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Abstract: The accurate detection of faults in robotic fish allows for improving the safety and reliability of its operations. This 
paper proposes a depth sensor fault diagnosis method based on Gramian Angular Field Fusion and Convolutional Neural 
Network (GAFF-CNN). Firstly, the depth sensor signals are augmented by a sliding window with overlapping data. Secondly, 
the one-dimensional time series sensor signals are converted into two-dimensional images by using Gramian Angular Field 
(GAF). To improve fault diagnosis accuracy and accelerate the training speed, using a weighted fusion method to fuse Gramian 
Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF). After that, the model of CNN is established 
to train and test fused images for fault diagnosis. The result shows that the fault diagnosis accuracy is the highest at 97.22% when 
using a weighted coefficient of 0.3, and when the weighted coefficient is 0.4, the training speed is the fastest.
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1 Introduction
In recent years, robotic fish have attracted considerable 

attention from researchers and engineers due to their 
sufficient flexibility to swim[1]. As a branch of underwater 
robots, they have been used to perform complex tasks such as 
disaster rescue[2], ocean exploration[3], water quality 
monitoring[4], and so on. In order to perceive accurately and 
make decisions intelligently, robotic fish are equipped with a
number of different types of sensors, such as depth sensors,
height sensors, inertial measurement units, and so on.  

However, due to the harsh working conditions and the 
limitations on the sensors’ lifetimes, they are likely to have 
various faults, which can reduce the system performance and 
even cause safety accidents, leading to economic losses.
Therefore, it is critical to diagnose sensor faults accurately to 
avoid accidents and improve the reliability of the robotic 
fish. 

Various fault diagnosis methods have been proposed for 
fault diagnosis. In general, sensor fault diagnosis techniques 
can be classified into three categories: knowledge-based, 
model-based and data-based methods[5]. Model-based 
methods including state or parameter estimation methods 
make full use of the system model, while the utilization rate 
of data is not high[6]. Knowledge-based methods use expert 
knowledge to diagnose faults, getting rid of the dependence 
on accurate mathematical models[7]. Data-based methods
rely on accessible data without abundant experience and 
huge expert knowledge, and they are suitable for systems 
difficult to establish explicit models or signal symptoms[8, 9]. 

Machine learning is one of the main methods to handle the
data in data-driven fault diagnosis[10]. The traditional 
machine learning algorithms used consist of Support Vector 
Machines(SVM)[11], k-Nearest Neighbor[12], multi-layer 
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perceptron network[13], and so on. Though they improve the
accuracy of fault diagnosis, traditional machine learning 
methods cannot extract features automatically, resulting in 
time-consuming and labor-consuming because of the 
dependence on manual extraction. With the rapid 
development of machine learning, deep learning has 
emerged as an effective way to overcome the above 
drawback. Lv et al[14] proposed an end-to-end fault detection
method based stacked sparse autoencoder(SAE), the method 
not only improved the divisibility between normal and faults 
data but also exhibited a better performance on the accuracy 
of fault classification. Mandal et al[15]used deep belief 
network (DBN) technology to classify the nuclear power 
plant thermocouple sensor fault and obtained the lowest test 
error compared to SVM and back propagation network. 

However, the above methods only utilize the time domain 
features and ignore the spatial domain features. An effective 
method is to convert the one-dimensional time series signals 
into two-dimensional images. Guo et al[16] used Short Time 
Fourier Transform (STFT) to convert the residual signal to 
the corresponding time-frequency map and then designed 
CNN to diagnose unmanned aerial vehicle sensors’ fault 
types. Han et al[17] used Markov Transition Field(MTF) and 
Gramian Angular Field(GAF) to diagnose bearing fault and 
obtained higher accuracy compared with other fault 
diagnosis methods.  

To further improve the algorithm performance, Hou et al[18]

proposed a spatial domain image fusion method and CNN 
model to locate the fault position in a nonsolid-earthed 
network, the input of CNN is the image fused of GASF and 
GADF by the given weighted coefficient 0.5, and the method 
achieved a great result for fault location and also provided an 
inspiring idea, but whether 0.5 is the optimal weighted 
coefficient needs further discussion. This paper transfers its
regression problem of fault location to the classification 
problem of fault types classification. In order to obtain the 
best performance, the weighted fusion method is proposed 
for image fusion, and then explores the optimal fusion 
weighted coefficient.  
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The main contributions of this paper are summarized as 
follows:

(1) The one-dimensional time series sensor signals are
converted into two-dimensional images by using GAF. 
Then we use the weighted fusion method to fuse 
GASF images and GADF images to obtain GAFF 
images. 

(2) The GAFF-CNN model is proposed by feeding the 
GAFF images into the CNN model to implement fault 
diagnosis for robotic fish depth sensor faults. 

(3) Compared with the different weighted coefficients of 
the proposed fusion method, we find the optimal fault 
diagnosis performance, using fault diagnosis accuracy 
and model training speed as evaluation.  

2 Fault diagnosis model 

2.1 Data augmentation

The number of data has a great influence on diagnostic 
results, therefore big data to train fault diagnosis models is 
essential. In general, the more data, the classification effect 
will be better, but the training time will be longer. Hence, to 
strike a balance between accuracy and efficiency, the 
samples collected from bionic robotic fish used a sliding 
window with data overlap to segment the original signal into 
a series of equal-sized sub-signals and regard each sub-signal 
as one sample. In this step, a schematic diagram of data 
segmentation is shown in Fig. 1. Sliding window with length
M slides from the start to the end of the original sample with 
length L. The step of the sliding window is N, and the
overlap length is M-N between two samples generated by 
over-sampling. After obtaining sub-signals, the training and 
testing samples are selected according to random criteria,
and the samples of each fault type are randomly assigned to 
the training/testing samples with a scale of 1:1.

Fig. 1: Data augmentation using sliding window

2.2 Signal to image 

In order to make full use of the advantages of CNN to 
classify fault types, GAF is used to convert one-dimensional 
time series sensor signals into two-dimensional images,
which is shown in Fig. 2. The basic idea is to take
one-dimensional time series signals in cartesian coordinate 
system, transform them into polar coordinate system 
representations, and then use trigonometric functions to 
generate a GAF matrix. The time series noise is eliminated 
by spatial transformation and the vector inner product is used 
to preserve the time information. According to the different 
calculation methods of the GAF matrix formed, there can be 

divided into two categories, one is the cosine of the summed 
angles for GASF and the other is the sine of the subtracted 
angles for the GADF. This is explained mathematically as 
follows.

Polar coordinate conversion

GASF

GADF

Time series signal

Fig. 2: The method of signal to GASF and GADF image 

The first step is to normalize the time series signals to the
interval [-1,1], assuming that one of time series signals 
is 1 2, , , NX x x x , and the normalized value ix can be 
calculated by
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Then we can represent the rescaled time series X in polar 
coordinates by encoding the value as the angular cosine and 
the time stamp as the radius with the equation below: 
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In the equation above, i is the polar angle fall in the 
angle boundaries [0, ] , ir represents the radius of the 
polar coordinate, it is the time stamp, and n is a constant 
factor to regularize the span of the polar coordinate 
system. 

After the time series signals has been transformed within 
polar coordinates, each point is represented as the radius and 
angle. the next step is to mine the correlation between 
different moment points by the angle of each moment point,
the GASF can be generated by the cosine of the summed 
angles as follows: 
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2 2
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cos( ) cos( )
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(3)

The GADF algorithm is similar to the GASF except that 
GADF is constructed using the sine of the subtracted angles
as follows
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The method of signal-image conversion has two major 
advantages as follows:

(1) The relationship between the one-dimensional time 
series sensor signals and the two-dimensional images is 
double-mapping relation, which does not lose any 
information about the one-dimensional time series sensor 
signals. 

(2) It can maintain the time dependence of signals. The 
texture information and color distribution of the 
two-dimensional images can reflect the invisible information
of the one-dimensional time series sensor signals [18].  

2.3 Weighted fusion method for GAF  

Since the signal can be converted into GASF and GADF 
images, for the purpose of taking advantage of both, 
weighted fusion method is used to generate the GAFF 
images as equation (5) shows. It is a transparency fusion 
method that is widely used in image composition and image 
matting fields. 

* (1 )*GAFF GASF GADF  (5) 
GASF image is the foreground image and its transparency 

denotes as , GADF image is the background image and its 
transparency is 1 , where the value range of is[0,1],
the process to fuse each image pixel with 0.5 is shown in
Fig. 3, GAFF image has both GASF’s and GADF’s 
information. When is 0, GAFF image only has GASF’s 
information; And when is 1, GAFF image only has
GADF’s information. With adjustable weighted coefficient

, we can generate different images to find the optimal fault 
diagnosis performance.

Fig. 3: Weighted fusion method for GAF

2.4 Convolutional Neural Network Structure

Once the raw signals have been converted into GAFF 
images, CNN can be trained to classify these images. CNN is
a multilayer supervised learning neural network, and the 
convolutional and pool sampling layers of the implicit layer 
are the core modules to realize the feature extraction function 
of CNN. The network model improves the accuracy of the 
network through frequent iterative training by minimizing 
the loss function using the gradient descent method to adjust 
the weighted coefficient in the network layer by layer in 
reverse.

The low hidden layer of the CNN is composed of 
alternating convolutional layer and maximum pool sampling 
layer, and the high level is a fully connected layer 
corresponding to the implicit layer of a traditional multilayer 
perceptron and a logistic regression classifier. The input of 
the first fully connected layer is a featured image obtained by 
feature extraction from the convolutional and subsampling 
layers, and the final output layer is a classifier layer that can 
classify the input images using the softmax function to 
achieve logistic regression. There are four key ideas behind 
CNN that take advantage of the properties of natural signals: 
local connections, shared weights, pooling, and the use of 
many layers.

In order to classify the fault types, A CNN structure with 
three convolutional layers is designed to diagnose robotic 
fish sensor faults as shown in Fig. 4. It is an end-to-end 
model which doesn’t need manual feature extraction, what 
we need is to select inputs and outputs. 

Fig. 4:The structure of CNN

GAFF images are inputted to CNN with a batch, and the 
dimensionalities of each image are (256,256). Firstly, GAFF 
images are convoluted by (5,5) kernel and activated by the 
ReLU function, then go through a max pooling process to 
reduce features maps’ dimensionalities. Secondly, features 
images perform two consecutive convolutions and max 
pooling to obtain the deeper and the more abstract features
with the same convolutional kernel of (3 3). Thirdly, in 
order to classify images, the feature maps are flattened to a
vector and then performed a linear connection to obtain a
feature vector. Finally, the feature vector is connected with 
the output layer using the softmax function to achieve fault 
classification. 

3 Verification

3.1 Experimental data collection

As illustrated in Fig. 5, the robotic fish is comprised of a 
pair of pectoral fins, and a three-link posterior body with a 
caudal fin. To obtain better underwater kinematic ability, an 
embedded control system based on STM32F407
microcontroller is built. The microcontroller is used to drive 
the robotic fish and Central Pattern Generator (CPG)
governed control strategy is adopted to realize various 
sharklike motions[19]. It is powered by batteries, which 
increases the flexibility of movement by eliminating the 
dependence on cables. In order to achieve intelligent 
perception and precise control, it is equipped with Inertial 
Measurement Unit (IMU), depth sensor, and infrared sensor.
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The depth sensor is on the surface of the fish body, so it has a
greater risk of failure due to collision with the environment 
compared to the IMU and the infrared sensor inside the body 
of the robotic fish. Therefore, this paper focuses on the fault 
diagnosis of depth sensor.

Fig. 5 Photograph of the robotic prototype

In order to verify the effectiveness of the proposed 
GAFF-CNN based fault diagnosis for the robotic fish, aquatic 
experiments were carried out in a lab pool, whose 
dimensions are 500 cm 400 cm  120 cm, as shown in
Fig. 6. In order to collect information about the robotic shark, 
a data collection system based on HC-12 was designed. 
HC-12 is a wireless communication module operating in the 
433 MHz bands. Not only does it operate at a low frequency, 
but also has a high transmitting power, so it is ideal for 
communicating with the robotic shark. A data collection
software was developed in the host PC and the process of 
data collection is as follows. Firstly, the host PC sends 
control commands and the robotic shark starts to move
following the command, the host PC is sending port and the 
robotic shark is receiving port during this process.
Meanwhile, the robotic shark records sensor information to 
an SD card, which can be recorded in real-time. Finally, the
host PC receives sensor data from the robotic shark and 
records it in the database, the robotic shark is sending port 
and the host PC is receiving port in this process. 

500cm

12
0c

m

Host PC
Database

HC-12

Fig. 6: Schematic diagram of data collection

In experiments, six depth sensor types were collected 
including the Normal type and five fault types: No Output
type, Drift type, Interrupt type, Constant type, and Jump type
as shown in Fig. 7. At the beginning, the robot fish was in 
normal operation, after a period of normal operation, the 
sensor faults occurred, which caused chain reactions and 
curve fluctuations. In order to reduce the impact of different 

tasks of robotic fish on sensor fault diagnosis, the data of the 
curve is the sensor’s depth value subtracted by the target 
depth value. As we can see, the curve of the Interrupt fault 
and the Jump fault is similar, and the curve of the Normal 
type and the Drift type have similar fluctuation shapes, which 
increases the difficulty of fault diagnosis. 

Normal

NoOutput

Drift

Interrupt

Constant

Jump

Fig. 7 Depth sensor data

To ensure the robustness of the model and to remove the 
influence of outliers on the accuracy of the model, the signals 
were normalized to between [0,1], and in order to avoid the 
impact of unbalanced data on the different fault types, the 
same amount of data of each type was selected among the
collected data. 

3.2 GAFF image generation

The data collected from robotic fish were time series 
signals, which can be converted into GASF and GADF 
images. To take advantage of both, weighted fusion method
was used to generate GAFF images as shown in Fig. 8. The 
sub-signals’ length is 256, so the image dimensionalities of 
GAFF are (256,256). At each pixel point, where both GASF 
and GADF are bright, GAFF is enhanced, increasing the 
degree of feature differentiation; for pixels where GASF is 
relatively bright and GADF is relatively not bright, or both 
are opposite, the brightness is balanced to reduce the 
possibility of false recognition.

As we can see, there are many textural features in GAFF 
images, the distinguishing degree of different state type 
features is obvious, which lays the foundation for CNN to 
classify. The original number of each type was 20, for the 
purpose of improving the training stability, the sliding 
window method was adopted to increase the number of each 
type to 200. As for the input of CNN, to make the 
convergence more stable and efficient, GAFF images were
input with the batch size of 4.
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Normal NoOutput Drift

Interrupt Constant Jump

Fig. 8: GAFF images

3.3 Result of fault diagnosis

The confusion matrix, also known as the error matrix, is a 
common format for representing the classification evaluation 
of a model, and it enables and it enables visualization of the 
accuracy of correct classification for each class. Fig. 9
presents the best confusion matrix of the result of 
GAFF-CNN When transparency is 0.3, which obtains the 
total prediction accuracy of 97.22%. The rows stand for the 
true label, and the columns stand for the predicted label for 
each condition. The Normal and the Jump type are all 
correctly classified, and the rest have a low rate of 
misidentification, it is a possible reason that the Normal and 
the Jump type both have relatively distinct texture features
compared to others.

Fig. 9: Confusion matrix of the result

Furthermore, for the visual study of the diagnosis effect,
the T-Distributed Stochastic Neighbor embedding(T-SNE) 
algorithm was used to reduce the dimensionality of the last 
layer feature of CNN. It is a nonlinear dimensionality 
reduction algorithm, which is very suitable for the 
dimensionality reduction of high-dimensional data to two or 
three dimensions for visualization, and the ideal 
classification is that similar data is close, and dissimilar data 
is far away. In order to visually saw the result, we used a 
scatter diagram to display the last layer’s classification 
results, as shown in Fig. 10. 

Fig. 10 Visualization of the last layer feature of CNN

In Fig. 10, the Constant fault type distribution is relatively 
scattered, which has the lowest accuracy 94.03%. Though 
the Normal type and the Drift fault type have many overlaps, 
they are correctly classified by the softmax function, one 
possible reason is that T-SNE is a dimensionality reduction
method, and its essence is a projection, which has distortion 
from high dimension to low dimension. 

3.4 Comparative analysis

As for the same structure and parameters of CNN, the
factor that influences the accuracy of fault diagnosis is the 
input image. For image fusion, the weighted coefficient of 
transparency between the foreground and background has a 
great impact on the fused image, which in turn affects the 
effectiveness of fault diagnosis. Accuracy and error curves 
were obtained by changing the value of the weighted 
coefficient as shown in Fig. 11. GAFF-CNN has the 
highest accuracy of 97.22% when is 0.3, and the lowest 
accuracy of 91.67% when is 0.9.  

Fig. 11: The prediction accuracy with various 

Furthermore, we not only considered diagnosis accuracy
but also cared for convergence speed, so loss curves were
plotted to explore the convergence between different 
weighted coefficients. As shown in Fig. 12, when the
weighted coefficient is 0.4, the loss curve drops fastest 
and converges to the minimum earliest in the 20th epoch, but 
the accuracy is not the highest. Therefore, it is a contradiction 
that needs to be balanced between diagnosis accuracy and 
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convergence speed when expanding the application of this 
method. 

Fig. 12: The loss curves with various 

The comparative analysis showed that the GAFF-CNN 
method proposed in our work has great advantages in robotic 
fish depth sensor fault diagnosis, and the variable weighted 
coefficient has an important impact on both diagnosis 
accuracy and convergence speed, which we can acquire the 
optimal performance by optimizing it.

4 Conclusion
This study proposes a GAFF-CNN intelligent diagnosis 

method for robotic fish sensor faults. The main contributions 
of this study are summarized as: (i) The one-dimensional 
time series sensor signals are converted into 
two-dimensional images by using GAF; (ii) GASF and
GADF images are fused by weighted fusion method to
generate GAFF image, and the CNN diagnosis model is 
designed. (iii)Weighted coefficients of GAF fusion are
explored, showing that it has an important impact on both 
diagnosis accuracy and convergence speed. These results 
show the great potential of the proposed GAFF-CNN method 
in the data-driven fault diagnosis field.
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