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Abstract. Self-supervised multi-modal document pre-training for docu-
ment knowledge learning shows superiority in various downstream tasks.
However, due to the diversity of document languages and structures,
there is still room to better model various document layouts while effi-
ciently utilizing the pre-trained language models. To this goal, this pa-
per proposes a Graph-based Multi-level Layout Language-independent
Model (GraphMLLM) which uses dual-stream structure to explore tex-
tual and layout information separately and cooperatively. Specifically,
GraphMLLM consists of a text stream which uses off-the-shelf pre-trained
language model to explore textual semantics and a layout stream which
uses multi-level graph neural network (GNN) to model hierarchical page
layouts. Through the cooperation of the text stream and layout stream,
GraphMLLM can model multi-level page layouts more comprehensively
and improve the performance of language-independent document pre-
trained model. Experimental results show that compared with previ-
ous state-of-the-art methods, GraphMLLM yields higher performance on
downstream visual information extraction (VIE) tasks after pre-training
on less documents. Code and model will be available at https://github.
com/HSDai/GraphMLLM.

Keywords: Visual information extraction · Self-supervised pre-training
· Multi-level page layouts.

1 Introduction

As an important task in Visual Document Understanding (VDU), Visual Infor-
mation Extraction (VIE) focuses on automated information extraction through
Semantic Entity Recognition (SER) and Relationship Extraction (RE) from

https://github.com/HSDai/GraphMLLM
https://github.com/HSDai/GraphMLLM
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Visually-Rich Documents (VRD) including receipts, forms, reports, invoices,
etc. It receives widespread attention from both industry and academia for its
promising applications.

There have been numerous works of VIE reported in recent years. However,
due to the heavy workload of manual annotation, the existing VIE datasets,
such as FUNSD [9], XFUND [24], CORD [16] and EPHOIE [20], usually have
small scales, severely limiting the performance of deep-learning based VIE meth-
ods trained from scratch. To overcome this limitation, many pre-training based
methods, such as DocFormer [1], GraphDoc [26], SelfDoc [13], StructuralLM
[11], and the LayoutLM [23] series, have been proposed. Different from BERT[4]
designed for plain text, pre-training methods for VIE task usually take into con-
sideration the natural multi-modal property of documents and utilize textual,
visual and layout information when pre-training their models. Besides, many self-
supervised pretext tasks are designed for self-supervised model learning, such as
Masked Language Modeling (MLM) [4], Masked Image Modeling (MIM) [2],
Masked Visual-Language Model (MVLM) [23], Text Image Alignment (TIA)
[22], Text Image Matching (TIM) [22], etc.

The joint learning of multi-modal information can bring significant perfor-
mance gain on downstream tasks, but it also brings some unexpected disadvan-
tages including the huge data amount required by pre-training and the inflexibil-
ity when handling documents of languages not covered by the pre-trained model.
Though some works, e.g. LayoutXLM [24], directly use multilingual documents
for pre-training to achieve better performance on multilingual dataset XFUND
[24], they require even more data for pre-training, yet the pre-trained model
still lacks the ability to generalize to unseen languages. Considering that doc-
uments with different languages may share similar layouts, LiLT [19] proposes
to use dual-stream transformer to decouple text and layout during pre-training,
and then re-couples them for downstream task fine-tuning. Through this de-
sign, LiLT can be pre-trained on IIT-CDIP [10] which only contains English
documents and then adapted to other languages during fine-tuning.

Document understanding can take advantage of the hierarchical nature of
document layouts (see Fig. 1), which can provide important guidance for var-
ious document understanding tasks. To better excavate document information
from multi-level layout structures, some methods including StrucTexT [14], Fast-
StrucTexT [25], LayoutLMv2 [22] and ERNIE-mmLayout [21] have been pro-
posed. These methods either model document hierarchy implicitly through token
and segment 1D embedding [14,22] or explicitly exchange and integrate infor-
mation from different levels and granularities [25,21].

To better exploit the hierarchical structure of layouts for visual document un-
derstanding, in this paper we propose a Graph-based Multi-level Layout Language-
independent Model (GraphMLLM) that decouples text and layout through a
dual-stream structure and explores multi-level layout information more effi-
ciently. By decoupling text and layout, GraphMLLM can directly reuse existing
pre-trained language models and greatly reduce the reliance on the amount of
pre-training data. Meanwhile, graphs are used to model the multi-level layout
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Fig. 1. The hierarchical layout structure of documents. Word-level and segment-level
layouts in (a) and (b), are typically acquired via OCR engines. Region-level layout is
derived through heuristic rules or layout analysis models.

information and interact with semantic modalities through a disentangled atten-
tion mechanism, enabling the language model to access different levels of layout
information, so as to improve the performance of the entire model.

During pre-training, we use Masked Visual-Language Model, Key Point Lo-
cation and Cross-modal Alignment Identification as pretext tasks and train our
model on the monolingual IIT-CDIP dataset. While during fine-tuning, we con-
ducted experiments on two monolingual datasets FUNSD, CORD and one mul-
tilingual dataset XFUND to demonstrate the effectiveness of our model. The
experimental results show that despite using fewer data for pre-training, our ap-
proach can still outperform other multilingual pre-trained models and obtains
competitive results on all tasks compared with state-of-the-art methods.

The contributions of this paper are summarized as follows:
(1) We propose a new multi-modal document pre-training model named

GraphMLLM for document understanding, which contains a dual-stream struc-
ture to decouple the textual and layout information during pre-training to make
it language independent.

(2) We use a multi-level graph neural network (GNN) to model hierarchical
document layouts at different granularities, thus exploit the hierarchical struc-
ture of documents more efficiently.

(3) The combination of text-layout decoupling and hierarchical layout mod-
eling can significantly reduce the required quantity of pre-training data while
still remains high performance on downstream tasks.

(4) We evaluated on three benchmark datasets of different languages, and the
experimental results show that GraphMLLM can obtain superior or competitive
results compared with state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 reviews related works.
Section 3 introduces the architecture of the proposed model and the pre-training
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method. Section 4 and 5 present experimental settings and results, and Section
6 draws concluding remarks.

2 Related Work

Here we briefly review existing methods closely related to our work based on the
granularity of layout considered: word-level layout based model, segment-level
layout based model, and multi-level layout based model.

2.1 Word-level Layout Based Model

To perceive layout information, LayoutLM [23] adds token and word position
embeddings as initial embeddings with 2D position awareness. In addition to
layout information, LayoutLMv2 [22] integrates visual information by gridifing
document images (e.g. 7 × 7) and achieves soft alignment between textual and
visual information through pre-training tasks. By focusing on the relationship
between texts, BROS [7] improves the attention mechanism by introducing rel-
ative position information. DocFormer [1] improves the attention mechanism in
integrating textual, layout, and visual features, and proposes a pixel-level image
reconstruction task. Furthermore, ERNIE-Layout [17] focuses on document lay-
out information and enables the model to obtain correct reading order through
serialization modules and pre-training task for reading order. LayoutXLM [24]
emphasizes information extraction from multilingual documents and uses mul-
tilingual documents for pre-training. Such word-level layout based models can
model fine-grained token-level information but are weak in macroscopic perspec-
tive when facing complex layouts.

2.2 Segment-level Layout Based Model

Compared to words, segment-level layout (based on text lines, e.g.) is more
informative for document understanding. To incorporate higher-level layout in-
formation, StructuralLM [11] uses segment-level layout information as the po-
sitional embedding of tokens. SelfDoc [13] uses segment-level semantic and lay-
out features, and proposes a multimodal adaptation attention mechanism. Ex-
tended to image-centric Document task, LayoutLMv3 [8] adopts segment-level
layout information and tokenizes images like the DiT [12] model, without re-
lying on CNN-based visual encoders. Considering local dependencies between
segments, GraphDoc [26] uses graph neural networks as the backbone of the
pre-trained model. To achieve cross-language transfer capability, LiLT [19] uses
a dual-stream Transformer structure with bi-directional attention complementa-
tion mechanism (BiACM) to decouple text and layout information. These meth-
ods focus on segment-level layout information but ignore the word-level layout
information which is also crucial for the comprehension of certain documents
such as forms.
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2.3 Multi-level Layout Based Model

Multi-level layout based models aim to extract layout information of multi-level
granularities for better document understanding. StrucTexT [14] adds the token
embeddings and word-level layout embeddings as the initial token embeddings,
and adds visual features and segment-level layout embeddings together as the
initial visual token embeddings, and the word- and segment-level layout em-
beddings are integrated. As an extension of LayoutLMv2, ERINE-mmLayout
[21] introduces additional segment and region information on the basis of Lay-
outLMv2 without pre-training again, to perceive multi-level layout information
and effectively improves the model performance. These works show the effec-
tiveness of integrating multi-level layout information. However, the multi-level
layout information is still not utilized sufficiently in that the interactions between
inter- and intra-level layouts are not considered in great detail.

In this paper, we try to model multi-level layout information of documents in
pre-trained model with better integration and interaction between different lev-
els, so that the model has better cross-language transfer capability at moderate
model complexity and data reliance.

3 GraphMLLM

Inspired by the disentangled attention mechanism proposed in DeBERTa [6] and
the decoupled modeling in LiLT, GraphMLLM (see Fig. 2) adopts a dual-stream
structure to encode text features and layout features separately, and interacts
information between two modalities through an attention based hierarchical in-
teraction mechanism. In the following, the multi-level graph representation of
documents is first introduced, followed by the text flow module, layout flow
module and interaction mechanism between these two modalities.

3.1 Document Representation

First, all the texts in documents along with their coordinates are extracted
using an OCR engine provided by ReSenseTech (other OCR software can be
used alternatively)1, and are transformed into text and layout representations
using token embeddings and hierarchical layout embeddings, respectively.

Text Representation. Since the reading order obtained by OCR is noisy, we
use XY Cut [5] to obtain a proper reading order of texts. Then, like many pre-
trained language models, we serialize and tokenize the texts and add special
tokens [CLS] and [SEP] at the beginning and end to obtain the text token
sequence: T = [t1, ..., tNt

], where Nt stands for the token sequence length. By
adding token embeddings and 1D position embeddings, 1D-position aware token
embeddings are obtained:

Et = LN(Etoken + E1Dpos
), (1)

1 http://www.resensetech.com

http://www.resensetech.com
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Fig. 2. The overall architecture of GraphMLLM, which consists of two streams: the
Text Flow and the Layout Flow. It decouples text and layout information, and uses
hierarchical graphs to model multi-level layouts. Higher level layouts are successively
added to the model, Nw, Ns and Nr are layer numbers of each stage. In each layer,
layout features are firstly interacted cross levels, then information from text and layout
modalities are interacted through disentangled attention. Best viewed in zoomed-in.

where Etoken ∈ RNt×Dt is token embedding matrix, E1Dpos ∈ RNt×Dt is position
embedding matrix, Dt is feature dimension and LN is Layer Normalization.

Multi-Layer Layout Representation. Document layout information can be
represented at three levels: word, segment, and region, represented by W =
{w1, ..., wNw

}, S = {s1, ..., sNs
} and R = {r1, ..., rNr

} respectively. Here, Nw, Ns, Nr

are the number of words, segments, and regions for the given document. The
layout is represented as a graph structure G = (V, E), where vertices V =
W ∪ S ∪ R denote layout elements (words, segments and regions), and edges
E = Eww ∪ Ess ∪ Err denote the connections between vertices of the same level.

Fellowing GraphDoc [26], the vertex and edge embeddings Ev ∈ RNv×Dv ,
Ee ∈ RNe×De of graph are obtained as follows:

Ev = Concat(Ex(x0, x1, w), Ey(y0, y1, h)), (2)

where x0, y0, x1, y1 denote the left, top, right, bottom coordinates, and h, w de-
note height and width of bounding boxes, Ex, Ey are learnable position embed-
dings. Similarly,

Ee = EtlW tl + EtrW tr + EblW bl + EbrW br, (3)
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where W tl, W tr, W bl, W br are learnable parameters, and Etl, Etr, Ebl, Ebr are
sinusoidal position embeddings of distance of top-left, top-right, bottom-left and
bottom-right coordinates of the vertex bounding boxes, which are calculated as
follows:

Edist = Concat(PE(xdist), PE(ydist)), (4)
where dist ∈ {tl, tr, bl, br}, PE is a sinusoidal function [18], and xdist and ydist

represent the horizontal and vertical distances of the corresponding coordinates.
For relationship between elements of different levels, we use matrixes Mws ∈

RNw×Ns and M sr ∈ RNs×Nr to represent the relationship between word-segment
levels and between segment-region levels, respectively. Taking Mws as an exam-
ple, each mij in the matrix indicates whether the word wi belongs (set as 1) to
the segment sj or not (set as 0).

Text-Layout Alignment Relationship. The correspondence between text
and layout is many-to-many. To facilitate the calculation, we use matrices M tw ∈
RNt×Nw , M ts ∈ RNt×Ns , M tr ∈ RNt×Nr denote the correspondence of text-to-
word-layout, text-to-segment-layout, text-to-region-layout, respectively. Taking
M ts as an example, each mij in the matrix indicates whether the text ti belongs
(set as 1) to the segment sj or not (set as 0).

3.2 Text Flow
For extracting semantic features from text sequence, the backbone of text flow
adopts a pre-trained language model consisting of several Transformer encoder
layers [18]. Specifically, we input the token embeddings Et into the text flow to
derive semantic features with contextual information. As depicted in Fig. 3 and
Fig. 4, for the k-th layer of the text flow:

Hk∗
t = LN(MHAt(Hk

t , Hk
v) + Hk

t ), (5)

Hk+1
t = LN(FFN(Hk∗

t ) + Hk∗
t ), (6)

where Hk
t ∈ RNt×Dt and Hk

v ∈ RNv×Dv are the token and layout features input
to the k-th text layer, Hk+1

t ∈ RNt×Dt is the output of the k-th text layer,
FFN is the Feed-Forward Network [18], MHAt is the multi-head muti-modal
self-attention mechanism, which will be described in detail in Section 3.4.

3.3 Layout Flow
In the layout flow, we use multi-level graph attention network to compute hid-
den representations of document layouts focusing on neighbouring features. We
employ a bottom-up strategy to increasingly extract higher-level layout features.
Specifically, the first kw layers are designed to extract solely word-level layout
features. Following this, the next ks layers incorporate segment-level layout fea-
tures into the model. Finally, the last kr layers introduce region-level layout
information to achieve a comprehensive representation of the document layout.
The single-layer implementation of layout flow and inter-layer interaction are
described separately in the following parts of this subsection.
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Fig. 3. Text-Layout Layer.

Layout Layer Following GraphDoc [26], we use graph attention layers to com-
pute the hidden representation of layout tokens, by attending over its neighbors
following a self-attention strategy. As depicted in Fig. 3 and Fig. 4, for the k-th
layer of the layout flow:

Hk∗
v = LN(MHAv(Hk

v , Hk
t , Ee) + Hk

v), (7)

Hk+1
v = LN(FFN(Hk∗

v ) + Hk∗
v ), (8)

where Hk
v ∈ RNv×Dv and Hk

t ∈ RNt×Dt are the layout and text features input to
the k-th layer, and Ee ∈ RNe×Dv is the initialized edge embedding, and MHAv
is the graph attention mechanism, which will be described in Section 3.4.

Cross-level Interaction In order to enhance the multi-level layout representa-
tion ability of the layout flow, we consider interactions between different levels.
Taking as an example the word-level layout feature Hw and segment-level fea-
ture Hs in one layer of the middle ks layout layers:

Hs = AvePooling(Hw, Mws) + Hs, (9)

Hw = MwsHs + Hw, (10)
where AvePooling performs the average pooling operation among all words be-
longing to the same segments. Taking node si as an example, its corresponding
feature is denoted as hsi

:

hsi = 1
|E(si)|

∑
wj∈E(si)

hwj + hsi , (11)

where hsi
∈ RDv , hwj

∈ RDv , and E(si) = {wk|mki = 1, mki ∈ Mwr}.
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Fig. 4. Disentangled Interaction Mechanism.

3.4 Cross-Modal Interaction Mechanism

As discussed earlier, it is possible to decouple layout and text features and in-
teract only through attention scores. Here we give its details as follows.

Text Flow Attention Mechanism. MHAt is a disentangled attention mecha-
nism in which attention weights among tokens are computed using disentangled
attention matrices on their contents and layouts.

First, the layout features of tokens Hvt
∈ RNt×Dt are obtained through

operation:
Hvt

= Concate(M tvHv, E1Dlay
), (12)

where M tv ∈ {M tw, M ts, M tr} according to the layout type, E1Dlay
∈ RNt×Dt

is 1D position embedding matrix similar to E1Dpos
.

Then, we map token features Ht and layout features Hvt to Qt, Kt, V t,
Qvt

, Kvt
, V vt

:

Qt, Kt, V t = HtW Qt, HtW Kt, HtW V t, (13)

Qvt
, Kvt

, V vt
= Hvt

W Qvt
, Hvt

W Kvt
, Hvt

W Vvt
, (14)

where W ∗t ∈ RDt×Dt and W ∗vt ∈ RDvt ×Dt are learnable parameters.
Then, the contextualized representation output is obtained by taking a weighted

sum of the values based on the attention weights:

Atv = QtK
T
t + Qvt

(Kvt
)T , (15)

Htv = Softmax( Atv√
Dt

)V t, (16)

where Atv ∈ RNt×Nt is the attention score matrix.
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Layout Flow Attention Mechanism. MHAv is also a disentangled attention
mechanism that differs from MHAt in that it relies only on local context.

First, the text features corresponding to each layout element Htv
∈ RNv×Dt

are obtained by averaging pooling:

Htv = AvePooling(Ht, M tv), (17)

Similarly to Eq. 13 and Eq. 14, we map text and layout features to get
Qtv

, Ktv
, V tv

and Qv, Kv, V v. Then, we use the following operations to obtain
the attention matrix Avt ∈ RNv×Nv and layout features Hvt ∈ RNv×Dv after
fusing the neighbor information:

Avt = QvKT
v + Reshape(QvET

e ) + Qtv
KT

tv
, (18)

Ag = Mask(Avt, Mv), (19)

Hvt = Softmax( Ag√
Dv

)V v, (20)

where Mask is the masking operation [18] according to the matrix Mv which is
the adjacency matrix of layout elements according to layout graph G, Reshape
is reshaping operation to match the shape of Avt.

3.5 Gradient Detach Operation

Following LiLT [19], to ensure the linguistic independence of the text flow, the
gradient back propagation from the layout flow to the text flow needs to be ter-
minated during pre-training. Specifically, during pre-training Eq. 17 is replaced
as the following operation:

Htv
= Detach(AvePooling(Ht, M tv)) (21)

where Detach is the gradient detach operation, i.e., the gradient back propa-
gation is not continued from here. The gradient detach operation can mitigate
the gradient impact of the layout flow on the text flow, thus enhancing the
cross-linguistic capability of model.

4 Experiment Setting

4.1 Pre-training Tasks

Masked Visual-Language Model. Masked Visual-Language Model (MVLM)
[23] is a pre-training task for model to learn linguistic representations. During
pre-training, 15% of the tokens are randomly masked, of which 80% are replaced
by special tokens "[MASK]", 10% are replaced by random tokens sampled from
the entire vocabulary, and the last 10% remain unchanged. The goal of this task
is to predict the tokens masked in the text.
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Key Point Location. Key Point Location (KPL) [19] is a pre-training task for
model to learn the layout representation using surrounding layout information.
During training, 15% of the text bounding boxes are randomly masked, of which
80% are replaced by [0,0,0,0], 10% are replaced by random boxes sampled from
the same batch, and the last 10% remain unchanged. The target is to predict
the key points (top left, center, bottom right) of each bounding boxes belonging
to certain regions (the document is divided equally into 49 regions).

Cross-modal Alignment Identification. Cross-modal alignment identifica-
tion (CAI) [19] is a pre-training task for aligning tokens and bounding boxes. In
pre-training, the token-box pairs of encoded tokens are collected, and the train-
ing goal is to predict whether each pair has undergone a replacement operation.
Since all three pre-training tasks are classification tasks, we use fully connected
layers for classification and their losses are all calculated using cross-entropy loss.

4.2 Downstream Tasks

Semantic Entity Recognition. The goal of Semantic Entity Recognition
(SER) [24] is to extract semantic entities from a set of tokens. Specifically,
given a document D with a sequence of tokens T = [t0, t1, ..., tn] and target
tags C = {c0, c1, ..., cm}, it is required to predicted semantic entities:

E = {([x0
0, ..., xn0

0 ], c0), ..., ([x0
k, ..., xnk

k ], ck)} (22)

where xnk

k ∈ T and nk is the length of the k-th extracted entity.

Relationship Extraction. Relationship Extraction (RE) [24] is to extract the
relationships between entities. Specifically, given a set of entities of document D
and the semantic relation labels R = {r0, r1, ..., rm}, it is required to predict a
set of semantic relations:

L = {([head0, tail0], r0), ..., ([headk, tailk], rk)} (23)

where headk and tailk are two semantic entities and rk is the relation between
them. In this work, we mainly focus on the key-value relation extraction..

5 Experiments

5.1 Datasets

IIT-CDIP: IIT-CDIP [10] is a large-scale dataset of scanned English docu-
ment images, containing over 6 million documents and over 11 million scanned
document images. This dataset is used for self-supervised pre-training.
FUNSD: FUNSD [9] is a scanned English form dataset for the form under-
standing task. It is divided into a training set containing 149 samples and a
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Table 1. SER results on English datasets of FUNSD and CORD. "#Docs" represents
the number of documents utilized for pre-training, measured in millions (M). "W", "S"
and "R" denote word-level, segment-level and region-level layouts, respectively. Bold
implicates the best results and underline the second best results.

Model #Docs Layout
FUNSD CORD

Precision Recall F1 Precision Recall F1
BERTBASE [4] — — 0.5469 0.6710 0.6026 0.8833 0.9107 0.8968

RoBERTaBASE [15] — — 0.6349 0.6975 0.6648 — — —
LayoutLMBASE [23] 11M W 0.7597 0.8155 0.7866 0.9437 0.9508 0.9472

LayoutLMv3BASE [8] 11M S — — 0.9029 — — 0.9656
GraphDoc [26] 0.32M S — — 0.8795 — — 0.9693

LayoutXLMBASE [24] 30M W — — 0.794 — — —
LiLT [19] 11M S 0.8721 0.8965 0.8841 0.9598 0.9616 0.9607

GraphMLLM 2M W 0.7591 0.7955 0.7769 0.9313 0.9431 0.9372
GraphMLLM 2M WS 0.8623 0.8830 0.8725 0.9515 0.9536 0.9525
GraphMLLM 2M WSR 0.8616 0.8840 0.8727 0.9537 0.9558 0.9548
GraphMLLM 11M WSR 0.8835 0.8870 0.8852 0.9620 0.9656 0.9638

test set containing 50 samples. Each document contains four types of entities:
question, answer, heading, and other.
XFUND: XFUND [24] is a multilingual document understanding dataset ex-
tended from the FUNSD dataset. The languages of documents are extended from
English (EN) to seven other languages, including Chinese (ZH), Japanese (JA),
Spanish (ES), French (FR), Italian (IT), German (DE), and Portuguese (PT).
Each language includes 199 forms, among which 149 forms are used for training
and the other 50 forms are used for testing.
CORD: CORD [16] is a receipt dataset with a training set containing 800
samples, a validation set containing 100 samples, and a test set containing 100
samples. The dataset defines 30 fields under 4 categories and the task aims to
label each word to the right field.

For pre-training on the IIT-CDIP dataset, the OCR engine is utilized to
extract texts along with their bounding boxes. While for fine-tuning on FUNSD,
CORD and XFUND, the official OCR annotations are used.

5.2 Evaluation Metrics

For the SER task and RE task, we use entity-level F1 score and pair-level F1 score
as the evaluation metrics, respectively. Using the same settings as LayoutXLM
[24] and LiLT [19], we evaluate the performance of the pre-trained model in three
main settings: 1) fine-tuning and testing on a specific language; 2) fine-tuning
on English data and then testing on multilingual data (zero-shot learning); 3)
fine-tuning on all language data and testing on individual language data.

5.3 Implementation Details

For word-level and segment-level layout, we use the k-Nearest Neighbours algo-
rithm to build the graph, with k values set to 100 and 50, respectively. While for
regional-level layout, we initially employs a rule-based method which clustered
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Table 2. Language-specific fine-tuning F1 accuracy on FUNSD and XFUND.

Task Model
Pretrain Docs FUNSD XFUND

Avg.
Language Size EN ZH JA ES FR IT DE PT

SER

LayoutXLM Multilingual 30M 0.794 0.8924 0.7921 0.755 0.7902 0.8082 0.8222 0.7903 0.8056
LiLT English only 11M 0.8415 0.8938 0.7964 0.7911 0.7953 0.8376 0.8231 0.822 0.8251
LiLT English only 2M — — — — — — — — 0.7963

GraphMLLM English only 2M 0.8403 0.9080 0.8034 0.7954 0.8374 0.8458 0.8481 0.8301 0.8386
GraphMLLM English only 11M 0.8553 0.9041 0.7971 0.8222 0.8578 0.8666 0.8581 0.8444 0.8507

RE
LayoutXLM Multilingual 30M 0.5483 0.7073 0.6963 0.6896 0.6353 0.6415 0.6551 0.5718 0.6432

LiLT English only 11M 0.6276 0.7297 0.7037 0.7195 0.6965 0.7043 0.6558 0.5874 0.6781
GraphMLLM English only 2M 0.6462 0.7734 0.7178 0.6832 0.6781 0.7172 0.6744 0.5888 0.6849
GraphMLLM English only 11M 0.7116 0.7657 0.7173 0.7327 0.7142 0.7123 0.6685 0.6100 0.7040

Table 3. Cross-lingual zero-shot transfer F1 accuracy on FUNSD and XFUND.

Task Model
Pretrain Docs FUNSD XFUND

Avg.
Language Size EN ZH JA ES FR IT DE PT

SER
LayoutXLM Multilingual 30M 0.7940 0.6019 0.4715 0.4565 0.5757 0.4846 0.5252 0.5390 0.5561

LiLT English only 11M 0.8415 0.6152 0.5184 0.5101 0.5923 0.5371 0.6013 0.6325 0.6061
GraphMLLM English only 2M 0.8403 0.6102 0.5118 0.5104 0.6030 0.5446 0.5854 0.6387 0.6056
GraphMLLM English only 11M 0.8553 0.6404 0.5266 0.5374 0.6507 0.5953 0.6356 0.6353 0.6346

RE
LayoutXLM Multilingual 30M 0.5483 0.4494 0.4408 0.4708 0.4416 0.4090 0.3820 0.3685 0.4388

LiLT English only 11M 0.6276 0.4764 0.5081 0.4968 0.5209 0.4697 0.4169 0.4272 0.4930
GraphMLLM English only 2M 0.6462 0.5667 0.5811 0.5453 0.5852 0.5022 0.4912 0.4330 0.5439
GraphMLLM English only 11M 0.7116 0.6395 0.6405 0.6169 0.6814 0.5919 0.5680 0.5255 0.6219

regions based on the distance between segments. However, we found signifi-
cant inconsistency between documents, thus we ultimately resorted to utilizing
bounding boxes containing all text to provide the global layout feature of the
whole document. We use a 12-layer, 12-heads text-layout model, where the hid-
den layer dimensions for text layers and layout layers are set as 768 and 192,
respectively. The parameters kw, ks, and kr of each layout level are all set to 4.

GraphMLLM is pre-trained using Adam with the learning rate 2e−5, weight
decay 1e−2, and (beta1, beta2) = (0.9, 0.999). The learning rate is linearly warmed
up over the first 10% steps then linearly decayed. We set the batch size as 80
and train GraphMLLM for 2 epochs on the partial/full IIT-CDIP dataset us-
ing 4 NVIDIA A6000 48GB GPUs. Parameters of text flow are initialized with
RoBERTaBASE [15], while parameters of layout flow are initialized from ran-
dom. For multilingual downstream tasks, we load InfoXLMBASE [3] parameters
to initialize the text flow, making GraphMLLM multi-language capable.

5.4 Main Results

Language-specific Fine-tuning First, we conducted experiments for GraphM-
LLM using different levels of layout information. The SER results of English
dataset fine-tuning in Table 1 show that GraphMLLM using multi-level layouts
performs better than using word-level layout alone. This justifies that using
multi-level layout features can effectively improve the model’s ability to under-
stand documents. With only text and layout information as inputs, GraphMLLM
can achieve competitive results using less training data than previous methods.

To validate the cross-language capability of GraphMLLM, we also evaluate it
on XFUND. Table 2 shows that GraphMLLM with less pre-training data meets
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Table 4. Multitask fine-tuning F1 accuracy on FUNSD and XFUND.

Task Model
Pretrain Docs FUNSD XFUND

Avg.
Language Size EN ZH JA ES FR IT DE PT

SER
LayoutXLM Multilingual 30M 0.7924 0.8755 0.7964 0.7798 0.8173 0.8210 0.8322 0.8241 0.8201

LiLT English only 11M 0.8574 0.9047 0.8088 0.8340 0.8577 0.8792 0.8769 0.8493 0.8585
GraphMLLM English only 2M 0.8737 0.9113 0.8079 0.8523 0.8854 0.8806 0.8881 0.8603 0.8700
GraphMLLM English only 11M 0.8920 0.9178 0.8194 0.8573 0.9013 0.9033 0.8830 0.8699 0.8805

RE
LayoutXLM Multilingual 30M 0.6671 0.8241 0.8142 0.8104 0.8221 0.8310 0.7854 0.7044 0.7823

LiLT English only 11M 0.7407 0.8241 0.8345 0.8335 0.8466 0.8458 0.7878 0.7643 0.8125
GraphMLLM English only 2M 0.8298 0.8946 0.8456 0.8533 0.8860 0.8641 0.8315 0.7836 0.8486
GraphMLLM English only 11M 0.8867 0.8911 0.8756 0.8472 0.8791 0.8468 0.8301 0.7828 0.8549

or exceeds the performance of previous multilingual models, which illustrates the
superior cross-language capability and efficient data utilization of GraphMLLM.
In comparison to LiLT, which solely relies on single-granularity layout infor-
mation, GraphMLLM exhibits superior performance even with less pre-training
documents. This underscores the significance of multi-level graph-based struc-
ture in modeling document layout.

Zero-shot Transfer Learning Table 3 presents the results of cross-language
zero-shot transfer learning. According to the results, the GraphMLLM model has
a outstanding zero-shot transfer capability without applying multiple language
documents for pre-training, and it outperforms previous counterpart models.
Due to the multi-level layout flow, the GraphMLLM model is able to effectively
model the layout structure of documents.

Multi-task Fine-tuning Table 4 shows the experimental results of GraphM-
LLM fine-tuned using data from eight languages. GraphMLLM achieves optimal
results, indicating that the model is capable of efficiently processing multiple
language documents simultaneously and benefits from this ability. Compared
with the results in Table 2, multi-task fine-tuning can further improve the per-
formance on dataset of each language, implicitly showing that GraphMLLM can
benefit from more fine-tuning data even though they have different languages.

5.5 Ablation Studies

We pre-trained GraphMLLM with 2M documents randomly selected from the
IIT-CDIP dataset for ablation experiments. The experiments were conducted
mainly on the multilingual datasets FUNSD and XFUND, using the language-
specific task setting.

Table 5. Ablation study on the effect of multi-level page layouts.

Task Layout
FUNSD XFUND

Avg.
EN ZH JA ES FR IT DE PT

SER
W 0.7243 0.8995 0.7984 0.6879 0.7362 0.7283 0.7526 0.7377 0.7596

WS 0.8367 0.9067 0.8019 0.7979 0.8333 0.8409 0.8496 0.8245 0.8364
WSR 0.8403 0.9080 0.8034 0.7954 0.8374 0.8458 0.8481 0.8301 0.8386
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Table 6. Ablation study on the effect of dual-stream inter-modal interaction.

Task Inter-modal
FUNSD XFUND

Avg.
EN ZH JA ES FR IT DE PT

SER w/o 0.6996 0.8918 0.7833 0.6424 0.7146 0.6885 0.7009 0.7007 0.7277
w/ 0.8403 0.9080 0.8034 0.7954 0.8374 0.8458 0.8481 0.8301 0.8386

The results in Table 5 show that adding segment-level layout information sig-
nificantly improves the performance. This is due to the fact that the granularity
of word-level layout is too small to capture the high-level layout features. How-
ever, the improvement from adding region-level layout is somewhat marginal,
likely because the page-level region layout is too coarse to effectively repre-
sent structural information about the document. More robust region extraction
methods can be considered in the future to obtain more accurate and meaningful
regions.

To verify the effect of inter-modal interaction in our dual-stream, we also
conducted a simple comparison experiment, results showing in Table 6. We can
see without inter-modal interaction, GraphMLLM’s performance will be severely
degraded, showing that the interaction between different modalities is essential
for the performance.

6 Conclusion

In this paper, we present GraphMLLM, a multi-modal document pre-training
model that can integrate multi-level layout information for document under-
standing tasks. Following the idea of decoupling text and layout information,
GraphMLLM utilizes a dual-stream structure and models multi-level layout fea-
tures through hierarchical graph attention networks. The text flow can reuse
existing pre-trained language model, which can effectively reduce the quantity
of dataset required for pre-training. After pre-training with monolingual docu-
ments, GraphMLLM can generalize to multilingual downstream tasks by lever-
aging off-the-shelf multilingual language models, as long as the OCR engine can
provide multilingual text and hierarchical layout information. Experimental re-
sults on multiple datasets demonstrate the effectiveness and superiority of our
proposed approach.

Despite its effectiveness, GraphMLLM still has two main limitations. The
first one is the dependence on OCR results, especially on segment-level layouts.
Different OCR engines may generate different results, and the OCR quality
may affect the model’s performance significantly. The second one is the absence
of visual features. Document images have rich visual features, which can be
integrated into the model in the future to enhance the model’s capability to
perform end-to-end visual document understanding tasks.
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