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Abstract

Spiking neural networks (SNNs) are rich in spatio-temporal
dynamics and are suitable for processing event-based neuro-
morphic data. However, event-based datasets are usually less
annotated than static datasets. This small data scale makes
SNNs prone to overfitting and limits their performance. In
order to improve the generalization ability of SNNs on event-
based datasets, we use static images to assist SNN training on
event data. In this paper, we first discuss the domain mismatch
problem encountered when directly transferring networks
trained on static datasets to event data. We argue that the in-
consistency of feature distributions becomes a major factor
hindering the effective transfer of knowledge from static im-
ages to event data. To address this problem, we propose so-
lutions in terms of two aspects: feature distribution and train-
ing strategy. Firstly, we propose a knowledge transfer loss,
which consists of domain alignment loss and spatio-temporal
regularization. The domain alignment loss learns domain-
invariant spatial features by reducing the marginal distribu-
tion distance between the static image and the event data.
Spatio-temporal regularization provides dynamically learn-
able coefficients for domain alignment loss by using the out-
put features of the event data at each time step as a regulariza-
tion term. In addition, we propose a sliding training strategy,
which gradually replaces static image inputs probabilistically
with event data, resulting in a smoother and more stable train-
ing for the network. We validate our method on neuromor-
phic datasets, including N-Caltech101, CEP-DVS, and N-
Omniglot. The experimental results show that our proposed
method achieves better performance on all datasets compared
to the current state-of-the-art methods. Code is available at
https://github.com/Brain-Cog-Lab/Transfer-for-DVS.

Introduction
As the third generation of neural networks, spiking neural
networks (SNNs) (Maass 1997) are known for their rich
neurodynamic properties in the spatial-temporal domain and
event-driven advantages (Roy, Jaiswal, and Panda 2019).
Due to the non-differentiable properties of spiking neurons,
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training SNNs has been a critical area of extensive academic
research. The training of SNNs is mainly divided into the
following three categories: gradient backpropagation-based
methods (Wu et al. 2018, 2019; Zheng et al. 2021; Shen,
Zhao, and Zeng 2022a; Li et al. 2022c; Deng et al. 2022),
spiking time-dependent plasticity (STDP)-based methods
(Diehl and Cook 2015; Hao et al. 2020; Zhao et al. 2020;
Dong et al. 2022), and conversion-based methods (Han,
Srinivasan, and Roy 2020; Bu et al. 2021; Li and Zeng 2022;
Liu et al. 2022; Li et al. 2022b). With these proposed algo-
rithms, SNNs show excellent performance in various com-
plex scenarios (Stagsted et al. 2020; Godet et al. 2021; Sun,
Zeng, and Zhang 2021; Cheni et al. 2021). In particular,
SNNs have shown promising results in processing neuro-
morphic, event-based data due to their ability to process
information in the time dimension (Xing, Di Caterina, and
Soraghan 2020; Chen et al. 2020; Viale et al. 2021).

The visual neuromorphic data mainly refers to the dataset
collected by Dynamic Vision Sensor (DVS) (Serrano-
Gotarredona and Linares-Barranco 2013). DVS is a bio-
inspired visual sensor that operates differently from con-
ventional cameras. Instead of capturing images at a fixed
rate, the DVS measures intensity changes at each pixel asyn-
chronously and records the time (t), position (x, y), and po-
larity (p) of the intensity change in the form of an event
stream. DVS has been gaining popularity in various appli-
cations due to their high dynamic range, high temporal reso-
lution, and low latency (Gallego et al. 2017; Zhu et al. 2018;
Stoffregen et al. 2019; Gallego et al. 2020). Despite these ad-
vantages, the long and expensive shooting process is still a
significant challenge for event cameras, which makes event
data acquisition difficult and small in scale, thus limiting its
further development. In contrast, static datasets are larger in
scale and more accessible. Pre-trained deep neural networks
can transfer well to other static datasets. However, apply-
ing a pre-trained model on a static dataset directly to event
data often yields suboptimal results. This result highlights a
sharp challenge: While static images intuitively provide rich
spatial information that may benefit event data, exploiting
this knowledge remains a difficult problem. For this reason,
efficiently uncovering and utilizing the knowledge in static
datasets to benefit event data is important for the widespread

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

512



deployment of networks for various event data applications.
In this paper, we first analyze the domain mismatch prob-

lem between networks trained on static and event datasets.
We show that the inconsistency of feature distribution is
a critical barrier to the effective transfer of static image
knowledge to event data. To bridge this gap, we address
the challenge from two main aspects: feature distribution
and training strategy. Regarding feature distribution, we de-
sign the knowledge transfer loss function, which consists of
domain alignment loss and spatio-temporal regularization
to learn the temporal-spatial domain invariant features be-
tween static images and event data. The domain alignment
loss learns and acquires domain-invariant spatial features by
reducing the marginal distribution distance between static
images and event data. The spatio-temporal regularization
provides dynamically adjusted coefficients for domain align-
ment loss to better capture temporal features in the data. In
terms of training strategies, we propose the sliding training
strategy, in which the static image inputs are gradually re-
placed with event data probabilistically during the training
process, resulting in a smooth reduction of the role of knowl-
edge transfer loss and a smoother learning process. Through
the validation on event datasets N-Caltech101, CEP-DVS,
and N-Omniglot, our method dramatically improves the per-
formance on these datasets. Overall, the main contributions
of this paper can be summarized as follows:

1. We propose a knowledge transfer loss function that learns
spatial domain-invariant features and provides dynami-
cally learnable coefficients by regularizing event features
in the time dimension. This loss function ensures that the
model contains static spatial features and has a compre-
hensive feature representation in the temporal dimension.

2. We propose the sliding training strategy, in which the
static image inputs are gradually replaced with event data
probabilistically during the training process, resulting in
a smoother and more stable learning process.

3. We conduct experiments on commonly used event
datasets to verify the effectiveness of our method. The
experimental results show that the proposed method out-
performs the state-of-the-art methods on all datasets.

Related Work
In order to solve the problem of limited labeled DVS data,
previous works endeavored to explore solutions such as do-
main adaptation, data augmentation and the development of
efficient training methods.

Domain Adaptation Using Static Data. Using static im-
ages to facilitate learning better models in the event domain
is an intuitive idea. Messikommer et al. (2022) use a gener-
ative event model to classify event features into content and
motion features, enabling efficient matching between the la-
tent space of events and images. Zhao, Zhang, and Huang
(2022) train a convolutional transformer network for event-
based classification tasks using large-scale labeled image
data via a passive unsupervised domain adaptation (UDA)
algorithm. Sun et al. (2022) introduce event-based seman-
tic segmentation to transfer existing labeled image datasets

to unlabeled events for semantic segmentation tasks. These
works are related to ours. The difference is that we ex-
ploit the spatial domain invariant features between static and
event data through domain alignment loss. Further, we use
coefficients dynamically adjusted at each time step to bet-
ter capture the temporal properties in the data. This allows
the model to contain not only static spatial features, but also
an integrated feature representation of the temporal dimen-
sion. These features can provide generalized knowledge for
the SNN and enhance the original SNN structure instead of
pre-training a new network with more parameters.

Event-Based Data Augmentation. Due to the limited
amount of event data, directly implementing data augmen-
tation to increase the amount of training data is a feasible
strategy. Li et al. (2022c) propose neuromorphic data aug-
mentation to stabilize SNN training and improve general-
ization. Shen, Zhao, and Zeng (2022b) design an augmenta-
tion strategy for event stream data, and perform the mixing
of different event streams by Gaussian mixing model, while
assigning labels to the mixed samples by calculating the rel-
ative distance of event streams. Our method is orthogonal
to this category of methods, i.e., these data augmentation
strategies can be used together with our proposed method.

SNN Efficient Training. Efficient training of SNNs di-
rectly is also a way to improve the generalizability of the net-
work. Kim and Panda (2021) propose Spike Activation Lift
Training to help the network to deliver information across all
levels. Zhan et al. (2021) analyze the plausibility of central
kernel alignment (CKA) as a domain distance measure rel-
ative to maximum mean difference (MMD) in deep SNNs.
A number of subsequent works have contributed to the ef-
ficient training of the SNN (Kugele et al. 2020; Fang et al.
2021; Deng et al. 2022; Zhu et al. 2022; Dong, Zhao, and
Zeng 2023; Zhao et al. 2023). Nonetheless, the performance
of SNN is limited by the small amount of event data. The
motivation of this paper is to solve this problem by using
static data to provide generalized knowledge transfer for
event data and improve the generalization of SNN.

Preliminaries
Neuron Model. We choose the Leaky Integrate-and-Fire
(LIF) neuron model (Dayan and Abbott 2005), the most
commonly used neuron model. The update of the membrane
potential u can be written as following discrete form

ut+1,l = τut,l +W lst,l−1, (1)
where τ is leaky factor and ut,l denotes membrane potential
of the neurons in layer l at time step t. W l and sl represent
the weight parameters of the layer l and the fired spikes in
layer l, respectively. The membrane potential accumulates
with the input until a given threshold Vth is exceeded, then
the neuron delivers a spike and the membrane potential ut,l

is reset to zero. The equation can be expressed as

st,l = H
(
ut,l − Vth

)
(2)

ut+1,l = τut,l ·
(
1− st,l

)
+W lst+1,l−1, (3)

where H denotes Heaviside step function. In this paper,
leaky factor τ is set to 0.5 and threshold Vth to 0.5.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

513



Processing of Neuromorphic Data. The Dynamic Vision
Sensor (DVS) triggers an event at a specific pixel point when
it detects a significant change in brightness. Formulaically,
it can be expressed as

L(x, y, t)− L(x, y, t−∆t) ≥ pC, (4)

where x and y denote pixel location and ∆t means the time
since last triggered event at (x, y). p is polarity of brightness
change and C is a constant contrast threshold. In this way,
DVS triggers a number of events ε during a time interval in
the form ε = {(xi, yi, ti, pi)}Ni=1. Due to the large number
of events, we integrate them into frames to facilitate process-
ing as the previous works (Wu et al. 2019; He et al. 2020;
Fang et al. 2021; Shen, Zhao, and Zeng 2022b). Specifically,
the events are divided into T slices, and all events in each
slice are accumulated. The j-th (0 ≤ j ≤ T − 1) slice event
after integration, E(j, x, y, p), can be defined as

E(j, x, y, p) =

je−1∑
js

1x,y,p (xi, yi, pi) (5)

js = ⌊N
T
⌋ · j, je = ⌊N

T
⌋ · (j + 1), (6)

where 1x,y,p (xi, yi, pi) is an indictor function. js and je are
the start and end index of event in j-th slice.

Methods
In this section, we first show the domain mismatch prob-
lem that exists for the same network trained on static and
event datasets. Then, we introduce our proposed knowledge
transfer loss and sliding training strategies correspondingly
in terms of feature distribution and training strategy.

Domain Mismatch
Compared to static datasets, the scale of event datasets is
relatively small, which makes the training more challeng-
ing. An intuitive solution strategy is to pre-train on the static
dataset and then fine-tune on event dataset. However, this
method suffers from a critical problem, i.e., there is a signif-
icant domain mismatch between the static and event data. To
demonstrate this, we train on static dataset Caltech101 (Fei-
Fei, Fergus, and Perona 2004) and its corresponding event
dataset N-Caltech101 (Orchard et al. 2015) separately using
the same spiking neural network structure. We use the cen-
tral kernel alignment (CKA) method (Kornblith et al. 2019)
to measure the similarity between features and compute
CKA heatmap based on 4096 samples following (Nguyen,
Raghu, and Kornblith 2020; Li et al. 2023). Moreover, we
select LIF neurons of SNN’s first feature layer for membrane
potential visualization. The results are shown in Fig. 1.

Fig. 1(a) shows that for the directly trained network, the
features of static data are less similar to those extracted from
the event dataset. In addition, the membrane potential distri-
bution of neurons in the same layer of SNN is significantly
different under different data training, as shown in Fig. 1(b).
These results indicate that static data and event data can-
not be well fused even under the same network structure.
Despite the intuition that static images bring richer texture

(b) Distribution Mismatch
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(c) No improved Performance

Figure 1: Top: Visualization of network representation simi-
larity. The left-left side panel shows the cross-layer heatmap,
while the right side panel shows the diagonal of the cross-
layer heatmap. Middle: Visualization of the distribution of
membrane potentials. The left and right figures show the re-
sults of the membrane potential distribution based on static
data and event data training, respectively. Bottom: Accu-
racy curves when pre-trained model on static data, with fine-
tuning on event data. The latter half of the epochs is shown.

and edge information to event data, the domain difference
between static and event is a hindrance.This makes the strat-
egy of simply using static image pre-training and event fine-
tuning ineffective or even counterproductive for feature ex-
traction on event data, as shown in Fig. 1(c). Therefore, we
need an efficient method to provide beneficial information
for SNN on event data with the help of static images.

Knowledge Transfer Loss Function
The knowledge transfer loss function contains domain align-
ment loss and spatio-temporal regularization.

Domain Alignment Loss. For ease of description, we first
introduce some notation. We have a labeled source domain
Ds =

{
xi
s, y

i
s

}N

i=1
and a small labeled target domain Dt ={

xi
t, y

i
t

}M

i=1
with feature space Xs and Xt respectively. We

aim to leverage Ds to assist in learning a better classifier
ft : xt 7→ yt to predict Dt label yt ∈ Yt.

The model for function f involves a composition of two
functions, i.e., ft = ht ◦ gt. Here gt : X → Z represents
an embedding of the input space X into a feature space Z ,
and ht : Z → Y is a function that predicts outputs from the
feature space. We utilize the final classification head of the
original model as ht. This function is learned solely through
supervised signal update gradients. Critically, we want to
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Static image input

Knowledge Transfer Loss ℒ𝒌𝒕

Spiking Conv Layer
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Sliding Training Strategy
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Figure 2: Proposed knowledge transfer framework for spiking neural network. Static image and event data are input simultane-
ously and share the network weights except for the last layer. The membrane potential of the neurons in the second-last layer is
used to calculate the knowledge transfer loss. MP node in last layer means using membrane potential output.

provide a generalization of gt which can pave the way
for learning of ht to improve the generalizability of SNN.

In this paper, the embedding function g is modeled by net-
work sharing between the source and target domains, using
all layers before the last classification layer, as shown in Fig.
2. At this point, the shared gt = gs = g, the optimization ob-
jective is to find the satisfied g in its hypothetical space G:
argmin

g∈G
(d (g (Xa

s ) , g (X
a
t ))− d (g (Xc

s) , g (X
a
t ))) , (7)

where Xa
s and Xa

t refer to the same data classes in the
source and target domains while Xc

s and Xa
t mean the data

from different classes. The d is a metric for judging similar-
ity between two domains; we choose CKA here. CKA is a
similarity index to better measure neural network represen-
tation similarity introduced by (Kornblith et al. 2019).

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
. (8)

where HSIC refers to Hilbert-Schmidt Independence Crite-
rion (HSIC) (Gretton et al. 2005) and can be computed as:

HSIC(K,L) =
1

(n− 1)2
tr(KJLJ), (9)

where J is the centering matrix Jn = In − 1
n11

T, here In is
an n order unit matrix. tr means trace of matrix.

To compute the CKA, we use a two-stream input
paradigm: the inputs come from static image and DVS data,
respectively. The closer the value of CKA is to 1 indicates
that the two vectors are more correlated. For this reason, we
subtract the CKA from 1, minimizing the loss, i.e., maximiz-
ing the correlation of the two inputs. We express the samples
xs,xt drawn from the whole data Xs,Xt. In this way, do-
main alignment loss (DAL) can be expressed as

Ld = 1− 1

T

T∑
t=1

CKA′
yi=yj ,y∈Y

(
g
(
xi
s, t

)
, g

(
xj
t , t

))
, (10)

where we use g
(
xi
s, t

)
to indicate the value of input after

shared parameter function g, t is brought in to emphasize
that here is the output of g at time t. Two samples xi

s,x
j
t are

sampled from the same class, expressed by formula yi = yj .
CKA′ represents the computation of the kernel function of
the vectors followed by the computation of CKA by Eq. 8.

Spatio-Temporal Regularization. Due to the dynamic
properties of event data, using only domain alignment loss
for spatial feature alignment may miss important informa-
tion in the temporal dimension. Spatio-temporal regulariza-
tion provides dynamically learnable coefficients for the do-
main alignment loss, and such adaptive coefficients ensure
specific weight assignments for data features at each time
step. To prevent the model from overfitting at a certain time
step, we adapt the event data classification loss at each time
step (which reflects the contribution of the event frame fea-
tures to the classification) as the regularization term. In this
case, the knowledge transfer loss can be expressed as:

Lkt = 1− 1

T

T∑
t=1

σ(ηt) CKA′
yi=yj ,y∈Y

(
g
(
xi
s, t

)
, g

(
xj
t , t

))
+

1

T

T∑
t=1

(1− σ(ηt))ℓcls−e, (11)

where ηt denotes the learnable coefficient at time step t
and σ represents the sigmoid function. For classification
loss of event data ℓcls−e, we choose the TET loss, which
is proven to compensate the momentum loss of surrogate
gradient and make SNN have better generalizability (Deng
et al. 2022). ℓce and ℓmse are the cross-entropy loss and the
mean-squared loss respectively.

We add the knowledge transfer loss Lkt and classifica-
tion loss of the static image Lcls−s as the total classifi-
cation loss Lall. The total training loss can be expressed
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as Lall = λcls−sLcls−s + λktLkt, where λcls−s and λkt

are manually set parameters that determine the ratio of the
two types of losses. The knowledge transfer loss not only
learns domain-invariant features spatially, but also provides
the network with more generalized knowledge by providing
appropriate weighting coefficients temporally. This allows
the model to adapt fine-grained to event data characteristics.

Sliding Training Strategy
The sliding training strategy aims to modulate the static im-
age input portion of the training process so that the network
gradually adapts from relying on domain-invariant features
of static images and event data to fully processing event data.
Specifically, during the training process, the inputs of static
images are replaced by event data with probability, and this
substitution probability increases with time steps until the
end of the learning phase, by which time event data will
replace all static images. Because the substitution process
varies over time steps, as if the event data is replacing static
images in a sliding time frame, we call it ”sliding training”.

Separately, with bi denoting index of training batch, bl de-
noting total length of training batch, ec standing for current
epoch and em denoting maximum training epoch, then the
probability of making a substitution Preplacement could be
expressed by the following equation

Preplacement =

(
bi + ec ∗ bl
es ∗ bl

)3

, (12)

where es is a manual settings epoch for the end of the trans-
fer knowledge loss effects. The value of es is usually set to
em. In the early training phase, domain invariant features
are dominant, providing a stable feature learning base for
the model. As time advances, the proportion of event data
gradually increases and the domain alignment loss gradu-
ally decreases. This gradual transition ensures the stability
of the model during the learning process and avoids training
instability or convergence difficulties that may result from
direct or abrupt data switching.

Experiments
We conduct experiments on mainstream event datasets: N-
Caltech101 (Orchard et al. 2015) and N-Omniglot to evalu-
ate the effectiveness of the proposed method. For another
commonly used event dataset, CIFAR10-DVS (Li et al.
2017), since it is 10000 samples taken from 60,000 static
images from the training and test sets together, it cannot be
ensured that the event data in the manually delineated test set
does not overlap with the static images when using the static
images to assist training. To avoid this implicit data leakage,
we choose the image-event paired CEP-DVS (Deng et al.
2021) dataset as an alternative.

Experimental Settings
We integrate all the event data into frames and then resize
to 48x48 for N-Caltech101 and CEP-DVS datasets, and
for N-Omniglot dataset, it is resized to 28x28. In terms
of network structure, for a fair comparison, we choose

VGGSNN (64C3-128C3-AP2-AP2-256C3-256C3-AP2-
512C3-512C3-AP2-512C3-512C3-AP2-FC) model with
step 10 for N-Caltech101, Spiking-ResNet18 with step 6 for
CEP-DVS, and SCNN (15C5-AP2-40C5-AP2-FC-FC) with
step 12 for N-Omniglot. For the input encoding strategy,
we use direct coding for static images and convert the
static image to HSV (Hue, Saturation, Value) color space
to minimize the mismatch between the two types of input
data. To adapt the dual-channel characteristics of the event
data, i.e., positive and negative polarity, we replicate the
value channel and then duplicate the static image in equal
time-step. All experiments are implemented based on the
BrainCog framework (Zeng et al. 2023).

Comparison with the State-of-the-Art
We first evaluate the proposed method on the N-Caltech101
dataset with VGGSNN network and compare the proposed
method with NDA (Li et al. 2022c), EventMix (Shen, Zhao,
and Zeng 2022b), TET (Deng et al. 2022), TJCA-TET (Zhu
et al. 2022), TKS (Dong, Zhao, and Zeng 2023) and ETC
(Zhao et al. 2023). The results are presented in Tab. 1. The
experimental results demonstrate that the proposed method
can achieve state-of-the-art performance compared with ex-
isting methods. In particular, with the proposed method, the
VGGSNN network can achieve 93.45% accuracy on the N-
Caltech101 dataset. The significant performance improve-
ment validates the effectiveness of knowledge transfer.

As for CEP-DVS and N-Omniglot datasets, there are
fewer available results. We re-conducted the baseline exper-
iments on these two datasets and compared them with our
proposed method. Experimental results show that our pro-
posed method improves accuracy over the original method.
For the N-Omniglot dataset, the improvement of accuracy
from knowledge transfer is not as significant as the other
two datasets, this is because it is a few-shot dataset with only
20 available static images in each class, so the improvement
from knowledge transfer is limited.

Ablation Study
In order to verify the effectiveness of the proposed method,
in the subsequent ablation experiments, we take the direct
training method TET (Deng et al. 2022) as our baseline.

Knowledge Transfer Loss. To verify the validity of the
domain alignment loss (DAL) and the spatio-temporal reg-
ularization (STR) term in the knowledge transfer function,
we conduct experiments on N-Caltech101 dataset with VG-
GSNN. As shown in Fig. 3(a), the baseline, i.e., the TET
method, has overfitted at about 100 epochs earlier. Com-
pared to the baseline method, even without employing the
knowledge transfer loss in our method, merely using slid-
ing training strategy can achieve certain performance im-
provement. As it gets better though with the domain align-
ment loss and spatio-temporal regularization to provide bet-
ter generalization of the model. In Fig. 3(a), the red line is
always at the top in the later training step, indicating that the
best results can be achieved with these two terms.

To verify the effect of the spatio-temporal regularization,
we also plot the adaptive learning coefficients of the VG-
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Dataset Category Methods Architecture T Accuracy

N-Caltech101

Data augmentation NDA (Li et al. 2022c) VGGSNN 10 78.2
EventMixer (Shen, Zhao, and Zeng 2022b) ResNet-18 10 79.5

Efficient training

TET (Deng et al. 2022) VGGSNN 10 79.27± 0.80∗

TJCA-TET (Zhu et al. 2022) CombinedSNN 14 82.5
TKS (Dong, Zhao, and Zeng 2023) VGGSNN 10 84.1

ETC (Zhao et al. 2023) VGGSNN 10 85.53± 0.09

Domain adaptation Knowledge-Transfer (Ours) VGGSNN 10 93.18± 0.38 (93.45)

CEP-DVS Efficient training TET (Deng et al. 2022) ResNet-18 10 25.05± 0.66 (25.70)∗

Domain adaptation Knowledge-Transfer (Ours) ResNet-18 10 30.05± 0.50 (30.50)

N-Omniglot Efficient training plain (Li et al. 2022a) SCNN 12 60.0
plain (Li et al. 2022a) SCNN 12 63.00± 0.32 (63.44)∗

Domain adaptation Knowledge-Transfer (Ours) SCNN 12 63.60± 0.46 (64.09)

Table 1: Experimental results compared with existing works. The results are mean and standard deviation after taking three
different seeds. The best accuracy is shown in parentheses. The symbol (*) denotes our implementation.

Network Methods Accuracy

N-Caltech101

VGGSNN

baseline 79.66%
KTL w/o DAL & STR 84.14%

KTL w/ DAL 89.31%
KTL w/ DAL & STR 92.64%

CEP-DVS

ResNet-18

baseline 25.70%
KTL w/o DAL & STR 27.55%

KTL w/ DAL 29.95%
KTL w/ DAL & STR 30.50%

Table 2: Ablation experiments of knowledge transfer loss on
different datasets. KTL refers to knowledge transfer loss.

Network Dataset Methods Accuracy

VGGSNN N-Caltech101 w/o sliding training 83.56%
w/ sliding training 92.64%

ResNet18 CEP-DVS w/o sliding training 23.70%
w/ sliding training 30.50%

Table 3: Ablation experimental results for sliding training.

GSNN at each time step under the N-Caltech101 dataset.
As shown in Fig. 3(b), our dynamically adjusted coefficients
are superior to the coefficients that are set to be fixed at each
time step, which suggests that spatio-temporal regularization
to provide dynamically adjusted coefficients for the domain
alignment loss is better able to capture the temporal prop-
erties in the data. In addition, the results in Fig. 3(b) show
larger coefficients at the first and last time step, which im-
plies that the beginning and ending moment models focus
more on domain-invariant spatial information.

Sliding Training Strategy. We conduct experiments on
N-Caltech101 and CEP-DVS to verify the effectiveness of
the sliding training strategy, and the results are shown in Tab.
3. The results show that sliding training leads to a more sta-
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Figure 3: Performance of baseline and knowledge transfer
loss methods on the N-Caltech101 dataset.

ble performance improvement. It is worth mentioning that
in the case of without sliding training, the accuracy of our
method is 23.70%, which is slightly lower than the accuracy
of the baseline method of direct training strategy, which is
25.70%. This is due to the relatively short training epochs
for CEP-DVS, which causes the model to have trouble con-
verging in the face of sudden data switches. Despite this, the
addition of sliding training strategy solves this problem well.

Summary of Ablation Experiments. We show effective-
ness of each part of our proposed method with experiments
of VGGSNN on N-Caltech101 dataset and the results are
shown in Tab. 4. The top line with no added methods is the
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DAL STR Sliding training Accuracy

- - - 79.66%

! 82.07%
! 84.14%

! ! 83.56%
! ! 90.57%
! ! ! 92.64%

Table 4: Ablation experimental results overview.
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Figure 4: The loss landscape of visualization of our method
and baseline on N-Caltech101 and CEP-DVS dataset.

baseline. It can be seen that without the knowledge transfer
loss function, the performance of model decreases a lot. In
addition, the sliding training strategy provides a guarantee
for stable convergence. Combined with all the approach, our
method can achieve the best performance.

Analysis and Discussion
Loss Landscape. To verify that our method provides
SNNs with more generalizability over event data, we uti-
lize 2D loss-landscapes visualization (Li et al. 2018). To this
end, we selected the optimal results of the baseline and our
method to conduct experiments on N-Caltech101 and CEP-
DVS respectively. As depicted in Fig. 4(b) and Fig. 4(d),
the lowest loss area becomes flatter compared to Fig. 4(a)
and Fig. 4(c), which indicates that the SNN obtains better
weights with the knowledge transfer from static images.

Visual Explanations from Deep Networks. To assess
whether our method learns domain-invariant features of
static images and event data, and provides helpful informa-
tion for SNNs about features of event data, we employ grad-
cam++ (Chattopadhay et al. 2018) visualization method.
Such visualization allows us to understand which local loca-
tions of an original image contributed most significantly to
the model’s final classification decision. Ideally, static pic-
tures and event data integrated into frames have similar ob-
ject contour features when they are in the same class. This

(a) lotus (b) snoopy (c) airplanes

Figure 5: Class Activation Mapping of Caltech101 and N-
Caltech101. Three categories are selected for display, the
top row under each category represents static images, and
the bottom row represents event data integrated into frames.
The three columns from left to right represent the results of
original picture, baseline and our method, respectively.
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Figure 6: Performance on different amounts of event data.

is well illustrated in Fig. 5, where by introducing knowledge
transfer loss, for both static pictures and event data, the net-
work pays attention to the contour features of the category.
In particular, the results on event data show that our method
helps SNNs to move away from the background of the event
data and focus on the features of category itself.

Performance of Our Method on Different Amounts of
Event Data. We conduct a detailed evaluation of our
proposed approach on N-Caltech101 dataset using varying
amounts of training data, as presented in Fig. 6. Our re-
sults show that regardless of training data amount, knowl-
edge transfer loss results in a remarkable performance im-
provement. This is attributed to the knowledge transfer loss
that allows the model to finely adapt to event data features,
providing more generalized knowledge to the network.

Conclusion
In this paper, we explore the challenges faced by spiking
neural networks when dealing with event-driven data. By
using static images to assist SNN training, we improve the
generalization ability of the network. Our proposed domain
alignment loss and spatio-temporal regularization support
knowledge transfer and alleviate the domain mismatch be-
tween static and event datasets. Meanwhile, we propose a
sliding training strategy to bring greater stability to network
training. Experiments on different event datasets show that
our method achieves the best performance. In conclusion,
this study not only provides new methods for training SNNs
on event-driven datasets but also contributes to further de-
velopment in the field of neuromorphic computing.
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