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Abstract. Exploration is a major challenge in deep reinforcement learn-
ing, especially in cases where reward is sparse. Simple random explo-
ration strategies, such as ε-greedy, struggle to solve the hard exploration
problem in the sparse reward environment. A more effective approach
to solve the hard exploration problem in the sparse reward environment
is to use an exploration strategy based on intrinsic motivation, where
the key point is to design reasonable and effective intrinsic reward to
drive the agent to explore. This paper proposes a method called CEMP,
which drives the agent to explore more effectively and continuously in
the sparse reward environment. CEMP contributes a new framework for
designing intrinsic reward from multiple perspectives, and can be eas-
ily integrated into various existing reinforcement learning algorithms. In
addition, experimental results in a series of complex and sparse reward
environments in MiniGrid demonstrate that our proposed CEMP method
achieves better final performance and faster learning efficiency than ICM,
RIDE, and TRPO-AE-Hash, which only calculate intrinsic reward from
a single perspective.

Keywords: Reinforcement Learning · Exploration Strategy · Sparse
Reward · Intrinsic Motivation

1 Introduction

The goal of reinforcement learning is to train an effective policy, which drives
the agent to obtain the maximum cumulative reward in the environment. The
generation of the agent’s policy primarily depends on the reward provided by the
environment. Therefore, whether the agent can learn an effective policy is closely
related to its interaction with the environment in order to capture rewards. Clas-
sical algorithms like DQN [1] and PPO [2] have demonstrated outstanding per-
formance in the dense reward environment by using simple exploration strategies
such as ε-greedy, entropy regularization, and Boltzman exploration. However, in
the sparse reward environment, these simple exploration strategies face difficul-
ties in guiding the agent to reach the target state and obtain effective reward.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14427, pp. 1–12, 2024.
https://doi.org/10.1007/978-981-99-8435-0_5

A
ut

ho
r 

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8435-0_5&domain=pdf
https://doi.org/10.1007/978-981-99-8435-0_5
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The agent will be unable to update the policy due to long-term inability to
receive effective reward. Hence, this paper will concentrate on designing effec-
tive exploration strategies to help the agent better resolving hard exploration
problem in the sparse reward environment.

In the sparse reward environment, the agent needs to continuously complete a
series of correct decisions in order to obtain few effective rewards. However, a sim-
ple random exploration strategy is difficult for the agent to explore a trajectory
that can complete the task. Exploration strategies based on intrinsic motivation
have seen significant development in recent years and can effectively address
the exploration challenges faced by the agent in the sparse reward environment.
Intrinsic motivation comes from the concept of ethology and psychology [3].
During the learning process, higher organisms often spontaneously explore the
unfamiliar and unknown environment without extrinsic stimuli to enhance their
ability to survive in the environment. Exploration strategies based on intrinsic
motivation formalize the concept of intrinsic motivation as an intrinsic reward
by measuring the novelty of the state, thereby utilizing the intrinsic reward to
drive the agent to spontaneously explore more unknown space in the sparse
reward environment and increase the likelihood of the agent solving tasks. The
novelty of a state is related to the number of times the agent accesses the state.
Currently, there are two main perspectives for measuring the novelty of a state:
global perspective and local perspective, as explained below.

Global Perspective: Use all historical samples collected by the agent from the
environment to measure the novelty of a state.

Local Perspective: Evaluate the novelty of a state only using the samples col-
lected in the current episode where the agent is interacting with the environment,
without considering historical samples.

The drawback of measuring the novelty of a state from global perspective
is that the novelty of the state and its corresponding intrinsic reward gradually
decay during the training process. The decaying intrinsic reward cannot drive the
agent to continuously explore in the environment. At the same time, measuring
the novelty of a state from global perspective alone is not conducive to the agent
discovering more novel trajectories. When a novel trajectory appears, it will be
diluted by ordinary trajectories in history. Measuring the novelty of a state from
local perspective can enable the agent to discover more novel trajectories and
access more unknown states within the current episode. However, in the absence
of global information, relying solely on local perspective to measure the novelty
of a state may blindly and optimistically encourage the agent to explore unknown
states.

Taking into account the characteristics of calculating intrinsic reward from
different perspectives, we propose a method called CEMP (Continuous Explo-
ration via Multiple Perspectives) that enables the agent to better explore in the
sparse reward environment. CEMP calculates intrinsic reward from both global
and local perspectives and integrates them to better drive the agent’s exploration
in the sparse reward environment. To summarize, the main contributions of our
work are as follows:
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CEMP, an Exploration Method in Sparse Reward Environment 3

1. We propose a method called CEMP that enables the agent to explore better
in the sparse reward environment. This method combines intrinsic reward
calculated from different perspectives to obtain a new intrinsic reward, which
does not decay gradually during the training process and can continuously
drive the agent’s exploration in the sparse reward environment. Moreover,
our proposed CEMP method can be easily integrated into various existing
reinforcement learning algorithms.

2. The majority works that calculate intrinsic reward from local perspective
only measure the novelty of a state within the current episode. In contrast,
our proposed CEMP method can measure the novelty of a state from local
perspective across multiple episodes and can flexibly control the range of the
local perspective through parameters.

3. Experimental results in a series of complex and sparse reward environments
in MiniGrid show that our proposed CEMP method achieves better final
performance and faster learning efficiency compared to methods such as ICM,
RIDE, and TRPO-AE-Hash that only calculate intrinsic reward from a single
perspective.

2 Related Works

There are two main methods for calculating intrinsic reward from global per-
spective: state count and prediction error method.

The state count method extends UCB exploration strategy to the high dimen-
sional state environment through pseudo-count or indirect count methods. DQN-
PixelCNN [4] indirectly derives the pseudo-count of a state through the density
probability model, which is modeled from the raw state space, but it is difficult
to directly model a density probability model in the raw state space. To solve
this issue, φ-EB [5] models a density probability model in a low dimensional
feature space of the raw state. TRPO-AE-Hash [6] discretizes the raw state into
low dimensional hash code using SimHash [7] and then computes the pseudo-
count of a state based on its hash code. DORA [8] constructs an indirect count
index E-value, which can become an effective generalization counter of (st, st+1).
RND [9] uses the prediction error between the predictor network and the target
network as an indirect measure of state count.

The prediction error method uses the prediction error between the next pre-
dicted state ŝt+1 output by a forward model and the ground-truth st+1 as intrin-
sic reward. The key aspect of the prediction error method is how to construct a
forward model. Dynamic-AE [10] reconstructs the raw state by using an autoen-
coder and constructs a forward model based on a low-dimensional feature space
extracted by the middle layer of the autoencoder. In fact, using the features
extracted by the middle layer of the autoencoder to train a forward model is
highly susceptible to environmental noise. ICM [11] learns features of the raw
state by utilizing an inverse model, which predicts the action at from the state
(st, st+1) and extracts the intermediate layer output as low-dimensional features
to construct a forward model. Inverse model only extracts feature from the raw
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4 Z. Chen and Q. Guan

state that is related to the agent’s actions, which partially reduces the influence
of noise from the raw state. Disagreement [12] trains multiple forward models
based on random feature subspace and uses the variance of the predicted values
of these multiple forward models as intrinsic reward.

The methods introduced above measure the novelty of a state from global per-
spective, while the methods below measure the novelty of a state from local per-
spective. DeepCS [13] incentivizes the agent to explore as many unknown states
as possible within the same episode by setting intrinsic reward to 1 for unreach-
able states and 0 for visited states respectively. ECO [14] measures the novelty
of a state by the reachability between states in the same episode. RIDE [15]
directly uses the difference between two consecutive states as intrinsic reward.

3 Method

3.1 Continuous Exploration via Multiple Perspectives

Fig. 1. Our proposed CEMP method: the design details of the Global Reward Model
and the Local Reward Model can be found in Sect. 3.2 and 3.3, respectively.

As illustrated in Fig. 1, our proposed CEMP (Continuous Exploration via
Multiple Perspectives) method calculates intrinsic reward from both global and
local perspectives, and combines the reward from both perspectives by multi-
plication to obtain the new intrinsic reward ri

t, as shown in Eq. (1). Next, the
final reward that guides the update of the agent’s policy is calculated by linearly
weighting the new intrinsic reward ri

t and the extrinsic reward re
t provided by

the environment in terms of Eq. (2), where β is the weighting coefficient between
both rewards.

ri
t = rglobal

t × rlocal
t (1)

rt = re
t + βri

t (2)

We will use prediction error-based method to design the global intrinsic
reward, and use state count method based on hash-discretization to design the
local intrinsic reward. The specific reasons for these choices are as follows:
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CEMP, an Exploration Method in Sparse Reward Environment 5

1. The prediction error-based method evaluates the novelty of a state from global
perspective by using the prediction error of a forward model modeled with
deep neural network, which is well-suited for processing large-scale data and
has strong discriminative power when facing with large-scale states, thus, it is
suitable for evaluating the novelty of a state from global perspective. However,
it is not suitable for evaluating the novelty of a state from local perspective,
because the forward model trained with a small dataset may have difficulty
learning effective knowledge and distinguishing the novelty of a state due to
insufficient data.

2. The state count method based on hash-discretization can quickly and accu-
rately count different states in a small dataset by using the hash code of the
raw state. However, in the case with large-scale states, it may not be able to
distinguish different states due to the limited number of hash code bits.

Fig. 2. The design details of the Global Reward Model and the Local Reward Model.

3.2 Global Reward Model

We first use the inverse model adopted in ICM [11] method to extract a low
dimensional feature of the raw state, as shown in the green box in Fig. 2. Extract-
ing a low-dimensional feature through the inverse model can capture the feature
information related to the agent’s actions as much as possible and reduce the
impact of noise in the raw state. As shown in the red box in Fig. 2, we then use all
the samples collected by the agent in the environment to train n forward models
in the inverse feature space φ. The variance of the predicted values from these
n forward models is then used as the intrinsic reward under global perspective,
as shown in Eq. (3). The ensemble of these n forward models can further reduce
the influence of state noise.

rglobal
t = variance(φ̂1(st+1), φ̂2(st+1), ..., φ̂n(st+1)) (3)
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6 Z. Chen and Q. Guan

3.3 Local Reward Model

As shown in the blue box in Fig. 2, we use feature extract network of the inverse
model to extract the inverse feature φ(st+1) of the raw state st+1, and then use
SimHash method to discretize φ(st+1) into a k-dimensional binary hash code
ϕ(st+1), as shown in Eq. (4), where M is a k × d matrix sampled from standard
normal distribution, d is the dimension of φ(st+1). Next, we count the state based
on its hash code ϕ(st+1). In the counting process, we only count the access times
of each state in N consecutive states, and reset the previous count information
when the agent enters the next new N consecutive states. Equation (5) provides
the relationship between the count of a state and corresponding intrinsic reward
under local perspective. The local intrinsic reward rlocal

t will incentivize the agent
to frequently explore more novel states within the current N consecutive states,
which is conducive to the agent discovering more novel trajectories.

ϕ(st+1) = sign(Mφ(st+1)) ∈ {−1, 1}k (4)

rlocal
t =

1
√

n(ϕ(st+1))
(5)

Most existing works that calculate intrinsic reward from local perspective
only measure the novelty of a state within the same episode, while our proposed
CEMP method measures the novelty of a state over N consecutive states, where
N is an adjustable parameter. By using a larger N , samples will come from
several different episodes. Therefore, the CEMP method provides more flexibility
in controlling the range of the local perspective through parameter N .

The intrinsic reward calculated from local perspective does not gradually
decay during the training process, providing the agent with a more continuous
and stable exploration signal. This can compensate for the drawback of intrinsic
reward calculated from global perspective that gradually decays over time, while
also improving the agent’s ability to discover more novel trajectories.

Our proposed CEMP method can be easily integrated into any reinforcement
learning algorithm to enhance the agent’s exploration ability in the sparse reward
environment.

4 Experiment

4.1 Comparison Algorithms and Evaluation Metrics

We compared our proposed CEMP method with three intrinsic motivation-based
exploration strategies: ICM [11], TRPO-AE-Hash [6] and RIDE [15]. ICM and
TRPO-AE-Hash calculate intrinsic reward from global perspective, while RIDE
calculates intrinsic reward from local perspective. Different reinforcement learn-
ing algorithms are used as baseline algorithms in the original papers of ICM,
TRPO-AE-Hash, and RIDE. In order to ensure fairness in the comparison experi-
ments, we use PPO as the baseline algorithm to reproduce the three exploration

A
ut

ho
r 

Pr
oo

f



CEMP, an Exploration Method in Sparse Reward Environment 7

strategies and compare their performance with our proposed CEMP method.
The CEMP method also uses PPO as the baseline algorithm.

We use the mean and standard deviation of the average reward over five
different seeds as metrics to compare the performance of different exploration
strategies. The mean of the average reward reflects the best performance that
each exploration strategy can achieve, while the standard deviation of the average
reward reflects the stability of the exploration strategy.

4.2 Network Architectures and Hyperparameters

PPO. In the PPO algorithm we reproduced, the Critic and Actor share a feature
extract network, which consists of four linear layers with 256, 128, 64, and 64
nodes, respectively. Both the Critic and Actor consist of one linear layer with
64 nodes. The Critic and Actor take the output of the feature extract network
as input and output value estimate and action probability distribution for the
current state st. Other hyperparameters of the PPO algorithm we reproduced
are shown in Table 1.

Table 1. Other hyperparameters of the PPO algorithm we reproduced.

Hyperparameter Name Value

learning rate 0.0003
value loss weight 0.5
entropy loss weight 0.001
discount factor 0.99
λ, general advantage estimation 0.95
activation function ReLU
optimizer Adam

CEMP. As shown in Fig. 2, in our proposed CEMP method, the feature extract
network in the inverse model consists of three linear layers with 64, 64, and 128
nodes, respectively. The network used to predict actions in the inverse model
consists of one linear layer with 512 nodes. All forward models consist of two
linear layers with 512 nodes. Other hyperparameters of CEMP method are sum-
marized in Table 2.

ICM, RIDE, and TRPO-AE-Hash. ICM [11] trains a forward model based
on the inverse feature space φ extracted by the inverse model. The difference
between ICM and the Global Reward Model in CEMP lies in the number of
forward model and the way intrinsic reward is calculated. ICM trains only one
forward model and uses the prediction error of the forward model as the intrinsic
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8 Z. Chen and Q. Guan

Table 2. Other hyperparameters of our proposed CEMP method.

Hyperparameter Name Value

n, number of forward model 5
stepmax, max step of one episode, determined by the environment /
β, weighting coefficient of intrinsic and extrinsic reward 10/stepmax

k, the dimension of hash code 16
N , adjust the range of local perspective 3200
m, batch size 320
learning rate 0.0003
Tmax, max step of training 3 × 106

activation function ReLU
optimizer Adam

reward, as shown in Eq. (6), while the Global Reward Model in CEMP trains
n forward models and uses the variance of the predicted values from n forward
models as the intrinsic reward.

ri
t = ||φ(st+1) − f(φ(st), at)||22 (6)

RIDE [15] directly uses the difference between the inverse features of two
consecutive states as the intrinsic reward, as shown in Eq. (7). Here, φ repre-
sents the feature extract network in the inverse model, and n(ϕ(st+1)) is the
pseudo-count of st+1 in the current episode. The calculation method of ϕ(st+1)
is consistent with the Local Reward Model used in CEMP.

ri
t =

||φ(st+1) − φ(st)||2√
n(ϕ(st+1))

(7)

TRPO-AE-Hash [6] calculates the intrinsic reward in the same way as the
Local Reward Model in the CEMP method. The only difference is that TRPO-
AE-Hash omits the step of periodically resetting the count of a state, so it
calculates the intrinsic reward from global perspective.

To ensure a fair comparison, all network architectures and hyperparameters
used in the ICM, RIDE, and TRPO-AE-Hash methods that we reproduced are
kept consistent with those used in our proposed CEMP method.

4.3 Experimental Results

Comparison with Other Methods. We select 9 sparse reward environ-
ments from MiniGrid for comparative experiments, which contain a total of
5 different tasks. Among the 5 different tasks, the tasks of DoorKey and
LavaCrossing each have 3 environments of gradually increasing difficulty (dif-
ficulty ranking: DoorKey-5x5 < DoorKey-8x8 < DoorKey-16x16; LavaCross-
ingS9N1 < LavaCrossingS9N3 < LavaCrossingS11N5). The learning curves of
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CEMP, an Exploration Method in Sparse Reward Environment 9

Fig. 3. Performance of each method in different sparse reward environments.

different methods are shown in Fig. 3, from which we can draw the following
conclusions:

1. In some environments with lower difficulty levels, such as LavaCrossingS9N1
and DoorKey-5x5, ICM, RIDE, and TRPO-AE-Hash can achieve the same
final performance as CEMP. However, our proposed CEMP method has a
higher learning efficiency and more stable performance.

2. In the DoorKey and LavaCrossing tasks, as the difficulty increases, the per-
formance of ICM, RIDE, and TRPO-AE-Hash gradually deteriorates, but our
proposed CEMP method can still maintain good performance.

3. In more challenging environments, such as MultiRoom-N4-S5 and DoorKey-
16x16, ICM, RIDE, and TRPO-AE-Hash are unable to complete the task,
but our proposed CEMP method can still perform well and obtain a high
average reward.

We evaluate the final policies of the agent obtained by various methods, and
the evaluation results are summarized in Table 3. The evaluation metrics in the
table are the mean and standard deviation of rewards obtained by each method in
five different seeds. It can be seen from Table 3 that our proposed CEMP method
has significantly better performance and is more stable than ICM, RIDE, and
TRPO-AE-Hash that calculate intrinsic reward from only a single perspective.

Analysis of Local and Global Intrinsic Reward. From Fig. 4, we can see
that as the training progresses, the global intrinsic reward gradually decays,
while the local intrinsic reward remains in a relatively stable range and does not
decay during the training process. Thus, the local intrinsic reward can drive the
agent to continuously explore in the sparse reward environment, discover more
novel states and trajectories, and compensate for the disadvantage of the global
intrinsic reward, which gradually decays and cannot consistently drive the agent
to explore.
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Table 3. Comprehensive performance of each method in different environments.

mean ± std PPO ICM RIDE TRPO-AE-Hash CEMP (ours)

KeyCorridorS3R3 0 ± 0 0.183 ± 0.365 0 ± 0 0 ± 0 0.733 ± 0.367

UnlockPickup 0 ± 0 0.947 ± 0.006 0.754 ± 0.377 0 ± 0 0.949 ± 0.004

MultiRoom-N4-S5 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.594 ± 0.298

DoorKey-5x5 0.962 ± 0.005 0.964 ± 0.005 0.964 ± 0.005 0.964 ± 0.005 0.967 ± 0.003

DoorKey-8x8 0.977 ± 0.002 0 ± 0 0.390 ± 0.477 0.977 ± 0.002 0.977 ± 0.002

DoorKey-16x16 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.395 ± 0.484

LavaCrossingS9N1 0.954 ± 0.008 0.766 ± 0.383 0.958 ± 0.002 0.950 ± 0.014 0.951 ± 0.002

LavaCrossingS9N3 0.380 ± 0.466 0.946 ± 0.013 0.378 ± 0.463 0.946 ± 0.011 0.946 ± 0.015

LavaCrossingS11N5 0 ± 0 0.762 ± 0.381 0.193 ± 0.387 0.192 ± 0.384 0.961 ± 0.005

Fig. 4. The intrinsic reward calculated from both global and local perspectives in 3
environments: LavaCrossingS11N5, DoorKey-16x16, and MultiRoom-N4-S5.

Fig. 5. Without extrinsic reward, only the intrinsic reward is used.

Learning with only Intrinsic Reward. To test whether the intrinsic reward
designed from the local and global perspectives in our proposed CEMP method
are effective, we only use the intrinsic reward from the local, global, and the
fusion of both to guide the agent’s learning. Based on the results shown in
Fig. 5, we can conclude that our proposed CEMP method can achieve a certain
level of performance in the sparse reward environment using only self-generated
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CEMP, an Exploration Method in Sparse Reward Environment 11

intrinsic reward. Moreover, the fusion of the intrinsic reward from the local and
global perspectives can achieve better performance than a single intrinsic reward
from either the global or local perspective.

Fig. 6. The ablation experiment on each component of the intrinsic reward.

Ablation Experiment of the Intrinsic Reward. We conducted ablation
experiment on each component of the intrinsic reward in our proposed CEMP
method. From Fig. 6, we can draw the following conclusions:

1. In all environments, the intrinsic reward that integrates global and local
intrinsic reward performs better than using only intrinsic reward calculated
from a single perspective.

2. Using only global or local intrinsic reward can also achieve good performance
in some environments.

5 Conclusion

This paper proposed a method called CEMP that enables the agent to explore
better in the sparse reward environment. The CEMP method contributes a new
framework for designing the intrinsic reward from multiple perspectives and
can be easily integrated into various existing reinforcement learning algorithms.
The experimental results in a series of complex sparse reward environments
in MiniGrid demonstrate that our proposed CEMP method can achieve better
final performance and faster learning efficiency than algorithms such as ICM [11],
RIDE [15], and TRPO-AE-Hash [6] that calculate the intrinsic reward from only
a single perspective.
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