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Abstract—The application of ultrasound in interventional
surgery faces many challenges due to its lack of clarity. While
existing algorithms can process single-frame ultrasound images
efficiently, they still suffer from poor accuracy and discontinuous
detection. In this paper, we propose an online instance seg-
mentation network for ultrasound-guided interventional surgery
Videos. When detecting the current frame, the fusion of previous
frames enhances the accuracy and continuity of the segmentation.
Meanwhile, real-time 3D reconstruction of vessels and interven-
tional instruments is also achieved through the collaboration of
robotic arms. Furthermore, we construct a novel dataset for vas-
cular interventions. It accurately labels vessels and interventional
instruments in 112 ultrasound videos, making it suitable for tasks
related to the detection and segmentation of vascular ultrasound
images. Experiments demonstrate that the proposed network
improves detection accuracy by 11.0% mAP75 compared to the
state-of-the-art method.

Index Terms—Ultrasound, Vascular interventional surgery,
Video instance segmentation, Reconstruction

I. INTRODUCTION

Vascular interventional surgery has increasingly become
an integral part of modern medicine, offering treatment for
patients with arterial blockages, aneurysms, and other vascu-
lar diseases [1], [2]. This method heavily relies on precise
imaging techniques, particularly X-rays and ultrasonography,
to ensure accurate placement of catheters, guidewires, or other
interventional instruments.

Although ultrasonography offers real-time soft tissue visu-
alization, X-rays are still favored in interventional surgeries
due to their enhanced clarity with contrast agents and superior
resolution for metallic instruments. However, the radiative
nature of X-rays entails potential risks from prolonged expo-
sure. ultrasonography presents a feasible alternative to mitigate
these concerns. However, for ultrasonography to replace X-
rays in vascular intervention, a series of challenges must be
addressed as follows:

• Ultrasound image is constrained by the probe length, lim-
iting its field of view and making it less comprehensive
than single X-rays image.

Fig. 1. Overview of the whole online segmentation and reconstruction system.
(a) ultrasound scanning with the collaboration of a robot arm (b) online
instance segmentation of the vascular video (c) real-time 3D reconstruction
using shifted window (d) reconstruction result of the vessels.

• Ultrasound performs well in imaging soft tissues, but is
limited in imaging dense objects such as bone or metal
interventional instruments.

• Ultrasound imaging frequently yields indistinct tissue
borders, with targets intermittently or persistently van-
ishing in individual frames.

This work is aim to enhance the diagnostic capabilities
of ultrasonography through the application of video instance
segmentation. Accurate segmentation and detection results
enhance real-time three-dimensional vascular reconstructions,
thereby improving diagnostic and interventional precision.
To achieve this, we develop a dynamic segmentation and
reconstruction system, as illustrated in Fig. 1, in collaboration
with a robot arm. Our contributions in this work include:

• Constructing a novel video instance segmentation dataset
[3] of vascular interventions. This dataset includes cat-
egories of vascular structures and interventional instru-
ments, such as guidewires, needles.

• Proposing an end-to-end online instance segmentation
network for ultrasound video analysis, which can enhance
segmentation accuracy and tracking continuity.

• Proposing a real-time 3D reconstruction algorithm for
visualizing the interior of vessels during interventional



procedures. The reconstruction is facilitated by a robotic
arm equipped with an ultrasound probe, setting the foun-
dation for future advancements in automated ultrasonog-
raphy with robotic assistance.

II. RELATED WORKS

A. Segmentation Using Deep Learning

Segmentation networks typically adopt an encoder-decoder
architecture. The Fully Convolutional Network (FCN) [4]
adheres to this design pattern, and many researchers apply
it to medical image segmentation. Christ et al. [5] proposed a
cascaded FCN to enhance the accuracy of liver segmentation.
This design’s strength is in using different filters at each stage,
significantly enhancing segmentation quality. Similarly, Wu
et al. [6] explored the potential of cascaded FCN for fetal
boundary detection in ultrasound images.

U-Net [7] is an enhancement and extension of the FCN.
With minimal training data, U-Net demonstrates exceptional
performance in medical image segmentation tasks. It was
employed for ultrasound image segmentation in many works
[8]- [10]. However, these studies still focused on single-frame
images processing, neglecting temporal information. Cicek et
al. developed a 3D U-Net [11] to enrich the U-Net architecture
with more spatial information. They posited that adjacent 2D
image slices convey nearly identical information, leading to
the idea of volumetric segmentation. Nevertheless, processing
video data as 3D volumes is only feasible for offline videos. To
better harness the temporal information in ultrasound images,
Seo et al. [12] utilized Long Short-Term Memory neural
networks (LSTM) to track vessel wall motion in ultrasound
imaging. However, the computational complexity of LSTM
might introduce latency, which is not ideal for real-time video
processing.

B. Ultrasound Image Reconstruction

The volume rendering technique is one of the most efficient
solutions for 3D medical image reconstruction. Dong et al.
[13] proposed a novel method for freehand 3D ultrasound
reconstruction. They used a 3D Approximate Nearest Neigh-
bor (ANN) algorithm to improve the computational efficiency.
Chen et al. [14] presented a 3D ultrasound volume reconstruc-
tion approach based on a kernel regression model. This method
maps each pixel from the sampled images to the corresponding
voxel in the reconstructed volume data, followed by kernel
regression to perform optimization. Moon et al. [15] used
piecewise-smooth Markov Random Field (MRF) model in
their work. Compared to traditional geometric interpolation-
based methods, this approach excels in noise reduction and
boundary preservation. Beyond freehand techniques, there are
also solutions that collaborate with robotic arms. Jiang et
al. developed an automated ultrasound scanning system by
analyzing ultrasound image quality using a neural network
[16], [17]. Chen et al. [18] improved the scanning process
by incorporating force control to ensure smoother scans and
built an automated ultrasound scanning system. Suligoj et al.

[19] achieved 3D reconstruction of ultrasound images with the
assistance of a robotic arm guided by a depth camera.

III. METHODS

A. Network Architecture

Given the limitations in accuracy and continuity observed
when conducting segmentation on individual images, our
work introduces an online instance segmentation approach
for videos. Inspired by IDOL [20], an attention mechanism
is utilized to extract salient image features. Subsequently,
contrastive learning is applied to generate more discriminative
instance embeddings as shown in Fig. 2.

Transformer module: The feature maps obtained from
backbone are feed into the Deformable DETR [21] module,
where the attention mechanism focuses more precisely on
specific regions rather than the whole image. The input object
queries are transformed into Do ∈ RN×d, where N represents
the number of instances to be decoded, and d represents the
dimensions of instance embeddings.

Output heads: The class head maps embeddings to cate-
gory probabilities, while the box head, through a 3-layer FFN
and linear projection, outputs four-dimensional bounding box
coordinates. Inspired by CondInst [22], a mask branch emerges
from Transformer encoder to provide multi-scale feature maps
Fmask for the mask head. The center position of the bounding
box for position-sensitive feature extraction is also fused with
Fmask to provide positional guidance during mask generation.

Instance association: Inspired by SimOTA [23], the module
computes the Intersection over Union (IoU) between predic-
tions and the ground truth. Then it sums the highest 10 IoUs
to obtain a value referred to as Dk as:

Dk = max

(
1,
∑

Pi∈Top10IoU

IoU(GT,Pi)

)
(1)

where P denotes the prediction of the network. Then the
module employ the cost function to identify the smallest top
Dk samples as positive examples, while considering all others
as negative examples. The cost function is as follows:

cost = Lcls
OTA + αLreg

OTA (2)

where Lcls
OTA denotes the classification loss, and Lreg

OTA is
utilized to quantify the divergence between the predicted
bounding boxes and ground truths.

Contrastive head: To ensure that embeddings of the same
instances in different images become as similar as possi-
ble, a contrastive head, consisting of a lightwesight FFN,
is employed. Before being sent to the contrastive head, the
embeddings of the reference frame will be dynamically divided
into positive and negative samples by the instance association
module. Then the contrastive loss Lcontrast can be calculated
as:

Lcontrast = log

1 +∑
e+r

∑
e−r

exp
(
ek · e−r − ek · e+r

) (3)



Fig. 2. Architecture of training network we propose (US-VIS). The blue box indicates feature extraction through dual-branch backbone and transformer
modules. The orange arrows denote tasks performed by different output heads, and the green arrows show the instance association using contrastive learning.

where e+r and e−r are positive and negative embeddings in the
reference frame. The ek is the embeddings of key frame. All of
them are projected into a new vector space by the contrastive
head, where embeddings of the same object instance are closer.

B. Loss Function

Assuming that N instances are predicted in a single im-
age, the optimal match between predictions and ground-truth
is computed using the Hungarian algorithm [24]. For the
prediction of the bounding box b̂i corresponding to the i-th
instance and the ground truth bounding box bi, the Lbox can
be calculated with a composite of L1 loss and the Generalized
Intersection over Union (GIoU) [25] loss Lgiou as:

Lbox =

N∑
i

[
λb1∥ bi − b̂i ∥1 + λb2.Lgiou

(
bi, b̂i

)]
(4)

whereλb1 andλb2 denote weights that can be set manually. And
the Lmask can be calculated as:

Lmask =

N∑
i

[LDice (mi, m̂i) + LFocal (mi, m̂i)] (5)

where mi and m̂i are the ground-truth and predictions of the
mask for the i-th instance, respectively.

Finally, the total loss L can be computed as:

L = Lcls + Lbox + λ1Lmask + λ2Lcontrast (6)

Fig. 3. Architecture of US-VIS model used to predict on the current frame

where Lcls is computed using the cross-entropy function. The
default values for the loss weights λ1 and λ2 are 1.0 in our
experiments, respectively.

C. Network Inference

The trained contrastive head is capable of extracting more
discriminative instance embeddings from current frame. Fur-
thermore, a memory bank is established to preserve these
highly discriminative embeddings as depicted in Fig. 3. Given
M instances’ embeddings already stored and N instances pre-
dicted in the current frame, the similarity between a predicted
instance embedding ei and a memory bank’s stored instance
embedding ēj is computed as follows:

f (i, j) =

 exp
(
−
ej · ei

)
M∑

m=1
exp

(
−
em · ei

) +
exp

(
−
ej · ei

)
N∑

n=1
exp

(
−
ej · en

)
 /2 (7)

If f (i, j) exceeds a certain threshold (set to 0.5 in our case),
we consider the currently predicted ei to be a match with
the historically predicted ej in memory bank. If no match
is found but ei has a high prediction score obtained by the
class head, then a new identity is assigned for it. After the
match of all the instances predicted in the current frame, the
strategy for updating the embeddings of the j-th instance ēj is
determined based on two factors: the frame interval t between
the image Ft in the memory bank and the current frame, and
the predicted score of etj on the Ft. The formula is as follows:

−
ej =

T∑
t=1

etj ×
(
scoretj × T

t

)
T∑

t=1
scoretj × T

t

(8)

where T denotes the size of memory bank, which we set to 5
in our experiments. The scoretj denotes the prediction score
of the j-th instance on the Ft.



Fig. 4. (a) Predictions of two frames in the same video (b) The interpolated
Vascular Score map

D. Segmentation Enhancement

In ultrasound imagery, instruments represent small targets
with indistinct features, leading to potential misidentification
by the network. This method applies nonlinear interpolation
to the vascular prediction score map V , utilizing it to weight
the prediction scores of instruments D. Consequently, the
proximity of an instrument to regions with higher vascular
prediction scores directly enhances the confidence level of its
predicted presence.The new prediction of instruments can be
calculated as:

scoreD =

∑
(V ×D)∑

D
(9)

E. 3D Reconstruction

As shown in the Fig. 1, The robotic arm drives the ultra-
sound probe, capturing images via a stream capture device. In
order to accomplish the 3D reconstruction, the 2D imaging
coordinate needs to be converted to 3D robot coordinates.
The probe’s lateral axis is designated as p⃗t and its normal
direction as p⃗n. Given the 2D image coordinates of the pixel
as

[
u v

]
, the three-dimensional coordinates of the pixel in

the end-effector system Pixelbase can be computed as:

Pixel = u
→
pt + v

→
pn (10)

[
Pixelbase 1

]
= Tr

−1
[
Pixel 1

]
(11)

where Tr is calculated based on the robot’s end position.
Then real-time 3D reconstruction can be performed by shifted-
window Bezier interpolation [26]. The Bezier interpolation is
used to interpolate smooth curves or surfaces between a given
set of control points. Bezier curve can be defined using n
control points to shape its contour as:

B(t) =

n−1∑
i=0

Cn−1,i(1− t)n−i−1tiPi (12)

where Pi represents the coordinates of the control point in the
base coordinate system,B (t) denotes the interpolated point,

Fig. 5. Dynamic reconstruction of blood vessels and guidewires

and t varies within [0, 1], indicating its position on the Bezier
curve.

Upon acquiring four image frames with a robotic arm,
3D reconstruction is conducted on the instance segmentation
results, dynamically rebuilding each instance’s mask in three
dimensions. As depicted in Fig. 5, shifted-window Bezier
interpolation is utilized for each quartet of frames, specif-
ically [frame1 frame2 frame3 frame4]. After processing the
first reconstruction window with four frames, and the third
frame frame3 is replaced by the interpolated frame−3 of first
window. Interpolation is then applied to the next window,[
frame−3 frame4 frame5 frame6

]
. When the four frames in

one window are reconstructed, the result is displayed, and
subsequently, the next window undergoes new reconstruction.
This process achieves the visual effect of dynamic 3D recon-
struction.

IV. EXPERIMENTAL RESULT AND DISCUSSIONS

A. Dataset construction

This novel dataset we construct contains common imaging
categories observed in vascular interventional surgeries, such
as vessels, guidewires, and needles. Additionally, it includes
various imaging scenarios like in-plane and out-plane. Besides,

Fig. 6. Segmentation results by proposed online video instance segmentation
network in different cases.



TABLE I
ACCURACY OF IMAGES WITH INTERVENTIONAL DEVICES

methods Out-of-plane In-plane Mean
mAP50 mAP75 mAR mDice mAP50 mAP75 mAR mDice mAP50 mAP75 mAR mDice

MA-Net 72.7 39.5 53.4 83.9 65.3 44.7 74.2 77.7 69 42.2 63.8 80.8

U-Net 77.3 53.2 65.8 82.3 60.2 44.2 73 79.8 68.7 48.7 69.4 81.1

SegFormer 77.1 55.6 63.1 84.3 63.3 43.4 79.5 86.3 70.2 49.5 71.3 85.3

TransUNet 80.8 66.8 82.3 84.1 71.8 55.1 77.1 86.6 76.3 60.9 79.8 85.3

US-VIS 85.1 80.7 88.5 85.2 77.1 62.7 81.6 83.2 83.5 71.7 85.1 84.2

TABLE II
ACCURACY OF IMAGES WITHOUT INTERVENTIONAL DEVICES

methods FPS mAP50 mAP75 mAR mdice

MA-Net 17.8 55.7 23.5 61.5 66.6

U-Net 28.4 61.1 27.8 63.1 68.7

SegFormer 21.2 49.2 26.4 65.1 69.8

TransUNet 3.54 64.8 38.1 67.3 69.1

US-VIS 10.3 68.1 47.1 70.9 70.3

the images are captured from different anatomical regions,
including the carotid and femoral artery.

We collected vascular ultrasound videos during routine
ultrasound examinations and interventional procedures using
the linear probe with an ultrasound system (Angell technology
Ltd, China). To date, we have gathered 40 cases, totaling 112
ultrasound interventional videos. Additionally, we collected
and processed another non-surgery 2,000 vascular ultrasound
images. Inspired by the Youtube-VIS2021 [3] data format, we
established the US-Vascular-VIS dataset for tasks related to
the detection and segmentation of interventional ultrasound.

B. Experimental settings and procedures

The network US-VIS we proposed was trained based on
the US-Vascular-VIS dataset on a workstation (DELL, Nvidia
RTX3090Ti). Several Out-performing networks that have been
widely used in the medical image field, including SegFormer
[27], MA-Net [28], UNet [10], and TransUNet [29], were
ran on the same dataset to compare them with our proposed
network.

For non-puncture conditions, we used 10 in-plane and 10
out-of-plane ultrasound videos captured from four patients for
testing, and the result is shown in the Table I. In the puncture
condition, we used 10 in-plane ultrasounds captured from three
patients for testing. The result is shown in the Table II.

In assessing the reconstruction algorithm’s effectiveness, we
initially undertook offline experiments, comparing it against
ultrasound point cloud reconstruction [19] and facet generation
using nearest neighbors algorithm [13].

C. Experimental results

We present representative detection and segmentation re-
sults depicted in Fig 6. Our model demonstrated impressive

TABLE III
EFFICIENCY OF RECONSTRUCTION ALGORITHMS

Methods FPS Output Size

Point cloud with mesh generation 26.8 3.2M

Ours 21.7 1.1M

performance in real-time target tracking and re-detection of
lost targets in ultrasound videos.

In terms of detection accuracy, our proposed model has
better performance. Table I quantitatively shows the online
detection results of ultrasound videos without interventional
instruments. The average accuracy of vascular detection by our
proposed network structure achieved a mAP75 score of 71.7%,
which is 10.8% higher than the second best one. Especially
in the out-of-plane situation, our network achieved a mAP75
score of 80.7%. Table II displays the online detection results
of videos with interventional instruments. The appearance of
small targets, such as metallic interventional instruments, in
ultrasound images makes detection more challenging. The
network we proposed achieved is 11.0% higher than the
second best one.

In terms of segmentation accuracy, the TransUNet outper-
formed ours by 3.4% in dice score on large vessels (in-
plane images). The employment of the global self-attention
mechanism from Transformers within TransUnet contributes
significantly to its superior performance in segmentation tasks.
The network we proposed, which employs Deformable Detr
[21], achieves a 0.5% higher accuracy in detecting small in-
struments. The utilization of Deformable DETR enhances the
network performance for small objects, such as interventional
instruments, due to its specialized attention mechanism.

While accuracy improves, the attention mechanism reduces
the inference speed significantly. The TransUNet achieves 3.54
FPS on an NVIDIA 3060 graphics card, while our proposed
network reaches 10.3 FPS. The U-Net achieves an inference
speed of 28.4 FPS because of its simpler network structure.

The accuracy of the reconstruction algorithm relies on
the precision of vessel segmentation, thus the evaluation of
reconstruction efficiency is the main focus of our experiments.
As shown in Table III, we achieved a processing speed of 21.7
FPS, with a final output file size of 1.1 MB for single-vessel
reconstruction. Our algorithm is a bit slower in comparison,



but the output file is smaller, allowing the reconstruction
results to be displayed more easily and dynamically. Consid-
ering that we used a mature and encapsulated codebase when
implementing the point cloud reconstruction algorithm, so the
results are within acceptable limits.Of course, we will explore
more alternative evaluation metrics for reconstruction in the
future.

V. CONCLUSION

In this paper, we proposed an end-to-end online instance
segmentation network to process interventional vascular ul-
trasound videos. Instead of processing single-frame images,
we explored the use of historical frames to improve the accu-
racy and continuity of segmentation. Based on the accurate
segmentation, we realized the real-time 3D reconstruction
of vessels with the collaboration of the robot arm, enabling
surgeons or robotic systems to acquire an intuitive insight
into the intravascular state. Meanwhile, we built a novel
dataset that can be used in multiple deep learning tasks
for vascular interventional ultrasound. In the future, we will
expand our segmentation and reconstruction efforts to include
more interventional instruments, such as balloon catheters ,
and perform further experiments with the assistance of robots.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support by the
Institute of Automation, Chinese Academy of Sciences, Sec-
ond Affiliated Hospital of Naval Medical University and the
InnoHK programme.

REFERENCES

[1] S. Toggweiler, R. Gurvitch, J. Leipsic, D. Wood, A. Willson, R. Binder,
A. Cheung, J. Ye, and J. Webb, “Percutaneous aortic valve replacement:
vascular outcomes with a fully percutaneous procedure,” in Journal of
the American College of Cardiology, vol. 59, no. 2, 2012, pp. 113-8.

[2] C. Grimaldi, F. di Francesco, F. Chiusolo, R. Angelico, L. Monti,
P. Muiesan, and J. de Ville de Goyet, “Aggressive prevention and
preemptive management of vascular complications after pediatric liver
transplantation: A major impact on graft survival and long-term out-
come,” in Pediatric Transplantation, vol. 22, 2018.

[3] L. Yang, Y. Fan, and N. Xu, “Video instance segmentation,” in Proceed-
ings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 5188-5197.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation,” in IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 4, 2015, pp. 640-651.

[5] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, et al., “Automatic Liver and
Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural
Networks and 3D Conditional Random Fields,” in International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention,
Cham, 2016.

[6] L. Wu, X. Yang, S. Li, et al., “Cascaded Fully Convolutional Networks
for automatic prenatal ultrasound image segmentation,” in 2017 IEEE
14th International Symposium on Biomedical Imaging (ISBI 2017),
2017. IEEE.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks
for biomedical image segmentation,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention, 2015,
pp. 234–241.

[8] C. Chu, J. Zheng, and Y. Zhou, “Ultrasonic thyroid nodule detection
method based on U-Net network,” in Computer methods and programs
in biomedicine, vol. 199, 2020, pp. 105906.

[9] M. Amiri, R. Brooks, and H. Rivaz, “Fine-Tuning U-Net for Ultrasound
Image Segmentation: Different Layers, Different Outcomes,” in IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.
67, 2020, pp. 2510-2518.

[10] C. G. Morales, J. Yao, T. Rane, R. Edman, H. Choset, and A. Dubrawski,
“Reslicing Ultrasound Images for Data Augmentation and Vessel Re-
construction,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 2710-2716.
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