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Abstract—Few-shot, especially one-shot learning is a prominent
research area in the field of knowledge graphs (KGs), aiming
to utilize a limited number of triples with unseen relations as
reference information for inferring missing knowledge. Recent
research focuses on improving the semantic representation of
entity pairs using interactions between their head and tail entities.
However, this method only considers the reference information
as the measurement criterion without taking into account the
potential impact of it on the reasoning process of the model. In
this paper, we propose a novel method that utilizes factual in-
formation interactions. Firstly, we learn static representations of
entities based on their neighborhood information. Subsequently,
we learn relation adaptive representations by incorporating the
reference information. This interactive modeling strengthens the
association between entity representations and task relations
while suppressing irrelevant relations. Extensive experiments
demonstrate that our model outperforms state-of-the-art methods
on two public datasets. Remarkably, on the NELL-One dataset
for one-shot link prediction, our model achieves an improvement
of 11.8% in MRR compared to the best baseline model.

Index Terms—Knowledge Graph, Few-shot learning, Factual
Information Interaction

I. INTRODUCTION

Knowledge graphs (KGs) , such as WIKI [1], NELL [2],
and YAGO [3], employ a structured approach to present
facts. They are widely used in various domains, including
recommendation systems [4] [5], question answering systems
[6] [7], and pre-trained models [8]. However, the performance
of these applications is constrained by the incompleteness of
KGs [9].

To address this issue, Xiong et al. [10] propose the task
Few-shot Knowledge Graph Completion (FKGC). FKGC aims
to complete the missing facts with unseen relations based
on a limited number of related referenced entity pairs. The
facts that need to be completed is known as the query set,
whereas the reference facts are known as the support set.
Existing FKGC methods independently model query triples,
learning fixed representations of relations between entity pairs
[10] [11]. We argue that for queries with different relations,
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Fig. 1. An illustrative example of one-shot KG learning and the motivation of
this paper. There are multiple relations between “Beijing” and “China” .
Green solid lines denote task relations that require semantic strengthening,
while red dashed lines represent irrelevant relations that require semantic
weakening.

query entity pairs should also focus on different semantic
information, requiring adaptive representations. In addition, as
shown in Fig. 1, for the query with relation “SubPartOf”,
there may be multiple relations between the query entity pairs.
Relations that fall outside of the task’s scope may potentially
undermine the model’s accuracy.

We introduce a method to model the interaction of
query entity pairs and support entity pairs in order
to address the aforementioned issue. For example, for
query triple (Beijing, SubPartOf, China) and sup-
port triple (France, SubPartOf, EU) in Fig. 1, a strong
correlation between “Beijing” and “France” suggests that
“Beijing” and “France” are semantically related, this
correlation can be used to enhance the query representation. As
the background knowledge of entities can be used to capture
this kind of correlations, we use the neighborhood information
of support triples in background knowledge to enhance the
query representation.



In this paper, we propose a novel Factual Information
Interaction Network (FIIN) that learns relation adaptive query
representations for different task relations. Specifically, we
consider neighborhood information of support entity pairs
as factual information and provide it to query entity pairs.
The factual information will have an impact on the repre-
sentation of the entity pairs. This interactive process leads to
the enhanced semantic information related to task relations
while diminishing the effect of irrelevant relations. To further
improve the quality of the representation, an adaptive negative
sampling loss is introduced to expedite model optimization and
enhance generalization, enabling FIIN to pay more attention
to largely indistinguishable query triples during optimization.
Experiments on two widely used datasets show that FIIN can
largely improve the expressive capability of the learned repre-
sentations, achieving state-of-the-art performance on FKGC.

In summary, our contributions can be summarized as three-
fold:

• To the best of our knowledge, we are the first to explore
the modeling of support and query sets interaction in the
context of FKGC. Compared to previous methods, FIIN
directly integrates task-relevant facts into the represen-
tation of the query triple, thereby adaptively generating
relation-specific representations.

• Our study presents a novel approach that integrates adap-
tive loss and FKGC. As far as we know, this is the first
attempt to combine these two techniques, leading to a
notable enhancement in model performance.

• Extensive experiments on the NELL-One and Wiki-One
datasets show that FIIN achieves state-of-the-art perfor-
mance. Compared with baselines, our model relatively
achieves 11.8% performance gains in MRR on NELL-
One.

II. RELATED WORK

Significant progress has recently been achieved in research
related to FKGC. The existing FKGC methods can be clas-
sified into three groups: metric learning-based methods, meta
learner-based methods, and dual-process theory-based meth-
ods.

Metric learning-based methods. These methods primarily
compute similarity scores between query triples and support
triples. GMatching [10] first investigates few-shot learning
in KGs. It aggregates the neighborhood relationship and the
encoded entity information before calculating similarity be-
tween query sets and support sets via LSTM. FAAN [12]
takes into account the dynamic information of entity pairs, and
leverages it to calculate the attention of entities’ neighborhoods
to aggregate the entity neighborhood information. P-INT [13]
expresses entity pair information through the path from the
head entity to the tail entity, and uses an interaction-based
model to match the paths of the support set and query set.
CIAN [11] studies the interactive information of head and tail
entities through two stages, and generates more discrimina-
tive entity representations. Yao et al. [14] augments data by

generating new task relations and new triples. Informix-FKGC
[15] augments data by merging the entity’s one-hop neighbors,
attributes and text description information. Jin et al. [16]
use a two-branch feature extractor to capture complementary
and comprehensive representations of entities, facilitating the
differentiation of the few examples.

Meta learner-based methods. MetaR [17] proposes a
meta relational learning framework by transferring relation-
specific meta information between query set and support set.
GANA [18] further improves MetaR by adaptively utilizing the
neighborhood information of entities and modeling complex
relationships.

Dual-process theory-based methods. Inspired by the dual-
process theory of cognitive science, CogKR [19] integrate a
summary module and a reasoning module to imitate the human
cognition process.

The previously mentioned methods only use the neighbor-
hood information of the entities, resulting in uniform query set
representations for all task relation. Different from previous
paradigms, FIIN takes into account the shared information of
the query set and support set for the first time, and utilizes
the neighborhood information of support set to enhance the
semantic expression of query set. Therefore, the representation
of query entity pairs is dynamic.

III. BACKGROUND

KG. We define a KG as G = {(h, r, t)} ∈ E×R×E , where
E and R are the entity set and the relation set. The KGC task
is to predict the tail entity tq when given the head entity hq

and the query relation r, denoted as (hq, r, ?).
Background KG. To ensure basic semantics for entities in

the KG, as shown in Fig. 1, we extract high-frequency relations
Rb to build a background knowledge graph Gb, where Gb ⊆ G,
and Rb ⊆ R.

FKGC. For a query set Qr = (hq, r, ?) and a candidate
entity set Cr, FKGC aims to complete Qr based on the given
support set S = {(hs

i , r, t
s
i )}Ki=1, where K is a small number

and usually set to {1, 3, 5}. The task is also called K-shot
KGC.

To enhance the model’s learning capability, we adopt the
meta-learning framework. We split R into a relation set Rb

of Gb and a meta-relation set Rmeta, where Rb ∩Rmeta = ∅.
For each relation r ∈ Rmeta, we build a meta-task Tmeta−r =
{Sr,Qr}, where Sr is a randomly sampled support set and
|Sr| = K. Rmeta is divided into {Rtrain,Rvaild,Rtest} for
training, validation, and testing, respectively. In order to ensure
that the model completes Qr only based on Sr during meta-
testing, {Rtrain,Rvaild,Rtest} are independent of each other.

IV. MODEL

This section introduces our method FIIN and shows its
overall framework in Fig. 2. The principal framework of
FIIN encompasses four components: (1) Entity encoder, which
learns adaptive representations based on the Gb; (2) Relation
encoder, which leverages the semantics of entity pairs to
compute representations of relations; (3) Matching processor,



which calculates the semantic matching degree between the
provided support set and the query set; (4) Adaptive negative
sampling module, which assigns adaptive weights for negative
samples while computing loss.

A. Entity Encoder

Entity encoder aims to represent entities by utilizing their
information in Gb. Based on existing research [11], our entity
encoder further considers the interaction information of the
support set and the query set to enhance entity pair representa-
tion. Specifically, we take three steps for entity representation:
(1) Using information of neighbor nodes and the dynamic
information of the entity pairs, adaptively aggregate neighbor-
hood information. (2) According to the interaction information
of the head entity and the tail entity, the semantic information
associated with the entity pair is enhanced. (3) Using informa-
tion from the support set to enhance the representation of the
query set for the task relation, while weakening the semantics
of other relations.

The initial two phases are described as the adaptive neighbor
encoder modules for entity pairs, with the subsequent phase
labeled as the support and query interaction module.

1) Adaptive Neighbor Encoder for Entity Pairs: For an en-
tity pair (h, t), this module aims to enhance entity representa-
tions by incorporating their local neighborhood information in
Gb. Specifically, we randomly select m one-hop neighbors and
their corresponding relations for h and t respectively, denoted
as N = {(rhi, ehi), (rti, eti)|(rhi, ehi), (rti, eti) ∈ Gb}.

Initially, we update the entity representations by aggregating
their neighborhood information. For head entity h, we employ
a linear transformation to get the neighborhood information
matrix Nh:

Nh = ReLU((rh ⊕ eh)WN ), (1)

where rh, eh ∈ Rm×d are neighborhood information matrices
formed by the embedding vectors of rhi and ehi in N
respectively, d is the embedding dimension of entities and
relations, WN ∈ R2d×d is a weight matrix, and ⊕ denotes
the concatenation operator.

Inspired by CIAN [11] and Transformer [20], we utilize
the dot-product attention to get the updated representation
hr based on entity pair (h, t), representations of neighbor
relations rh and neighborhood matrix Nh:

hr = W s
r (softmax(QrK

T
r )Vr), (2)

where
Qr = WQ

r (Wr(h⊕ t) + br), (3)

Kr = WK
r rh, (4)

Vr = WV
r Nh. (5)

Here, WQ
r ,WK

r ,WV
r ,W s

r ∈ Rd×d, Wr ∈ R2d×d, and br ∈
Rd are all trainable parameters. h and t are the embedding
vectors of h and t. Qr is determined by the relation calculated
based on the entity pair.

To emphasize the representations of the entities themselves,
we perform a residual-like computation:

hz = h+ReLU(W1hr +W2h), (6)

where W1,W2 ∈ Rd×d are trainable and shared parameters.
After updating the entity representation based on its own

neighbors, we further update the entity representation by
encoding the neighborhood information from the paired entity.

For entity h in pair (h, t), its paired entity neighborhood
information matrix is Nt. The updated representation hc is cal-
culated in the same way as Eq. (2) based on the representation
tz of the paired entity t, representations of neighbor relations
rh, and neighborhood matrix Nh. Q,K, V are redefined as
follows:

Qc = WQ
c tz, (7)

Kc = WK
c rh, (8)

Vc = WV
c Nh, (9)

where WQ
c ,WK

c ,WV
c ∈ Rd×d are parameters to be learned.

Finally, we get the updated representation he of h as:

he = h+ReLU(W1hc +W2h). (10)

2) Support and Query Interaction: Given support entity
pairs (hs, ts) and query entity pairs (hq, tq), the support
and query interaction module aims to leverage the semantic
information of Sr to enhance the representation of Qr on
specific relation r.

For query head entity hq , we calculate the neighborhood
information Ns

h of entity hs in the support entity pair based
on Eq. (1):

Ns
h = ReLU((rsh ⊕ esh)WI), (11)

where rsh, e
s
h ∈ Rm×d are neighborhood information matrices

of hs, and WI ∈ R2d×d is a learnable parameter.
We use the neighborhood information of support triples in

Gb as factual interaction information. The input to the attention
module is as follows:

Qf = WQ
f hq

e, (12)

Kf = WK
f Ns

h, (13)

Vf = WV
f Ns

h, (14)

WQ
f ,WK

f ,WV
f ∈ Rd×d are parameters to be learned. Accord-

ing to the calculation of Eq. (2), we denote the output as hq
f .

Finally, we get the enhanced entity representation hq
o as

follows:

hq
o = hq + hq

e +ReLU(W1h
q
f +W2h

q). (15)

In order to ensure that support entity pairs and query entity
pairs are treated equally, entities in the support set are re-
aggregated using their own neighbors. For the 3-shot and 5-
shot cases, we directly merge neighborhood information of
multiple support entities and provide it to the query entity.
We leave more efficient integration methods to future work.
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B. Relation Encoder

For both support entity pairs and query entity pairs, we cal-
culate the corresponding relations between them by applying
a two-layer feed-forward network:

r = Wr2(ReLU(Wr1(ho ⊕ to) + br1)), (16)

where Wr1,Wr2 ∈ R2d×2d, br1 ∈ R2d are trainable parame-
ters.

C. Matching Processor

Although our experiments mainly focus on the one-shot
case, we include an adaptive matching module to the model
to compare with the baseline models in the 3-shot and 5-shot
cases.

For an unseen relation r, since the size of support set
is limited and different support entity pairs may focus on
expressing different semantics of r, this leads to a large
variance in the relation representation when using different
support entity pairs. Inspired by FAAN [12], we use an
attention-based approach to holistically represent the K-shot

references. For the relation representation rq of a query triple,
the overall representation Mrq of K-shot support set is:

Mrq =

K∑
i=1

βir
s
i , (17)

βi =
eδ(r

q,rs
i )∑K

j=1 e
δ(rq,rs

j )
, (18)

where βi denotes the attention score between rq and rsi , rsi
denotes the relation representation of the i-th support triple.
δ(rq, rsi ) = rq · rsi , where δ(·, ·) measures the semantic
similarity of rq and rsi . Finally, we define a metric function
ϕ(rq,Sr) to calculate the matching score of the query rq with
the K-shot support set Sr:

ϕ(rq,Sr) = rq ·Mrq . (19)

When K=1, the metric function ϕ(·, ·) can be defined as
follows:

ϕ(rq,Sr) = rq · rs, (20)

where rs is representation of the relation in the support triple.



In FKGC, higher score of ϕ(rq,Sr) corresponds to stronger
semantic similarity between rq and Sr. This indicates that the
likelihood increases of r being present in the query entity pairs.

D. Adaptive Negative Sampling Loss and Model Training

For an unseen relation r, we collect a batch of triples
as the positive query set Q+

r = {(hq, tq+)|(hq, r, tq+) ∈
G}, and construct a batch of negative query triples Q−

r =
{(hq, tq−)|(hq, r, tq−) /∈ G} by polluting the tail entities of
Q+

r .
Existing models simply use a margin-based scoring function

to ensure that Q+
r has a higher similarity score Sr than Q−

r :

L =
∑
r

∑
rq+∈Q+

r

∑
rq−∈Q−

r

[γ + ϕ(rq− ,Sr)

−ϕ(rq+ ,Sr)]+,

(21)

where [x]+ = max(0, x) is the standard hinge loss, and the
margin γ is a hyperparameter to separate Q+

r and Q−
r .

However, this loss function treats all negative samples
equally, which is unreasonable. Only a small number of
strong negative samples significantly influence the model’s
optimization direction. Therefore, we propose an adaptive loss
computation mechanism that assign smaller weights to those
negative samples that the model can already distinguish with
ease, while assigning larger weights to those negative samples
that are difficult for the model to distinguish. The weight αri

for negative sample r
q−
i is:

αri =
eϕ(r

q−
i ,Sr)∑n

j=1 e
ϕ(r

q−
j ,Sr)

, (22)

where n is the number of negative samples.
Finally, the negative sampling loss L is calculated as fol-

lows:

L =
∑
r

∑
rq+∈Q+

r

[γ +

n∑
i=1

αriϕ(r
q−
i ,Sr)

−ϕ(rq+ ,Sr)]+.

(23)

To minimize L, we consider each unseen relation as a meta-
task and sample batches of meta-tasks to train the network.

V. EXPERIMENTS

This section presents extensive experiments to verify the
effectiveness of FIIN. Furthermore, the ablation tests are
conducted to demonstrate the impact of each individual key
component of FIIN.

A. Datasets

We conduct experiments on two widely used benchmarks:
NELL-One and Wiki-One [10]. According to the dataset
settings, relations with less than 500 but more than 50 triples
are selected as meta-tasks in FKGC, and other relations with
the corresponding triples constitute the Gb. We use 51/5/11 and
133/16/34 relations for training/validation/testing in NELL-
One and Wiki-One, respectively. The specific statistics are
listed in Table I.

TABLE I
STATISTICS OF THE DATASETS. # DENOTES ‘THE NUMBER OF’.

Dataset # Ent. # Rel. # Triples # Tasks

NELL-One 68,545 358 181,109 67
Wiki-One 4,838,244 822 5,859,240 183

B. Evaluation Metrics

We use two traditional metrics, MRR and Hits@N, in
KGC to evaluate the performance of the models. MRR is
the mean reciprocal rank of the correct entities. Hits@N
is the proportion of correct entities ranked in top N , with
N = 1, 5, 10. Higher MRR and Hits@N indicates better model
performance.

C. Baselines

KG embedding models. We adopt four widely used meth-
ods as baselines: TransE [21], DistMult [22], ComplEx [23],
and RESCAL [24]. As traditional embedding models require
a sizeable number of training triples, their performance is
limited in few-shot tasks. Therefore, we primarily compare
the performance of FIIN to FKGC models.

FKGC models. We adopt seven FKGC models as baselines:
GMatching [10], MetaR [17], CogKR [19], FAAN [12],
GANA [18], FCC [16], and CIAN [11]. For MetaR, the results
under In-train and Pre-train settings are provided separately.
All of these methods represent the query set and support
set independently, without considering the interaction between
them. Due to different evaluation criteria, we will not compare
with P-INT [13]. For fairness, we do not use the models with
additional information as baselines,such as InforMix-FKGC
[15].

D. Implementation Details

In order to reduce the training time of FIIN, we use em-
beddings pre-trained by TransE to initialize entity and relation
embeddings on both datasets. We set the maximum number of
neighbors as 100 on both datasets. The embedding dimensions
of entity and relation are set to 100 and 50 for NELL-One and
Wiki-One, respectively. To enhance the generalization ability
of the model, we apply dropout layer with dropout rate equals
0.2. The number of negative samples is set to 16. We set Adam
[25] as the optimizer, and set the initial learning rate of the
optimizer to be 8e−5 and 3e−4 for NELL-One and Wiki-One,
respectively. The margin γ is set to 5.0. We evaluate FIIN for
every 5k training steps. We use MRR as an indicator to select
the optimal parameters based on the validation set within 100k
steps.

E. Results and Analysis

We mainly study the feasibility of enhancing the represen-
tation of entities through the information interaction between
the support set and the query set in the one-shot case. Table II



TABLE II
RESULTS OF ONE-SHOT LINK PREDICTION ON NELL-ONE AND WIKI-ONE. †RESULTS IS OBTAINED ACCORDING TO THE OFFICIAL CODE PROVIDED BY

THE AUTHORS. ‡ RESULTS COME FROM [10]. THE REMAINING RESULTS WERE REPORTED IN THE ORIGINAL PAPERS.

NELL-One Wiki-One

MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

RESCAL‡ .140 .229 .186 .089 .072 .082 .062 .051
TransE‡ .093 .192 .141 .043 .035 .052 .043 .025
DistMult‡ .102 .177 .126 .066 .048 .101 .070 .019
ComplEX‡ .131 .223 .086 .086 .069 .121 .092 .040

GMatching(ComplEx) .185 .313 .260 .119 .200 .336 .272 .120
CogKR .256 .353 .314 .205 .288 .366 .334 .249
MetaR(Pre-Train) .164 .331 .238 .093 .314 .404 .375 .266
MetaR(In-Train) .250 .401 .336 .170 .193 .280 .233 .152
FAAN† .174 .322 .250 .099 .206 .363 .275 .134
GANA .307 .483 .409 .211 .301 .416 .350 .231
CIAN† .291 .456 .356 .215 .337 .451 .404 .261
FCC .331 .531 - - .343 .460 - -
FIIN .370 .507 .443 .297 .359 .481 .433 .289

reports the performance of all models on NELL-One and Wiki-
One datasets. It reveals that FIIN significantly outperforms all
baseline models on both datasets. For one-shot link predic-
tion, compared with the results of best baseline model, FIIN
achieves relative improvements of 11.8% in MRR on NELL-
One, and improvements of 4.7% on Wiki-One, respectively.
This proves that using information from the neighborhood of
the support set to enhance the representation of query entity
pairs can effectively improve the performance of FKGC.

We conducted an experimental study to examine the ef-
fect of the size of negative samples on the model. Figure
3 illustrates the performance of FIIN at different sizes of
negative samples. Due to limitations in GPU memory, we
did not conduct larger-scale experiments. According to the
experimental results, it can be concluded that FIIN still has
the potential for performance improvement.

In order to explore the adaptability of FIIN in 3-shot and
5-shot cases, we report the results of FIIN and existing FKGC
models on NELL-One in Table III. We observe that the
performance of FIIN in the one-shot case is similar to the best
baseline in the 5-shot case. Although our model still outper-
forms baselines for 3-shot and 5-shot cases, the improvement
is not as significant as that in one-shot case. We argue that
direct aggregation of neighborhood information of multiple
support entities may introduce bias in the representation for
query.

F. Ablation Studies
Compared to the existing models, FIIN improves the perfor-

mance by extracting the interaction information between the
support set and the query set and adding an adaptive negative
sampling module. To investigate the contribution of these
components, we provide variant models of FIIN for ablation

0 4 8 12 16 20

Negative Samples

0.34

0.35

0.36

0.37

0.38
M

R
R

Fig. 3. Impact of negative samples size on NELL dataset.

tests on NELL-One. One remove the interaction information
between the support set and the query set, denoted as −s,
one remove the adaptive negative sampling module, denoted
as −l, and the other remove both parts, denoted as −l−s. The
results of the ablation experiments are shown in Table IV. We
can see that the two components have a significant impact on
the model performance.

To demonstrate the generalizability of our proposed method,
we further introduced these two modules into FAAN [12],
and the results are presented in Table V. The improvements
brought to FAAN show that the ideas proposed by FIIN have
universal applicability.



TABLE III
RESULTS OF 3-SHOT AND 5-SHOT LINK PREDICTION ON NELL-ONE.

MRR Hits@10 Hits@5 Hits@1

3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

GMatching(ComplEx) - .200 - .325 - .269 - .133
MetaR(Pre-Train) .210† .209 .386† .355 .311† .280 .119† .141
MetaR(In-Train) .245† .261 .456† .437 .360† .350 .144† .168
FAAN .247† .279 .369† .428 .309† .364 .183† .200
GANA .322 .344 .510 .517 .432 .437 .225 .246
CIAN .344 .376 .484 .527 .417 .453 .266 .298
FCC .346 .374 .553 .566 - - - -
FIIN .386 .398 .506 .537 .446 .485 .317 .319

TABLE IV
ABLATION STUDY OF ONE-SHOT LINK PREDICTION ON NELL-ONE.

Model MRR Hits@10 Hits@5 Hits@1
FIIN .370 .507 .443 .297
−s .342 .479 .401 .263
−l .346 .482 .411 .265
−l − s .299 .451 .379 .208

TABLE V
ONE-SHOT LINK PREDICTION RESULTS OF THE FAAN VARIANT MODELS

ON NELL-ONE.

Model MRR Hits@10 Hits@5 Hits@1
FAAN .174 .322 .250 .099
+s .205 .346 .276 .130
+l .203 .339 .267 .133
+l + s .241 .360 .307 .174

G. Results on Different Relations

We show the prediction performance for various relations on
NELL-One in Table VI. #Can. denotes the number of candi-
date entities. Notably, there is a significant variance in results
across different meta-tasks, which is a prevalent challenge
encountered in FKGC methods. This issue is possibly due
to the variation in candidate entity count and the limitations
of Gb. Gb arises from the fact that not all task relations are
inherently implicit within it, consequently constraining the
accuracy of representation in FKGC models. Nevertheless, it
is worth highlighting that FIIN outperforms other methods in
most task relations, showing its strong generalization ability.

In order to demonstrate the advantages of our model more
intuitively, we visualized the representations of entity pairs,
focusing on the “Producedby” relationship as an example.
We analyzed the representation distributions of various entity
pairs, including reference, positive, and negative candidate
entity pairs, as shown in Fig. 4. The negative candidate
entity pairs in FIIN are positioned significantly farther from
the reference entity pairs within the vector space. On the
other hand, in the case of CIAN, while there are discernible
distinctions in the vector distributions of positive and negative
candidate entity pairs, the reference entity vectors struggle
in making this distinction. The similarity ranking of positive

Fig. 4. The visualization of entity pair relation representations.

samples is adversely affected as numerous negative sample
vectors show similarity to the reference entity pair vectors.
Conversely, FIIN considers the interaction information during
modeling, which results in an improved similarity between
positive samples and reference vectors.

TABLE VI
ONE-SHOT LINK PREDICTION RESULTS (MRR) OF GANA, CIAN AND

FIIN FOR EACH RELATION (RID) ON NELL-ONE.

MRR

RID #Can. GANA CIAN FIIN
1 123 .974 .973 .980
2 299 .085 .092 .127
3 786 .253 .447 .472
4 1084 .421 .421 .515
5 2100 .488 .546 .536
6 2160 .250 .204 .240
7 2222 .121 .140 .135
8 3174 .338 .356 .585
9 5716 .139 .111 .176
10 10569 .179 .196 .383
11 11618 .211 .048 .134

VI. CONCLUSION

This paper proposes a one-shot KGC method that learns
representations adaptively by leveraging factual information
interactions between a support set and a query set. Different
from previous studies that independently learn representations
for each set, neglecting their mutual interactivity, FIIN extracts
information from the support set and applies it to enhance
the specificity of the query set’s representation concerning



certain relationships between entities. Experimental results
on two public datasets demonstrate the superior performance
of our model compared to current state-of-the-art methods.
Future research will involve enhancing entity representation
with additional information and efficiently integrating data
from multiple support entity pairs.
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