks.
Those studies have been introduced in Section 1, so only a brief overview of these papers is
given below.

The differences from other integration methods of brain regions are as follows. Firstly, de-
signs of network structures are different. In [43–47], various types of basal ganglia networks
(such as reservoir actor-critic network[43]) and cerebellum networks (such as motivated develop-
mental network[44–46]) were designed. But in this paper, by simulating the connection patterns
of typical cell nuclei in the brain regions, the basal ganglia network and cerebellum networks
with series and parallel structures are constructed, which is biologically plausible. Secondly,
connections of basal ganglia and cerebellum are different. In [43–47], these two brain regions
were equivalent to two parallel controllers, and their outputs were added as the total control sig-
nal. But in this paper, the two networks have two-way interactive communication modes, which
improves the capabilities of state feature extraction and network learning. Thirdly, designs of
exploration-exploitation trade-off in network learning are different. In [43, 45, 47], there was no
approach of designing exploration-exploitation trade-off. The ACC neuromodulatory system[44]

and the curiosity indicator[46] were proposed to realize the exploration-exploitation trade-off.
But in this paper, both adaptive adjustment of target entropy and dopaminergic experience
replay can achieve the exploration-utilization trade-off. Finally, robot systems are different. In
[43–47], wheeled robots were used to study tasks such as navigation, obstacle avoidance, and
self-balancing. But in this paper, a highly nonlinear complex musculoskeletal robot is used to
verify the effectiveness of methods.

The differences from other neuro-inspired motion control methods of musculoskeletal robots
are as follows. Firstly, control frameworks are different. In [31–37], these control frameworks
are essentially open-loop. But in this paper, the control system is closed-loop, that is, the
environmental state feeds back to the basal ganglia network at each timestep. Secondly, neural
mechanisms are different. In [31–38], these methods were basically designed by simulating the
neural mechanism of a single brain region, such as the cerebral cortex, basal ganglia, amygdala,
etc. But in this paper, the motion learning method is designed inspired by the integration
regulation mechanism of multiple brain regions. Thirdly, motion tasks of musculoskeletal robots
are different. In [31–38], a similar musculoskeletal robot was used to complete reaching random
target positions from a fixed starting location. But in this paper, the experimental task is
generalized. The musculoskeletal robot can be controlled to reach random target positions
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from random starting locations.

6 Conclusions and Future Work

Inspired by the structures and functions of basal ganglia and cerebellum, the bio-inspired
integration model of these two brain regions is proposed, which can effectively control the mus-
culoskeletal robot to complete random reaching tasks. Based on several neural properties of
the basal ganglia, it is modeled as an actor-critic architecture. According to the anatomy of
the cerebellum, it is modeled as a multi-layer forward network. Different from other methods
that dynamically combine the outputs of basal ganglia and cerebellum, the method of this
integration model simulates the subcortical interconnections of these two brain regions from a
new perspective. The basal ganglia critic network and the cerebellum network are responsible
for reward prediction estimation and sensory prediction evaluation respectively, and the basal
ganglia actor network outputs control commands. Meanwhile, for the sake of realizing the
exploration-exploitation trade-off in the learning process, the automating adjustment method
of policy target entropy and the dopaminergic experience replay method are proposed by using
the dynamic dopamine proportion hyperparameter. The integration model is biologically in-
terpretable and credible, and its learning efficiency and stability are pretty high. It can control
the musculoskeletal end-effector from random initial positions to random desired positions with
high precision and high robustness. Therefore, the bio-inspired integration model improves
the ability of motion learning and generalization of musculoskeletal robots. The proposed
method provides a reference idea for the interdisciplinary research of information science and
neuroscience, which is valuable for further carrying out robotics research by drawing on neural
mechanisms.

The limitations of this research are analyzed as follows. On the one hand, there is a lack of
reference of motion behavior to enable the musculoskeletal robot to produce more human-like
movements. On the other hand, the movement task of the musculoskeletal robot is relatively
simple. In future work, the methods of this paper will be further improved from the following
aspects. Firstly, draw lessons from the motion behavior research to optimize the movement
pattern of the musculoskeletal upper limb system. The multiple process model of goal-directed
reaching[75, 76] indicates that there exist two types of online regulation sequentially during a
single rapid aiming movement, namely impulse control and limb-target control. By introducing
these schemes into the state feedback of the integration model, it is not only conducive to
achieving dexterous and flexible robot operations, but also expected to realize speed-accuracy-
energy optimization. Secondly, perform diverse motion tasks to verify the effectiveness of the
methods. It is of great research value that controlling musculoskeletal robots to complete tasks
such as grasping, handling, and assembly. In order to accomplish these tasks, issues such as
trajectory planning[77, 78] and dual-arm cooperation[79, 80] need to be considered, which requires
adapting and improving certain components of the bio-inspired model in terms of different
tasks. It is of great significance for the future development and application of musculoskeletal
platforms.
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Appendix

A.1 Proof of Lemma 3.1

Proof Define the entropy augmented reward in the basal ganglia model as follows:

rπ (st,at) � r (st,at) + γαEst+1∼p [H (π (at+1|st+1))] . (A.1)

Rewrite the soft state-action value as follows:

Q (st,at)← r (st,at) + γEst+1∼p [V (st+1)]

← r (st,at) + γEst+1∼p,at+1∼π [Q (st+1,at+1)− α lnπ (at+1|st+1)]

← r (st,at) + γαEst+1∼p,at+1∼π [− lnπ (at+1|st+1)] + γEst+1∼p,at+1∼π [Q (st+1,at+1)]

← r (st,at) + γαEst+1∼p [H (π (at+1|st+1))] + γEst+1∼p,at+1∼π [Q (st+1,at+1)]

← rπ (st,at) + γEst+1∼p,at+1∼π [Q (st+1,at+1)] . (A.2)
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For (A1), the reward term r (st,at) is bounded, and the assumption ‖A‖∞ < ∞ guarantees
that the entropy term Est+1∼p [H (π (at+1|st+1))] is bounded, so that rπ (st,at) is bounded.
Leveraging the standard convergence results for policy evaluation, Qk → Qπ as k →∞.

A.2 Proof of Lemma 3.2

Proof For any policy πold ∈ Π , its soft state value and soft state-action value are V πold

and Qπold, respectively. According to the policy update rules for the integration model of
basal ganglia and cerebellum, obtaining a new policy πnew can be equivalently transformed into
solving the minimization problem as follows:

πnew (at|st) = arg min
π′∈Π

DKL

(
π′ (at|st)

∥∥∥∥exp
(

1
αQ

πold (st,at)
)

Zπold (st)

)
+ μ(ν(st))

= arg min
π′∈Π

Jπold (π′ (at|st)) + F(st),

(A.3)

where

Jπold (π′ (at|st)) � DKL

(
π′ (at|st)

∥∥∥∥exp
(

1
αQ

πold (st,at)
)

Zπold (st)

)

= DKL

(
π′ (at|st)

∥∥∥∥ exp
(

1
α
Qπold (st,at)− lnZπold (st)

))

=
∫
π′ (at|st) ln

π′ (at|st)
exp

(
1
αQ

πold (st,at)− lnZπold (st)
)dat

=
∫
π′ (at|st)

(
lnπ′ (at|st)−

1
α
Qπold (st,at) + lnZπold (st)

)
dat

= Eat∼π′

[
lnπ′ (at|st)−

1
α
Qπold (st,at) + lnZπold (st)

]
(A.4)

and
F(st) � μ(ν(st)). (A.5)

There must exist πnew that is not worse than πold in Π . The worst case is to let πnew = πold.
Thus,

Jπold (πnew (at|st)) + F(st) ≤ Jπold (πold (at|st)) + F(st). (A.6)

Substitute (A.4) and (A.5) into the above equation (A.6):

Eat∼πnew

[
lnπnew (at|st)−

1
α
Qπold (st,at) + lnZπold (st)

]
+ μ(ν(st))

≤Eat∼πold

[
lnπold (at|st)−

1
α
Qπold (st,at) + lnZπold (st)

]
+ μ(ν(st)). (A.7)

Zπold (st) and μ(ν(st)) depend only on st, which is generated by πold in (A.3), so they can be
directly canceled out. Further, both sides of the inequality are multiplied by α, which facilitates
calculation and does not affect the result:

Eat∼πnew [α lnπnew (at|st)−Qπold (st,at)] ≤ Eat∼πold [α lnπold (at|st)−Qπold (st,at)] . (A.8)
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Apply the definition (3) of soft state value function to the above inequality (A.8):

Eat∼πnew [Qπold (st,at)− α lnπnew (at|st)] ≥ V πold (st) . (A.9)

Equation (A.9) connects the trajectory generated by πnew with that generated by πold. Next
apply (A.9) to the soft Bellman equation:

Qπold (st,at)

=r (st,at) + γEst+1∼p [V πold (st+1)]

≤r (st,at) + γEst+1∼p
[
Eat+1∼πnew [Qπold (st+1,at+1)− α lnπnew (at+1|st+1)]

]
.

(A.10)

In the above inequality (A.10), at is all generated by πnew, and Qπold is pushed to the next time
t+ 1. Repeatedly, expand Qπold on the right-hand side of (A.10) by applying the soft Bellman
equation, and then replace the V πold with (A.9). Eventually, after all Qπold are replaced, the
right-hand side of (A.10) will become soft Bellman equations based on πnew. Then leveraging
Lemma 3.1, these terms all converge to Qπnew . Hence

Qπold (st,at) ≤ Qπnew (st,at) . (A.11)

A.3 Proof of Theorem 3.3

Proof Let πi denote the policy after i iterations of policy evaluation and policy improve-
ment. The soft state-value value sequence Qπi must satisfy two conditions. Firstly, according
to Lemma 3.2, Qπi+1 ≥ Qπi is always true, that is, Qπi is monotonically increasing. Secondly,
under the assumptions that reward and policy entropy are bounded, Qπ is bounded, so Qπi

converges to some π∗. For any π ∈ Π and π �= π∗, it must be case that

Jπ∗ (π∗ (at|st)) < Jπ∗ (π (at|st)) , (A.12)

where

Jπ∗ (π′ (at|st)) � DKL

(
π′ (at|st) ‖

exp
(

1
αQ

π∗
(st,at)

)
Zπ∗ (st)

)
. (A.13)

And then
Jπ∗ (π∗ (at|st)) + F(st) < Jπ∗ (π (at|st)) + F(st). (A.14)

Similar to the proof process in Lemma 3.2, it is easily deduced that

Qπ
∗
(st,at) > Qπ (st,at) , ∀ (st,at) ∈ S ×A. (A.15)

Hence π∗ is indeed the optimal policy in Π .


