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Abstract. Vision-based control is a hot topic in the field of computa-
tional intelligence. Especially the development of deep learning (DL) and
reinforcement learning (RL) provides effective tools to this field. DL is
capable of extracting useful information from images, and RL can learn
an optimal controller through interactions with environment. With the
aid of these techniques, we consider to design a vision-based robot to
play The Open Racing Car Simulator. The system uses DL to train a
convolutional neural network to perceive driving data from images of
first-person view. These perceived data, together with the car’s speed,
are input into a RL-learned controller to get driving commands. In the
end, the system shows promising performance.
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1 Introduction

The Open Racing Car Simulator (TORCS)1 is an open source 3D car racing sim-
ulator. It provides realistic experience with powerful physics engines and sophis-
ticated 3D graphics. Players can not only drive cars in TORCS, but also design
their own robots with intelligent techniques [8,17]. Based on computational intel-
ligence (CI) techniques, numerous robots have been successfully developed by
researchers to play TORCS [2,12].

Most robots use real measurements from the TORCS engine as input state,
such as distance, angle, track shape, to name a few. These data are reliable and
low-dimensional, but must be provided by the TORCS engine. In contrast, when
humans play TORCS or drive real cars, they can perform well based on only
drivers’ view. In recent years, deep learning (DL) makes it feasible and easy to
process high-dimensional images [4,6,7]. Essential features can be extracted with
deep neural networks (DNNs). Inspired by that, in [3], authors try to predict
1 http://torcs.sourceforge.net/.
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driving data from the first-person view in TORCS. They collect images and
data and put them into a convolutional neural network (CNN) to train network
weights.

However, DL lacks the ability of interacting with external environment. To
achieve vision-based control in complex systems like TORCS, researchers have
been working on combining DL with reinforcement learning (RL). RL considers
how to choose a series of actions to maximize the accumulated rewards from
environment [5,9,14–16]. Researchers in [10,11,18] combine these two methods
and propose deep reinforcement learning (DRL) to play Atari games. To achieve
satisfying results, these DRL algorithms have to run plenty of trials through
interactions with environment, and most early trials end up with failures. For
vision-based autonomous driving, it is more reliable to separate action-decision
and image-perception processes apart. A driving controller should be learned
with only a small number of trials, and a perception module can be trained by
data that are collected from skilled drivers in a safe condition.

In this paper, we aim to integrate the latest RL and DL methodologies
together to design a vision-based self-driving robot in TORCS. First we use
low-dimensional, ground-truth driving data provided by the TORCS engine to
learn a driving controller with only a small number of trials. Then we train a
CNN to perceive driving data from images of first-person view. After integrating
the strategy and perception parts together, our robot only takes the first-person
view and its own speed as input, and can drive successfully. Since the framework
only involves collecting data from human drivers in a safe condition and learning
controllers with a small number of trials, it is easy and reliable to extend the
work to practical applications.

2 Problem Description in TORCS

The control variables in TORCS (Fig. 1) include ut = [δt, τt]T . δt is the steering
angle percentage, ranged by [−1, 1]. τt is the throttle or brake percentage, ranged
by [−1, 1]. t specifies the time index. As for the gear control, we use an automatic
transmission algorithm to shift the gear automatically.

For ease of analysis, the car dynamics is treated as a discrete-time system
with a fixed step dT . The evolving variables, which we term as inherent vari-
ables, include xt = [dt, at, vt]T , where dt is the deviation distance (m), at is the
deviation angle (rad), and vt is the current speed (km/h). Its evolution is deter-
mined by command ut and dynamical variables yt = [dt, at, vt, κt]T where κt is
the road curvature (m−1). The transition function is defined as xt+1 = f(yt,ut)
and it is unknown to robot designers. Due to disturbance and sensor noise, obser-
vations of xt+1 are perturbed by noise, which here we assume as Gaussian noise
ε ∼ N (0, Σε), where Σε = diag(σεd

, σεa
, σεv

).
The following cost function evaluates the driving performance at each step

ct = c(zt) = 1 − exp
(

− 1
2b2

[
ωdd

2
t + ωaa2

t + ωv(vt − v′
t)

2
])

(1)
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Fig. 1. Screenshot of TORCS.

where v′
t is an auxiliary variable that represents the desired speed (km/h) at the

current position. b, ωd, ωa, ωv are the cost coefficients. The cost variables zt are
composed of zt = [dt, at, vt, κt, v

′
t]

T . The long-term goal is to minimize the return,
which is the sum of costs during a period of time minJ = minE

[∑T
t=1 ct

]
.

The desired speed v′
t is widely used in the design of TORCS robots [1,13]. It

is calculated based on track curvature and road friction coefficient. Due to page
limit, we omit the calculation details and suggest readers to refer to [1,13].

The controller is constructed in the form of ut = π(zt|p), where p represent
controller parameters, and the target is to minimize J . Note that the controller
needs all the variable information, including not only physical variables like dt,
at, κt, but also auxiliary variable v′

t. In the open-source TORCS, these data are
available from the TORCS engine. In the next, we plan to learn the controller
parameters by RL based on real variable information, and then perceive these
variables from images by DL so that the robot can drive based on first-person
view.

3 Learn Driving Controller by Modified PILCO

3.1 Gaussian Process Model

PILCO [5], short for Probabilistic Inference for Learning COntrol, is a model-
based RL algorithm. In PILCO, the system dynamics is considered as a Gaussian
Process (GP). Suppose we have collected a group of driving data {yt,ut}. We
use ỹt = [yT

t ,uT
t ]T as training inputs, and the difference Δxt+1 = xt+1 − xt + ε

as training targets, where ε is Gaussian noise. The mean and variance of xt+1

now become μt+1 = xt + Ef [Δxt+1], Σt+1 = varf [Δxt+1].
Suppose there exist n training inputs, Ỹ = [ỹ1, . . . , ỹn], and n training tar-

gets, ΔX = [Δx1, . . . ,Δxn]. Consider the scalar target Δxi ∈ R and determinis-
tic test input ỹ∗. The predictive probability of test target Δx∗ is Gaussian with
mean and variance as
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μ∗ = Ef [Δx∗] = kT
∗ (K + σ2

ε I)
−1ΔX = kT

∗ β (2)
σ2

∗ = varf [Δx∗] = k∗∗ − kT
∗ (K + σ2

εI)
−1k∗ (3)

where k∗ = k(Ỹ, ỹ∗), k∗∗ = k(ỹ∗, ỹ∗), β = (K + σ2
εI)

−1ΔX, and K is the
Gram matrix with entries Kij = k(ỹi, ỹj). Here the kernel function k selects the
squared exponential (SE) kernel

k(ỹ1, ỹ2) = α2 exp
(

−1
2
(ỹ1 − ỹ2)T Λ−1(ỹ1 − ỹ2)

)
(4)

where α and Λ are function parameters. These parameters can be learned by
evidence maximization.

When test input is distributed, the target distribution is complicated but we
can still approximate it as a GP. Still consider the scalar target, i.e. Δxi ∈ R,
and suppose the test input satisfies ỹ∗ ∼ N (μ,Σ). The target distribution is
approximated by Gaussian Δx∗ ∼ N (μ∗, σ2

∗) where

μ∗ = βTq, σ2
∗ = α2 − tr

(
(K + σ2

εI)
−1Q̃

)
+ βT Q̃β − μ2

∗

q = [q1, . . . , qn]T , qi = α2|ΣΛ−1 + I|− 1
2 exp

(
−1

2
(ỹi − μ)T (Σ + Λ)−1(ỹi − μ)

)

and Q̃ is a n × n matrix with entries

Q̃ij =
k(ỹi, μ)k(ỹj , μ)
|2ΣΛ−1 + I| 1

2
exp

(
(ρ̃ij − μ)T (Σ +

1
2
Λ)−1ΣΛ−1(ρ̃ij − μ)

)

and ρ̃ij = 1
2 (ỹi + ỹj). The above results of scalar input can be easily extended

to multivariate case, so we omit it here.
One drawback of GP is its computational complexity. If the data set is large,

the training and predicting processes will be slow and unsuitable for real appli-
cations. We discretize the input space into non-overlapping equal-sized cells,
and each cell can store at most one data [19]. In this way, the stored data are
naturally separated and a sparse training set is obtained.

3.2 Return Evaluation

The driving controller π is specified to a linear controller with saturation

ut = π(zt) = umaxsat(wzt + b) (5)

where the saturation function is defined by sat(a) = 1
8 (9 sin(a) + sin(3a)). umax

indicates the maximum command values. For simplicity, we denote p = {w,b}.
With the controller structure in (5), it is feasible to compute mean and vari-

ance of control variables ut with a Gaussian distributed input zt. Similarly, the
probability of control variables is approximated by Gaussian with the calculated
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mean and variance. If we split the distribution of dynamical variables yt from zt

and combine with action ut, the Gaussian distribution of input ỹt = [yT
t ,uT

t ]T

is known. With the trained GP model, the probability of next-step xt+1 is pre-
dicted. Combined with the cost function given in (1), the expected cost of zt+1

is analyzed by E[ct+1] =
∫

c(zt+1)p(zt+1)dzt+1 if we further specify the desired
velocity v′

t+1.
The above process can be repeated for the next (T − 1) steps. Given road

curvatures κt, . . . , κt+T and desired velocities v′
t, . . . , v

′
t+T , the distributions of

xt+1, . . . ,xt+T and the corresponding costs are calculated. The estimated return
of a starting state xt under the current controller is analyzed and is related to
the controller parameters p in the form J =

∑t+T
k=t+1 E[c(zk)] ∝ p.

3.3 Policy Gradient Search

With the analytic solution of J , we calculate the gradient of J towards the
controller parameters p. Then policy gradient search is followed to adjust p to
minimize J . However, computing J needs not only a starting state xt, but also
external variables κt+1, . . . , κt+T and v′

t+1, . . . , v
′
t+T . We define multiple scenar-

ios with different starting states x and different κ, v′ for policy gradient search
in order to gain comprehensive performance. Once the gradient is calculated, p
can be trained by many optimization methods to minimize J .

4 RL Experiment Results

Now we apply the modified PILCO algorithm in TORCS. The track we used for
learning is CG Track 3 and it is marked by lane lines to mimic real-world roads
with one lane as illustrated in Fig. 1. The slowdown deceleration ab selects 2m/s2.
The discrete-time step selects 0.1 s. The Gaussian noise ε of the observed xt sat-
isfies ε ∼ N (0, Σε), where Σε = diag([0.01, 0.01, 1.5]2). The bounds of control
actions are umax = [1, 1]T . The width b in cost function selects 0.4. The impor-
tance weights are set to ωd = 1, ωa = 1, ωv = 400. When computing the gradient
dJ/dp with GP model, the future steps T choose 30. To store GP training data,
each dimension is divided by 20 between its lower and upper bounds according
to experimental experience. 7 scenarios are defined for calculating the gradient,
including straight cases and turning cases with different velocities, deviation
distances, and curvatures.

After 6 trials, the controller is able to complete the track and the learning
stops. Trajectories of states and actions using the final learned controller are
plotted in Fig. 2. For comparison, the desired velocity is also plotted along with
the real velocity. Small deviations only occur at the moment when the road
changes from one segment to another. And the deviations are regulated in a
short time.
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Fig. 2. Trajectories of states and actions using the final learned controller by modified
PILCO. The blue solid line in figure ‘v’ represents the car’s velocity, while the red
dash-dot line represents the desired velocity. (Color figure online)

5 Perceive Driving Data from Images by DL

In the above section, we learn a driving controller with the full access to state
variables provided by TORCS engine. As mentioned above, these data can be
perceived from the driver’s view, except the car velocity that is known to the
car. Inspired by the work of [3], in this section we use a CNN to predict the
driving data from images.

First we let a human player drive the car, and store images and driving data
every 0.1 s. The images are directly captured from the first-person view with
the size of 3 × 210 × 280 (RGB). The driving data include deviation distance,
deviation angle, road curvature, and desired velocity. To increase the diversity of
data set and improve the generalization of network, the car is driven on different
tracks with different backgrounds and lanes. At last we collect a total of 53139
images and driving data as the train set and 10699 images and driving data as
the test set.

The network uses the same architecture given in [6], except the output layer
is adjusted to suit our needs. To speed up the learning process, we use the results
of [6] to initialize the network weights. The network is trained using stochastic
gradient descent with a batch size of 64, a momentum of 0.9, and a weight decay
of 0.0005. The learning rate is initialized to 0.01 and is dropped by a factor of
0.9 every 8000 steps.
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Network is trained for a maximum of 100000 iterations. The curves of train
loss and test loss are depicted in Fig. 3. The loss curves drop dramatically once
the network starts training. That is because [6] has trained the network on a
large data set of real-world images, and we use their results to initialize our
network. The shallow layers have already had a high level of feature extraction.
With more iterations, the train loss vibrates occasionally but the test loss keeps
dropping slightly. The prediction performance of the trained CNN is illustrated
in the next section where we combine the network with the driving controller.
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Fig. 3. Loss curves of CNN along iterations.

6 Combination of RL and DL in TORCS

Now we combine the visual perception trained by DL with the controller learned
by RL, and apply them in TORCS to drive on the track of CG track 3 2. CNN
outputs are plotted in Fig. 4. For comparison, the ground-truth values are pre-
sented in the same figures. The predictions generally match the true values. But
it is noted that the curves are not as smooth as those produced by the controller
with the full access to driving data in Fig. 2. Some noticeable vibrations occur in
d and a. This phenomenon is caused by CNN errors. There are small differences
between the predicted values and the true values. Prediction errors disturb the
controller to output right commands, and sometimes even make the car move to
the opposite directions. Fortunately the prediction errors are small, so the car
will not leave the track in spite of occasionally inaccurate commands.

2 Video results are available in https://www.youtube.com/watch?v=hUpuE7qL5NQ.

https://www.youtube.com/watch?v=hUpuE7qL5NQ


Driving Control with Deep and Reinforcement Learning in TORCS 333

0 20 40 60 80 100 120
−2

0

2

d 
[m

]
0 20 40 60 80 100 120

−0.2

0

0.2

a 
[r

ad
]

0 20 40 60 80 100 120
−0.05

0

0.05

κ 
[m

−1
]

0 20 40 60 80 100 120
0

50

v’
 [k

m
/h

]

time [s]

Fig. 4. Trajectories of predicted and true values in TORCS by vision-based robot.
The black thin lines indicate the predicted values by CNN, while the green thick lines
indicate the true values. (Color figure online)

7 Conclusion

In this paper, we first use a modified PILCO algorithm to learn a driving con-
troller with full access to the TORCS engine. The algorithm learns a satisfactory
controller with just several trials. Then we train a CNN to perceive driving data
from images of first-person view in a supervised learning manner. After com-
bining the two parts together, we get a vision-based robot for TORCS. It takes
images and car’s velocity as input, and drives the car well on the road.
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