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A Double-Hurdle Quantification Model for
Freezing of Gait of Parkinson’s Patients
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Abstract— Freezing of gait (FOG) leads to an increased
risk of falls and limited mobility in individuals with Parkin-
son’s disease (PD). However, existing research ignores the
fine-grained quantitative assessment of FOG severity. This
paper provides a double-hurdle model that uses typical
spatiotemporal gait features to quantify the FOG severity
in patients with PD. Moreover, a novel multi-output random
forest algorithm is used as one hurdle of the double-hurdle
model, further enhancing the model’s performance. We
conduct six experiments on a public PD gait database.
Results demonstrate that the designed random forest algo-
rithm in the double-hurdle model–hyperparameter indepen-
dence framework achieves outstanding performances with
the highest correlation coefficient (CC) of 0.972 and the low-
est root mean square error (RMSE) of 2.488. Furthermore,
we study the effect of drug state on the gait patterns of
PD patients with or without FOG. Results show that “OFF”
state amplifies the visibility of FOG symptoms in PD pa-
tients. Therefore, this study holds significant implications
for the management and treatment of PD.

Index Terms— Parkinson’s disease, freezing of gait, zero-
inflated data distribution, double-hurdle model, random for-
est algorithm, mixed-task learning, MRMR

I. INTRODUCTION

Freezing of gait (FOG) refers to a sudden and brief episode
where Parkinson’s disease (PD) patients have difficulty ini-
tiating or continuing their normal walking pattern, generally
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Fig. 1: The zero-inflated data distribution occurs when there
are more PD patients with FOG severity scores of 0 than
those with FOG severity scores greater than 0 in the collected
PD gait databases. This imbalanced data distribution brings a
significant challenge in accurately scoring the FOG severity
of PD patients.

occurring at the advanced stage of PD [1]. FOG can increase
the risk of falls and reduce mobility in patients with PD [2].
Therefore, it is crucial to timely and accurately quantify FOG
severity to help clinicians manage the FOG symptom more
effectively and minimize its impacts on the quality of life [3].

In clinical practice, the New Freezing of Gait Question-
naire (NFOG-Q) has been commonly used for subjectively
quantifying the FOG severity [4], [5]. However, the evaluation
outcomes obtained through the NFOG-Q primarily depend
on individual self-reporting and the experience of clinicians,
which leads to a certain degree of subjectivity and uncer-
tainty. With advancements in technology, researchers conduct
a comprehensive and quantitative assessment of FOG severity
in PD patients based on instrumented gait analysis [6], [7].
However, most studies focus on FOG severity in PD patients,
overlooking the fine-grained of the assessment.

FOG generally appears in the later period of PD [9]. Thus,
in PD gait databases, a significant portion of patients may not
suffer from the FOG symptom. According to the scoring rules
of NFOG-Q, the patients without FOG would receive a score
of zero, which can lead to the zero-inflated data distribution in
the collected databases and then bring a significant challenge
in quantifying FOG severity, as shown in Fig.1.
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Due to the zero-inflated data distribution, scoring FOG
severity is regarded as a particular case of data imbalanced
regression in this paper. Some solutions for the data imbal-
anced regression are helpful to address the zero-inflated data
distribution during scoring FOG severity, such as resampling
methods and reweighting methods [10], [11]. As one of the re-
sampling methods, synthetic minority over-sampling technique
(SMOTE) can create new PD patient samples for rare labels to
balance the sample distribution in the PD gait databases [12],
[13]. The limitation of SMOTE is that the PD patient samples
with high-dimensional features are challenging to generate.
The reweighting methods learn the distribution experience
from the train sample labels of PD patients and apply it as
prior knowledge to the loss function in the form of weight
[14], [15]. However, the reweighting methods are suitable for
scenarios with numerous PD patient samples.

The double-hurdle model is a widely employed solution to
solve the zero-inflated data distribution in statistical analysis
[16]. In this study, a novel double-hurdle model is designed to
address the zero-inflated data distribution that arises in the
FOG severity assessment. Instead of logistic regression or
truncated regression models, machine learning algorithms are
adopted as hurdles to make the model better for capturing non-
linear relationships in high-dimensional data. In the proposed
double-hurdle model, the first hurdle can identify the patients
with FOG and set up the FOG severity score of the patients
without FOG as zeros, while the second hurdle can score
the FOG severity of the patients with FOG. Additionally,
the other novelty of the double-hurdle model is the provided
two hyperparameter optimization paradigms: “hyperparam-
eter sharing paradigm” and “hyperparameter independence
paradigm”. The former paradigm uses constraints between
tasks to improve model robustness. In contrast, the latter
paradigm provides more flexible hurdle combinations for the
double-hurdle model.

Consequently, two tasks need to be accomplished in this
study: distinguishing individuals with FOG from PD patients
and assessing their FOG severity . Although these tasks fall
into the realms of classification and regression separately, they
are highly interrelated. This simultaneous learning paradigm
can reduce the risk of overfitting and strengthen the model’s
ability to predict the FOG severity of unseen PD patients
accurately [17].

In machine learning, multi-label algorithms can utilize the
same PD patients gait database to accomplish multiple classi-
fication tasks, while multi-regression algorithms can utilize the
same database to handle multiple regression tasks. However,
the algorithm that can simultaneously complete the classifi-
cation and regression tasks is the multi-output random forest
algorithm (MRF) proposed by Linusson et al. [18], which is
an extension of the random forest algorithm.

In this paper, a novel multi-output random forest algorithm
based on mixed-task learning, MGWRF, is provided as one
hurdle further to improve the performance of the proposed
double-hurdle model [19]–[21]. Compared with MRF, the pro-
posed MGWRF algorithm introduces a novel approach, called
deviation-based differential information entropy, to quantify
the gain of nodes for the regression task. The approach

not only includes differential information entropy but also
considers the predicted FOG scores, improving the algorithm’s
performance in scoring the FOG severity of PD patients.
Moreover, in the proposed MGWRF algorithm, the weighted
summation of information gains from two tasks is treated as
the total information gain of a decision node. The optimal
contribution level of each task towards the prediction results
is determined to enhance the algorithm’s performance in
identifying patients with FOG and predicting the FOG severity
of PD patients.

Finally, to investigate the effect of drug state on the gait pat-
terns of PD patients with or without FOG, the maximum rele-
vance minimum redundancy (MRMR) algorithm is employed
to identify the ten top important spatiotemporal gait features
that play a significant role in determining the performance of
the double-hurdle model. The main contributions of our work
can be summarised as follow:

1) To the best of our knowledge, this paper is the first to
conduct a fine-grained assessment of the FOG severity
in PD patients using the proposed double-hurdle model.

2) A novel multi-output random forest algorithm based on
mixed-task learning, MGWRF, is proposed to improve
further the double-hurdle model’s performance in scor-
ing FOG severity of PD patients.

3) The ten most significant spatiotemporal gait features are
selected using the MRMR algorithm to investigate the
impact of drug state on the gait patterns in PD patients
with or without FOG.

The rest of this paper is organized as follows. Section II
provides the related works. Section III describes the public
PD gait database and the data preprocessing methods. Section
IV introduces the double-hurdle model. Section V shows the
experiments and result analysis. Section VI concludes this
paper.

II. RELATED WORK

In recent years, numerous studies have concentrated on
quantitatively assessing FOG severity in PD patients through
instrumented gait analysis (IGA) [6], [7], [22].

Firstly, some studies employ the quantitative assessment
of FOG severity by detecting and analyzing FOG episodes
during the walking of PD patients. Sigcha et al. introduced
a Transformer-based model, significantly enhancing the ac-
curacy of FOG episode detection [23]. Borzì et al. further
advanced real-time FOG episode detection [24]. These ad-
vancements have considerably improved the practical appli-
cation of FOG episode detection algorithms. Notably, studies
have uncovered a correlation between FOG episodes and the
motor function of PD patients [25]. Zhang et al. discovered
a strong positive association between the duration of detected
FOG episodes and the patient’s Hoehn and Yahr (H&Y) stage
[26].

Secondly, other studies quantify FOG severity in PD pa-
tients by collecting and analyzing gait data during walking
processes where FOG episodes do not occur. These studies
eliminate the need to induce FOG episodes during walking
experiments, reducing data collection challenges. Aich et al.
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TABLE I: Extracted gait features from the raw spatiotemporal gait feature set XO

Groups Gait Features(unit)

Rhythm gait features Swing Phase Time(s); Stance Phase Time(s); Single Limb Support Time(s); Double Limbs Support Time(s);
Cadence(steps/minutes); Walk Ratio

Phase gait features Stance Phase (%); Swing Phase (%); Single Limb Support Phase (%); Double Limbs Support Phase (%)

Pace gait features Step Length (m); Stride Length (m); Speed (m/s)

Asymmetry gait features Stance Time Asymmetry; Swing Time Asymmetry; Step Length Asymmetry;
Stride Length Asymmetry; Step Width Asymmetry

Variability gait features Stance Time Variability; Swing Time Variability; Stride Length Variability; Step Length Variability;
Single Limb Phase Variability; Double Limbs Phase Variability; Step Length Variability

1 walk ratio =
step length(m)

cadence(steps/minute)

collected five gait parameters during walking and applied
SVM to identify PD patients with FOG, achieving an 89.14%
accuracy [27]. Park et al. extracted kinematic features during
turning and used Random Forest to distinguish PD patients
with FOG, obtaining a precision of 81.4% [28]. Kwon et al.
categorized FOG severity into four levels using the Movement
Disorder Society-Sponsored Revision of the Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS) and developed a
multi-task deep learning model, notably enhancing the F1-
score for FOG severity classification to 96.7% [29]. However,
these studies lack a fine-grained assessment of FOG severity.

This study uses the method, like the second kind of studies,
to evaluate FOG severity in PD patients. To refine the assess-
ment granularity, we utilize the NFOG-Q clinical scale to score
the FOG severity in PD patients. The range of FOG scores
spans from 0 to 28. Moreover, we develop a double-hurdle
model to address the zero-inflation problem, and the MGWRF
algorithm is proposed to improve the double-hurdle model’s
performance on quantitative FOG severity in PD patients.

III. MATERIALS

A. PD Gait Database
The PD gait database utilized in this study was obtained

from the Laboratory of Biomechanics and Motor Control at
the Federal University of ABC [30]. It comprised 13 patients
diagnosed with FOG (9 males and 4 females, age: 62±10
years, height: 165.6±7.4 cm, weight: 70.7±13.9 kg, NFOG-Q
score: 18.5±5.1) and 13 patients without FOG (11 males and
2 females, age: 66.5±8.6 years, height: 166.4±6.7 cm, weight:
72.1±11.4 kg, NFOG-Q score: 0±0). In addition, the PD gait
database provided 19 spatiotemporal gait features, including
Stance Time (s), Swing Time (s), Step Length (m), Cadence
(steps/s), Stride Length (m), Speed (m/s), Stride Width (m),
Double Limbs Support Time (s), Gait Cycle Time (s), and
so on. In the PD gait database, each patient perform walking
experiment in the “ON” and “OFF” states, and there are 3 PD
patients with missing experimental data in the “OFF” state.

B. Spatiotemporal Gait Feature Preprocessing
In this paper, the spatiotemporal gait features from the PD

gait database are utilized to evaluate FOG severity of 23 PD
patients who are in the “OFF” state. We denote the original
gait database as XO ∈ Rm×n×g , where m = 23, n = 19,

g = 20 represent the number of PD patients, the number of
gait features, and the number of gait cycles, respectively. After
expanding, nondimensionalizing, and reducing dimensionality
of the original dataset XO, we obtain the dataset XD ∈
Rm×p×q , where m = 23, p = 25, q = 1 represent the number
of PD patients, the number of gait features, and the number of
gait cycles, respectively [31]- [33]. Each gait feature value for
each participant in XD is the average of the corresponding
gait features in XO across all gait cycles. These 25 gait
features also can be categorized into five common groups [34],
including rhythm gait features, phase gait features, pace gait
features, asymmetry gait features, and variability gait features,
as illustrated in Table I. The higher variability and asymmetry
in gait features indicate weaker walking ability. A higher
walk ratio represents a more efficient walking pattern. Faster
walking speed indicates stronger walking ability. A longer
stance phase indicates potential balance issues. Pathological
gait may lead to shorter step and stride lengths to maintain a
certain speed.

IV. DOUBLE-HURDLE MODEL

A. Overall Framework

The double-hurdle model is proposed to quantify the FOG
severity of PD patients, as illustrated in Fig. 2. The first step
of this framework is the preprocessing of the original spa-
tiotemporal gait features XO and we obtain the dimensionless
feature set XD. This preprocessing includes feature extracting,
nondimensionalizing, reducing dimensionality and grouping.

In the second step, XD is standardized to mitigate the
impact of amplitude differences of gait features on the model’s
performance. Thus, we obtain the standardized gait feature
set XN ∈ Rm×p×q . Subsequently, utilizing the MRMR algo-
rithm, we select the k most important gait features to construct
the gait feature set XS ∈ Rs×k×q , where s, k represent
the number of PD patients and the number of selected gait
features. XS serves as the input for the double-hurdle model.
In this study, we exclusively employ the MRMR algorithm
within the classification task to complete gait feature selection.

In the third step, a double-hurdle model is developed to
address the zero-inflated data distribution when assessing the
FOG severity in PD patients. The first hurdle of the model aims
to classify the samples into two groups: the zero sample (ŷc =
0) representing patients without FOG, with a corresponding
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Fig. 2: The overall framework of double-hurdle model for quantifying FOG severity of PD patients.The detailed description
is present in section IV-A

FOG severity score of ŷr = 0, and the non-zero sample (ŷc =
1) indicating patients with FOG. The primary purpose of the
second hurdle is to predict the FOG severity score (ŷr) for the
patient with FOG. The FOG severity scores of PD patients
with FOG are constant values greater than 0.

The fourth step in the framework involves analyzing the
ten most important spatiotemporal gait features obtained from
the third step. This analysis aims to examine the effect of
drug state on walking ability and gait patterns of PD patients
with or without FOG. The effect analysis is presented in both
bar table and radar chart forms. Detailed discussions on the
analysis results will be presented in Section V-H.

B. MGWRF Algorithm
In this section, we improve the construction process of

decision tree, which involves the node splitting criterion and
the prediction mechanism of leaf node. Building on these
improvements, a novel multi-output random forest algorithm,
MGWRF, is introduced to leverage the improved decision
tree to handle both classification and regression tasks si-
multaneously. In this paper, the classification task involves
distinguishing PD patients with or without FOG, while the
regression task focuses on quantifying the FOG severity of
PD patients. This subsection provides a detailed explanation
of the improved construction process of decision tree and the
construction process of the MGWRF algorithm.

1) Construction Process of Improved Decision Tree: When
making predictions using a decision tree, the process starts
at the root node tr, as shown in Fig.3. The root node tr is
then split into child nodes according to a specific feature xs

i .
This process continues until reaching a leaf node tf . Then, the
predicted category value ŷc or regression value ŷr is obtained
according to the prediction mechanism of leaf node. During
the construction process of decision trees, we refer to the
root node and child nodes as decision nodes td. Therefore,
the construction process of the decision tree needs to solve
two key problems. The first is to choose which feature xs

i for

the splitting of the decision node td; the second is when to
stop the node’s splitting and how to predict the value of the
classification result ŷc or the value of the regression result ŷr
to the leaf nodes tf .

In this paper, we utilize the information gain criterion to
select the gait feature xs

i for splitting the decision node.
Compared with using other gait features, the information gain
of the decision node is the largest after using the selected gait
feature xs

i to divide the decision node td. Drawing inspiration
from Linusson et al. [18], we design a function to calculate
the information gain of decision nodes, which simultaneously
considers both classification and regression tasks. The function
involves the following four steps. In the first step, for the
classification task C, the information entropy H(·) of the
decision node td is computed as the Shannon entropy, as
shown in the equation (1).

HC(td) = −
2∑

c=1

pc log pc, (1)

where pc represents the probability of the class label c in the
decision node td. In our study, there are two types of class
labels: c = 1 corresponds to patients without FOG, and c = 2
corresponds to patients with FOG. The entropy value HC(td)
of the decision node td is normalized to compare information
entropy values across different tasks, as shown in equation (2).

Hnorm,C(td) =
HC(td)

HC(tr)
, (2)

Then, the feature xs
i is used to part the current decision node

td into M decision nodes td+1,m,m = 1, 2, ...,M . After
split based on the gait feature xs

i , the information entropy
Hnorm,C(td | xs

i ) of the node td is calculated using the
following equation (3).

Hnorm,C(td | xs
i ) =

M∑
m=1

|Sm|
|S|

Hnorm,C(td+1,m), (3)
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Fig. 3: Construction process of the improved decision tree. At the beginning, the root node tr is split into decision nodes td
according to the selected gait feature xs

8. This process continues until reaching a leaf node tf . The values of the leaf node tf
are set up to the class with the highest probability among the corresponding PD patient samples for the classification task C
and the mean regression label value of the corresponding PD patient samples for the regression task R.

where |Sm| and |S| represent the number of samples in the
decision nodes td and td+1,m respectively.

In the second step, the deviated-based differential entropy
HR(·) of the decision node td is proposed for the regression
task, as shown in the following equation (4).

HR(td) = −
∫
∆YR

f(∆yr) log f(∆yr)d∆yr, (4)

where f(·) represents the probability density function of
regression label set ∆YR. In this set, ∆yr,j is computed as the
difference between the true regression label yr,j and the mean
value ȳr of the true regression labels in the node td. Similar
to the first step, for the regression task R, the deviated-based
differential entropy Hnorm,R(td) of the decision node td is
normalized using the following equation (5). After divided by
using the feature xs

i , the entropy value Hnorm,R(td | xs
i ) of

the decision node td is calculated using the equation (6).

Hnorm,R(td) =
HR(td)

HR(tr)
, (5)

Hnorm,R(td | xs
i ) =

M∑
m=1

|Sm|
|S|

Hnorm,R(td+1,m), (6)

In the third step, each decision node’s information gain
IGT (td | xs

i ) is calculated using the equation (7).

IGT (td | xs
i ) = Hnorm,T (td)−Hnorm,T (td | xn

i ), (7)

where T represents the classification task C or the regression
task R.

In the fourth step, the total information gain IG(td | xs
i ) of

the decision node td is calculated as the weighted summation
of the information gains for all tasks, as shown in the following
equation (8).

IG(td | xs
i ) = ω ∗ IGC(td | xs

i )+(1−ω) ∗ IGR(td | xs
i ), (8)

where the range of the weight ω is [0, 1].
The prediction mechanism of leaf node is designed to

address the second problem. Firstly, if a decision node td
contains less than two samples, the splitting process is im-
mediately stopped and the decision node td is designated as
the leaf node tf . Secondly, for the classification task C, the

value of the leaf node tf is set up to the class with the highest
probability among the corresponding training samples. Lastly,
for the regression task R, the value of the leaf node tf is set
up to the mean regression label value of the corresponding
training samples.

2) Construction Process of MGWRF Algorithm: Based on the
construction process of the improved decision tree, this paper
introduces the MGWRF algorithm’s construction process to
distinguish PD patients with or without FOG and quantify the
FOG severity of PD patients. In the first step, we randomly
extract P sample subsets from N PD patient gait data samples.
Subsequently, we utilize these P sample subsets to construct
P decision trees according to the construction process of the
improved decision tree. Finally, we combine the outputs from
all the decision trees to obtain the output result of the MGWRF
algorithm. In the classification task, each decision tree is
employed to determine whether the test PD patient suffers or
does not suffer FOG. The predictions from all decision trees
are aggregated, and the category with the highest number of
votes becomes the final outcome of the MGWRF algorithm.
In the regression task, the output produced by the MGWRF
algorithm is the mean of the outputs generated by all decision
trees.

V. EXPERIMENT AND RESULT ANALYSIS

A. Experiment Setup
1) Training and Testing Strategies: In this study, we repeat

five times five-fold cross-validation on the whole PD gait
dataset to evaluate the performance of all algorithms. In each
time of five-fold cross-validation, the whole PD gait dataset is
split into five folds at the patient level but not the gait cycle
level. The feature selection is performed on the folds used for
training.

This paper introduces a double-hurdle model for evaluating
the severity of FOG in each patient with PD. In this model,
the first hurdle identifies PD patients with FOG and assigns a
severity score of 0 to those without FOG. The second hurdle
quantifies the FOG severity in PD patients who experience
it. The training and testing procedures of the double-hurdle
model are elaborated in detail in Fig. 4. During the training
phase, the following steps are performed. First, the PD gait
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TABLE II: Results in single model framework

Experiment Types Algorithms Classification Metrics Regression Metrics
ACC Pre Rec F1 score CC RMSE

Comparison Experiment
SVM 0.843±0.135 1.000±0.000 0.667±0.279 0.767±0.200 0.830±0.140 9.152±1.755
MLP 0.817±0.186 0.833±0.211 0.833±0.211 0.820±0.183 0.533±0.471 8.273±1.423
RF 0.917±0.105 0.950±0.100 0.900±0.200 0.905±0.131 0.855±0.121 6.483±3.542

Ablation Experiment

MRF 0.917±0.105 1.000±0.000 0.833±0.211 0.893±0.137 0.778±0.110 9.199±2.601
MGRF 0.917±0.105 1.000±0.000 0.833±0.211 0.893±0.137 0.882±0.093 9.024±1.919
MWRF 0.950±0.100 1.000±0.000 0.900±0.200 0.933±0.133 0.888±0.096 9.124±1.435

MGWRF(Ours) 0.933±0.133 1.000±0.000 0.867± 0.267 0.900±0.200 0.924±0.075 8.940±2.335

PD  patients with 
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𝑋𝑋𝐷𝐷 for training

Data Standardizing

Feature Selection

Training Phase

FOG Score = 0

PD Patients 
with FOG
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Double – Hurdle Model for Training

Data Standardizing
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Hurdle1

Hurdle2

Hurdle1 Hurdle2

Trained Double – Hurdle Model

PD  patients with 
feature set 

𝑋𝑋𝐷𝐷 for testing

PD  patients with 
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PD  patients with 
feature set 𝑋𝑋𝑆𝑆

PD Patients 
without FOG

Fig. 4: Training and testing strategies for the double-hurdle
model.

database for training is standardized, and then the MRMR
algorithm is employed to select the k most important gait
features from the training database. Next, using the training
database with the selected gait features, the first hurdle is
trained to classify patients into the two groups, i.e., patients
with FOG and patients without FOG. Finally, the second
hurdle is trained using the selected gait features from the
training database, which exclusively includes patients with
FOG. During the testing phase, the same preprocessing step
is applied to the test samples as we do during the training
phase. Next, the first hurdle is utilized to determine whether
a sample should be classified as 0 or 1. A classification of
0 indicates that the sample represents a PD patient without
FOG symptom, resulting in a FOG severity score of 0 for
the patient. Conversely, a classification of 1 indicates that
the sample represents a PD patient with FOG. In this case,
the second hurdle is employed to predict the patient’s FOG
severity score.

2) Algorithms for Comparison: In this paper, different algo-
rithms are used as hurdles to study the performance of the
double-hurdle model. Several advanced algorithms are evalu-
ated in our study, including Support Vector Machine (SVM),
Multilayer Perceptron (MLP), RF, and MRF. Compared with
the MGWRF, MRF uses differential entropy to calculate the
information gain of the decision node in the regression task
and selects either the mean value, maximum value, or a
random value of the decision node’s information gains in
different tasks as the information gain of the decision node.
In addition, to verify the performance of MGWRF designed

in this paper, its two variants are proposed by this paper,
including MGRF and MWRF. Compared with MRF, MGRF
uses the deviation-based differential entropy to calculate the
information gain of the decision node in the regression task
and MWRF uses the weighted sum of the information gains
of the decision node in different tasks as the information gain
of the decision node.

The paper explores the influence of different hyperparame-
ters of various algorithms on the performance of double-hurdle
model. Specifically, the number of gait features k is varied
within the range of 8 to 20. For SVM, the hyperparameters
‘c’ and ‘gamma’ are constrained within the range [0, 1]. MLP
utilizes varying hidden layer sizes, specifically 16, 32, or 64,
and offered multiple activation functions: ‘relu’, ‘identity’,
‘logistic’, or ‘tanh’. In the case of RF, MRF, MGRF, MWRF,
and MGWRF, they all have 8 to 21 estimators. For MWRF and
MGWRF, the weights w of the information gains for different
tasks are limited to the range [0, 1]. The grid search method
is used to find the optimal hyperparameters of each algorithm.
All machine learning algorithms are built using scikit-learn.

3) Evaluation Metrics: Several common metrics are used
to evaluate the performance of the first hurdle in identifying
PD patients with or without FOG, including accuracy (Acc),
precision (Pre), recall (Rec), F1 score (F1), and area under
receiver operating characteristic (ROC) curve (AUC). The
evaluation metrics used for testing the performance of the
double-hurdle model in quantifying FOG severity are root
mean square error (RMSE) and correlation coefficient (CC).
We calculate the mean and standard deviation of each metric
in all folds to indicate the performance of the double-hurdle
model.

B. Results in Single Model Framework

1) Result Analysis in Comparison Experiment: In the com-
parison experiment, the RF algorithm achieves the best per-
formance in identifying PD patients with or without FOG.
Compared with RF, the MGWRF algorithm demonstrates
some improvements in various aspects. It achieves a 0.016
increase in Acc, a notable 0.069 increase in CC, and a 2.457
increase in RMSE. Additionally, the F1 score of the MGWRF
algorithm surpasses that of SVM and MLP by 0.133 and 0.08,
respectively. Moreover, the RMSE of MGWRF is 0.212 lower
than that of SVM. These results validate the effectiveness
of the mixed-task learning paradigm, which can improve the
performance of the RF algorithm on each task. Additionally,
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TABLE III: Results in double-hurdle model – hyperparameter sharing framework

Experiment Types Algorithms Classification Metrics Regression Metrics
Acc Pre Rec F1 score CC RMSE

Comparison Experiment
SVM-SVM 0.843±0.135 1.000±0.000 0.667±0.279 0.767±0.200 0.862±0.114 6.072±2.146
MLP-MLP 0.793±0.112 0.933±0.133 0.667±0.279 0.727±0.167 0.819±0.089 6.880±2.220

RF-RF 0.900±0.122 0.933±0.133 0.900±0.200 0.893±0.137 0.874±0.111 6.215±2.710

Ablation Experiment

MRF-MRF 0.883±0.145 1.000±0.000 0.767±0.291 0.893±0.211 0.911±0.103 4.269±2.632
MGRF-MGRF 0.917±0.105 1.000±0.000 0.833±0.211 0.893±0.137 0.924±0.948 3.967±2.770
MWRF-MWRF 0.917±0.105 0.933±0.133 0.933±0.133 0.920±0.098 0.920±0.105 3.948±2.551

MGWRF-MGWRF(Ours) 0.967±0.067 1.000±0.000 0.933±0.133 0.960±0.080 0.939±0.109 3.767±1.991

SVM(AUC = 0.455) 
MLP (AUC=0.864) 
RF (AUC=0.917) 
MGWRF (AUC=0.973)
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Fig. 5: ROC curves of algorithms in single model framework. (a) ROC curves of various algorithms in comparison experiment,
including that SVM, MLP, RF, MGWRF. (b) ROC curves of algorithms in ablation experiment, including MRF, MGRF, MWRF,
MGWRF.

Fig.5(a) illustrates the ROC curve of each algorithm in the
comparison experiment. The MGWRF algorithm achieves the
highest AUC of 0.973, which is increased by 0.056, 0.109,
0.518 than RF, MLP, and SVM, respectively.

2) Result Analysis in Ablation Experiment: In ablation ex-
periment, the MGWRF algorithm demonstrates superior per-
formance in identifying patients with or without FOG, as
shown in Table II. It achieves an Acc of 0.933, a Pre of
1.000, a Rec of 0.867, and an F1 score of 0.900. Compared to
MWRF, the MGWRF algorithm experiences a slight decrease
of 0.017 in Acc and 0.033 in Rec. However, the MGWRF
algorithm excels with a CC of 0.924 and an RMSE of 8.940
in scoring the FOG severity. Additionally, Fig.5(b) illustrates
the ROC curve of each algorithms in the ablation experiment.
The MGWRF algorithm achieves the highest AUC of 0.973,
which is increased by 0.030, 0.034, 0.041 than MRF, MGRF,
and MWRF, respectively. The oscillations in the ROC curves
of SVM and MLP indicate their lower effectiveness than
RF-based algorithms in detecting the PD patients with FOG
symptoms. These findings indicate that the MGWRF algorithm
proposed in this paper effectively utilizes shared knowledge
from different tasks to enhance its performance in assessing
the FOG severity of PD patients.

C. Results in Double-Hurdle Model – Hyperparameter
Sharing Framework

1) Result Analysis in Comparison Experiment: In compari-
son experiment, the RF-RF model achieves exceptional results
with the highest Acc of 0.900, and the highest F1 score of

0.893, as shown in Table III. Compared with the RF-RF model,
the MGWRF-MGWRF model outperforms the RF-RF model
in several metrics. It improves Acc by 0.067, F1 score by
0.067, CC by 0.065, and reduces RMSE by 2.448. These
results demonstrate the mixed-task learning paradigm can help
the RF algorithm use the shared knowledge between tasks to
improve its performance in quantifying the FOG severity of
PD patients.

2) Result Analysis in Ablation Experiment: In the ablation
experiment, the MGWRF-MGWRF model achieves remark-
able performance in quantifying the FOG severity of PD
patients. It obtains the highest Acc of 0.967, surpassing the
MRF-MRF model by 0.084 and outperforming MGRF-MGRF
and MWRF-MWRF models by 0.05, as shown in Table III.
These results highlight the ability of the MGWRF-MGWRF
model to leverage the shared information between different
tasks, improving the performance of the double-hurdle model
in quantifying the FOG severity of PD patients.

3) Result Analysis in Frameworks Comparison: The perfor-
mance of models in the double-hurdle model–hyperparameter
sharing framework does not show significant differences in
distinguishing PD patients with or without FOG than the
corresponding models in the single model framework. This
phenomenon occurs because these models in the double-hurdle
framework employ the same hyperparameters and use grid
search to find optimal hyperparameters for the classification
task, just like their counterparts in the single model frame-
work. For the regression task, the models in the double-
hurdle model–hyperparameter sharing framework outperform
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TABLE IV: Results in double-hurdle model – hyperparameter independence framework

Experiment Types Algorithms Classification Metrics Regression Metrics
Acc Pre Rec F1 score CC RMSE

Comparison Experiment

MGWRF-SVM 0.950±0.100 1.000±0.000 0.900±0.200 0.933±0.133 0.924±0.094 5.176±2.589
MGWRF-MLP 0.967±0.067 1.000±0.000 0.933±0.133 0.950±0.080 0.919±0.121 5.925±2.564
MGWRF-RF 0.950±0.100 1.000±0.000 0.900±0.200 0.933±0.133 0.923±0.088 4.854±2.531

Ablation Experiment

MGWRF-MRF 0.950±0.100 1.000±0.000 0.900±0.200 0.933±0.133 0.928±0.093 4.117±2.874
MGWRF-MGRF 0.933±0.133 1.000±0.000 0.867±0.267 0.900±0.200 0.955±0.072 3.300±1.857
MGWRF-MWRF 0.967±0.067 1.000±0.000 0.933±0.133 0.960±0.080 0.972±0.047 3.024±1.672

MGWRF-MGWRF(Ours) 0.967±0.067 1.000±0.000 0.933±0.133 0.960±0.080 0.972±0.050 2.488±1.869

TABLE V: Results in comparison experiment with deep learning algorithms

Experiment Types Model Classification Task Regression Task
ACC Pre Rec F1 score CC RMSE

Single-task Learning

CNN-LSTM 0.733±0.226 0.667±0.279 0.800±0.245 0.700±0.245 0.780±0.129 9.234±1.224
ResNet 0.700±0.292 0.600±0.490 0.533±0.452 0.560±0.463 0.755±0.128 4.690±0.063
TCNet 0.800±0.187 0.767±0.291 0.833±0.211 0.773±0.225 0.638±0.112 11.238±1.866

FT-Transformer 0.883±0.145 0.767±0.291 0.933±0.133 0.793±0.245 0.767±0.350 5.349±2.867

Multi-task Learning

CNN-LSTM 0.513±0.086 0.400±0.490 0.180±0.223 0.248±0.305 0.596±0.292 11.629±2.526
ResNet 0.620±0.194 0.500±0.447 0.400±0.374 0.433±0.389 0.518±0.135 5.221±0.301
TCNet 0.470±0.117 0.200±0.400 0.100±0.200 0.133±0.267 0.549±0.330 4.067±1.822

FT-Transformer 0.533±0.323 0.667±0.422 0.600±0.374 0.567±0.327 0.791±0.261 2.394±2.092

CNN-LSTM∗ 0.487±0.086 0.600±0.490 0.267±0.226 0.367±0.306 0.779±0.087 10.332±2.317
ResNet∗ 0.470±0.117 0.700±0.400 0.367±0.194 0.480±0.261 0.553±0.277 6.106±3.057
TCNet∗ 0.563±0.127 0.700±0.400 0.480±0.319 0.514±0.260 0.590±0.238 12.839±1.789

Double-hurdle Model FT-Transformer∗ 0.630±0.218 0.700±0.400 0.580±0.382 0.581±0.325 0.514±0.512 4.923±2.418

MGWRF-MGWRF∗ 0.967±0.067 1.000±0.000 0.933±0.133 0.960±0.080 0.939±0.109 3.767±1.991
MGWRF-MGWRF∗∗ 0.967±0.067 1.000±0.000 0.933±0.133 0.960±0.080 0.972±0.050 2.488±1.869

∗
indicates that the algorithm serves as the hurdle in the hyperparameter sharing framework of the double-hurdle model.

∗∗
indicates that the algorithm serves as the hurdle in the hyperparameter independence framework of the double-hurdle model.

the counterparts in the single model framework. For instance,
compared to the MGWRF model, the MGWRF-MGWRF
model increases the CC by 0.031 and decreases the RMSE by
5.315. As a result, the double-hurdle model–hyperparameter
sharing framework offers an effective solution to the zero-
inflated data distribution.

D. Results in Double-Hurdle model – HyperParemeter
Independence Framework

1) Result Analysis in Comparison Experiment: Table IV
presents the results of all models in the double-hurdle model–
hyperparameter independence framework. Whether in com-
parison experiment or in ablation experiment, all models
exhibit the same ability to identify PD patients with FOG.
This consistency is achieved by employing MGWRF as the
first hurdle of the double-hurdle model, ensuring optimal
performance of the double-hurdle model on the classification
task. Compared to the MGWRF-MLP model, the CC of the
MGWRF-MGWRF model improves by 0.053. Compared to
the MGWRF-RF model, the RMSE of the MGWRF-MGWRF
model decreases by 2.366, as shown in Table IV. These
findings further validate the mixed-task paradigm can help the
RF algorithm leverage shared information between different
tasks to enhance the double-hurdle model’s performance in
assessing the FOG severity of PD patients.

2) Result Analysis in Ablation Experiment: In ablation ex-
periment, the MGWRF-MGWRF model achieves outstanding

results with the highest CC of 0.972 and the lowest RMSE of
2.488, as shown in Table IV. The RMSE of the MGWRF-
MGWRF model has a 95% confidence interval of (1.716,
3.259), calculated using the t-test. Furthermore, the MGWRF-
MGWRF model demonstrates a strong correlation (correlation
coefficient = 0.972, p-value = 3.567e-12 < 0.05) with the
NFOG-Q clinical scale. These findings demonstrate that the
MGWRF algorithm can capture the shared knowledge between
classification and regression tasks to improve its ability to
address the zero-inflated data distribution arising in assessing
the FOG severity of PD patients.

3) Result Analysis in Frameworks Comparison: Compared
to the previous two frameworks, the double-hurdle model–
hyperparameter independence framework offers a more flex-
ible combination of algorithms, improving the performance
of the double-hurdle model in assessing FOG severity of
PD patients, as shown in Table II, III, IV. Therefore, the
double-hurdle model with the “hyperparameter independence
paradigm” is also a more effective solution to the zero-inflated
data distribution than the single model framework and the
double-hurdle model–hyperparameter sharing framework.

E. Comparison Study with Deep Learning Algorithms
We compare the proposed MGWRF-MGWRF model with

state-of-the-art (SOTA) deep learning algorithms, including
Convolutional Neural Network - Long Short-Term Mem-
ory (CNN-LSTM) [36], Residual Networks [37], Temporal
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Fig. 6: Results from interpretability study for the double-hurdle model. The top part visualizes the zero-inflated problem in the
PD gait dataset. The first hurdle divides the PD gait dataset with imbalanced samples into two sub-datasets with a relatively
balanced sample distribution. The middle part illustrates the distribution of samples in the two sub-datasets. The bottom part,
from left to right, shows the performance of the double-hurdle model–hyperparameter independence framework, the double-
hurdle model–hyperparameter sharing framework, and the single model framework in quantitatively assessing the FOG severity
of PD patients.

TABLE VI: The structure of deep learning algorithms

Algorithms Module1 Module2 Module3 Module4

CNN-LSTM[1] ConvBlock1
+ ConvBlock2 2×LSTM Pool&Flatten

+ FC1

FC2
FC3

ResNet[2] ConvBlock1 2×ResBlocks
Pool&Flatten

TCNet[3] ConvBlock1 2×TCBlocks

FT-Transformer[4] FT-Transformer Module

Convolutional Networks (TCN) [38], and Feature Tokenizer
- Transformer (FT-transformer) [39]. These algorithms are
widely used in the field of IGA [32]. The structures of the
deep learning algorithms based on multi-task learning are
illustrated in Table VI. ConvBlock comprises 1D convolutional
layer with a kernel size of 3, followed by 1D BatchNorm,
ReLU, and Max-Pooling with a kernel size of 2. The input
and output sizes of the 1D convolutional layers are as follows:
1×16 for ConvBlock1, 16×32 for ConvBlock2, and 32×16 for
ConvBlock3. The LSTM layer has an input size of 6 and a
hidden size of 16. The ResBlock replicates the configurations
of ConvBlock2 and ConvBlock3. In TCBlock, there are two

dilated causal convolutions with the input and output sizes of
16×32 and 32×16, the kernel size of 3 and 3, the dilation sizes
of 1 and 2, and the padding sizes of 1 and 2, respectively. The
FT-Transformer is implemented using the rtdl package, with
25 input features and an output dimension of 16. Pool&Flatten
consists of an 1D AdaptiveAvgPool layer with an output
dimension of 1 and a Flatten layer. Table VI illustrates three
fully connected layers: FC1, FC2, and FC3, with input and
output sizes of 32×16, 16×2, and 32×1, respectively. FC2 is
utilized for the classification task, while FC3 is employed for
the regression task.

We optimize deep learning algorithms using the Adam
optimizer with a default learning rate of 1e-3. Cross-entropy
loss is used for the classification task, while Mean Squared
Error (MSE) loss is employed for the regression task. For
multi-task learning, we combine both loss functions. Perfor-
mance evaluation is conducted via five times five-fold cross-
validation. All deep learning algorithms are conducted on a
workstation equipped with an Intel Core i7-8700 CPU with
6 cores and a base frequency of 3.20 GHz. The training of
deep learning algorithms is performed using PyTorch version
1.13.1 and Python version 3.8.16.
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Fig. 7: Results from trade-off analysis of double-hurdle model. There are two subplots (a, b) showcasing the validation curves
for MGWRF-MGWRF in the hyperparameter sharing framework and MGWRF-MGWRF in the hyperparameter independence
framework. The x-axis of a and b is composed of pairs of data, where the first position of the data represents the number of
decision trees in the first hurdle of the double-hurdle model, and the second position represents the number of decision trees
in the second hurdle. When the number of decision trees reaches the dotted line, the model achieves its optimal performance.

Table V summarizes the experiment results for all al-
gorithms across different experiment types. Our MGWRF-
MGWRF model outperforms deep learning algorithms in
classification and achieves lower RMSE values. This suggests
that deep learning algorithms may not fully utilize their
feature extraction capabilities for FOG severity assessment.
Furthermore, deep learning algorithms based on double-hurdle
models exhibit less effective performance on both tasks, due
to their higher model complexity. In contrast, the proposed
MGWRF-MGWRF model excels at learning features from
small datasets, resulting in superior performance in identifying
PD patients with FOG and quantifying the FOG severity of
all PD patients.

F. Interpretability Study of Double-Hurdle Model
To illustrate the advantages of the double-hurdle model

with an additional classification hurdle, we introduce an in-
terpretable study for the model, as shown in Fig.6. From the
middle part of Fig.6, whether in the hyperparameter sharing
framework or the hyperparameter independence framework,
the first hurdle can effectively identify PD patients with FOG
symptoms and divide the PD gait dataset into two sub-datasets
with a relatively balanced sample distribution: the sub-dataset1
for Parkinson’s patients without FOG and the sub-dataset2
for those with FOG. In the sub-dataset1, the severity scores
of FOG symptoms are concentrated at 0 points. In the sub-
dataset2, the distribution of severity scores for FOG symptoms
is relatively balanced than the PD gait dataset. Therefore, the
double-hurdle model can significantly improve the quality of

the dataset, alleviating the impact of the zero-inflated problem
on quantitatively scoring FOG severity in PD patients.

From the bottom of Fig.6, it can be observed that, in both the
hyperparameter sharing framework and the hyperparameter in-
dependence framework, the double-hurdle model outperforms
the single hurdle model in assessing FOG severity of PD
patients. This further indicates that the additional classification
hurdle can help the double-hurdle model effectively address
the impact of zero-inflated problem on the quantitative assess-
ment of FOG severity.

G. Trade-off Analysis of Double-Hurdle Model
The validation curve is utilized to explore the trade-off

between the complexity and performance of the double-hurdle
model. Complexity is measured by the number of decision
trees in the model, while performance is assessed using
RMSE and CC metrics. We perform 5 iterations of 5-fold
cross-validation and compute the mean of these results to
represent the performance of the double-hurdle model. The
trade-off analysis results for two models, MGWRF-MGWRF
in the hyperparameter independence framework and MGWRF-
MGWRF in the hyperparameter sharing framework, are de-
picted in Fig.7.

It is evident that under the hyperparameter sharing frame-
work, MGWRF-MGWRF achieves optimal performance when
the number of decision trees is set to (19, 19), resulting
in an RMSE of 3.767 and a CC of 0.939, as shown in
Fig.7. Therefore, when performing the trade-off analysis of the
double-hurdle model under the hyperparameter independence
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feature 1 2 3 4 5 6 7 8 9 10
NFOG-OFF 0.037 0.035 0.041 0.030 0.613 0.653 0.597 0.326 0.992 0.838
FOG-OFF 0.113 0.070 0.122 0.064 0.669 0.475 0.421 0.237 1.012 0.647
NFOG-ON 0.003 0.036 0.033 0.029 0.610 0.709 0.660 0.354 0.990 0.898
FOG-ON 0.053 0.045 0.056 0.038 0.634 0.601 0.564 0.300 0.986 0.761
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Fig. 8: Bar plot illustrates the effects of drug state on gait
features of PD patients with or without FOG. The horizontal
axis of the bar plot represents ten gait features. The features
denoted by numbers 1 to 10 correspond to the following gait
spatiotemporal features: Stride Length Variability, Swing Time
Variability, Step Length Variability, Single Limb Support Time
Variability, Stance Phase, Stride Length, Speed, Step Length,
Stance Time Asymmetry, and Walk Ratio, respectively. The
vertical axis represents the mean value of each gait features
in the corresponding group.

framework, we adjust only the number of decision trees in the
second hurdle while keeping the number of decision trees in
the first hurdle constant at 19. In the hyperparameter indepen-
dence framework, the double-hurdle model achieves optimal
performance when the number of decision trees reaches (19,
9), obtaining a CC of 0.967 and an RMSE of 2.488. Due
to its more flexible hyperparameter combination schemes, the
independence framework demonstrates superior performance
in FOG severity assessment compared to the hyperparameter
sharing framework. In conclusion, the proposed double-hurdle
model with its unique structure effectively solves the zero-
inflated problem, achieving the most optimal performance in
the FOG severity assessment of PD patients.

H. Effect of Drug State on Gait Patterns of PD Patients

Based on the above experiment results, we further study
the effect of drug state on PD patients with or without FOG,
which can provide more valuable perspectives for treating and
managing PD. In each iteration of five-fold cross validation,
we obtain five gait feature sets using MRMR algorithm. Each
gait feature set has k gait features and their importance scores.
Here, we aggregate the gait features from the all gait feature
sets and select the 10 gait features with the top importance
scores. These selected features encompass Stride Length Vari-
ability, Swing Time Variability, Step Length Variability, Single
Limb Support Time Variability, Stance Phase, Stride Length,
Speed, Step Length, Stance Time Asymmetry, and Walk Ratio.
Notably, the selected features are consistent with the results
in the previous literature [31]. Based on the medication states,
the patients from the public PD gait database are categorized
into four groups: “NFOG-ON”, “FOG-ON”, “NFOG-OFF”,
and “FOG-OFF”, where “NFOG-ON” refers to PD patients
without FOG in the “ON” drug state. Fig. 8 illustrates the mean
values of various gait features across different patient groups.
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Fig. 9: Radar plots illustrate the effects of drug state on the
gait patterns of PD patients with or without FOG. The features
denoted by numbers 1 to 10 are the same as those from the
Fig.8.

Compared to the “FOG-ON” group, the “NFOG-ON” group
exhibits a significant increase of 17.97% in Stride Length,
17.02% in Speed, 18% in Step Length, and 18% in Walk Ratio.
Conversely, Stride Length Variability, Swing Time Variability,
Step Length Variability, and Single Limb Support Variability
decrease by 94.34%, 20%, 41.07%, and 23.68%, respectively.
These findings suggest that FOG symptom leads to decreased
pace gait features and increased gait variability of PD patients,
resulting in reduced walking consistency and increased risk
of falls. This observation aligns with prior research findings
documented in the existing literature [31]. Furthermore, “OFF”
drug state makes FOG symptoms more visible in PD patients.

This paper utilizes the radar chart to visually depict the ef-
fects of drug state on PD patients with or without FOG, shown
in Fig. 9. Additionally, we apply the Procrustes algorithm
to calculate the similarity between gait patterns of different
groups under various medication states [35]. A lower similarity
score indicates a higher resemblance between two gait shapes.
In the “OFF” state, the gait shape similarity between the
“NFOG-OFF” and “FOG-OFF” groups is 0.034. Conversely,
in the “ON” state, the gait shape similarity between the
“NFOG-ON” and “FOG-ON” groups is 0.008, which is less
than 0.034. These findings suggest that in the “OFF” state,
the gait patterns of PD patients with FOG significantly differ
from those without FOG, more prominently than in the “ON”
state. Therefore, the “OFF” state accentuates the abnormality
in gait shape, making FOG symptoms more discernible. In
conclusion, our study provides evidence that the “OFF” state
amplifies the visibility of FOG symptoms in PD patients,
highlighting the importance of considering medication states
when assessing FOG severity in PD.

VI. DISCUSSION AND CONCLUSION

This paper proposes a double-hurdle model for assessing
FOG severity of PD patients. Firstly, our study quantifies the
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FOG severity using gait data from PD patients during periods
without FOG episodes. This approach simplifies experimental
setups and reduces the risk of falls to PD patients compared
to previous studies [23]–[26]. Secondly, unlike prior works
that classify FOG severity into binary or five-class categories,
our study offers a finer granularity assessment on a score
scale from 0 to 28. Finally, using histogram and radar chart
techniques, we demonstrate that FOG correlates with reduced
gait pace and increased gait variability, consistent with findings
in prior literature [31]. Additionally, the proposed MGWRF-
MGWRF outperforms other machine learning algorithms and
deep learning algorithms in identifying PD patients with FOG
and quantifying the FOG severity of all PD patients [36]–[39],
as detailed in Section V.

However, the relatively smaller number of patients may limit
the generalizability of our study. In the future, more gait data
from PD patients will be collected to verify further the double-
hurdle model’s effectiveness. Furthermore, we will incorporate
data from additional modalities to enrich the evaluation of
FOG in PD patients, offering a more profound understanding
of FOG symptoms.
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