
Multi-objective Deep Reinforcement Learning for
Mobile Edge Computing

Ning Yang, Junrui Wen, Meng Zhang*, Ming Tang

Abstract—Mobile edge computing (MEC) is essential for next-
generation mobile network applications that prioritize various
performance metrics, including delays and energy consumption.
However, conventional single-objective scheduling solutions cannot
be directly applied to practical systems in which the preferences
of these applications (i.e., the weights of different objectives)
are often unknown or challenging to specify in advance. In this
study, we address this issue by formulating a multi-objective
offloading problem for MEC with multiple edges to minimize
expected long-term energy consumption and transmission delay
while considering unknown preferences as parameters. To address
the challenge of unknown preferences, we design a multi-objective
(deep) reinforcement learning (MORL)-based resource scheduling
scheme with proximal policy optimization (PPO). In addition, we
introduce a well-designed state encoding method for constructing
features for multiple edges in MEC systems, a sophisticated
reward function for accurately computing the utilities of delay
and energy consumption. Simulation results demonstrate that our
proposed MORL scheme enhances the hypervolume of the Pareto
front by up to 233.1% compared to benchmarks.

Index Terms—Mobile edge computing, multi-objective rein-
forcement learning, resource scheduling.

I. INTRODUCTION

The rise of next-generation networks and the increasing

use of mobile devices have resulted in an exponential growth

of data transmission and diverse computing needs. With the

emergence of new computing-intensive applications, there is

a possibility that device computing capacity may not suffice.

Cloud computing is one solution that can provide the necessary

resources, but it may also result in latency issues.

To address this challenge, mobile edge computing (MEC)

has emerged as a promising computing paradigm that offloads

computing workload to edge or cloud networks and can achieve

low latency and high efficiency [1]–[3].

In MEC systems, task offloading is crucial in achieving low

latency and energy consumption [4]. By selectively offload-

ing computing tasks to edge or cloud users based on their

requirements, MEC systems can optimize resource utilization

and improve performance. For example, edge servers may be

effective for low-latency tasks that require real-time processing,

while cloud users may be more suitable for computationally

intensive tasks. Additionally, other factors, such as edge load

Ning Yang and Junrui Wen are with Institute of Automation, Chinese
Academy of Sciences, Beijing, 100190, China. (e-mail: ning.yang@ia.ac.cn,
yvwtogo@gmail.com).

Meng Zhang is with the ZJU-UIUC Institute, Zhejiang University, Zhejiang,
314499, China. (e-mail: mengzhang@intl.zju.edu.cn).

Ming Tang is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, 518055, China.
(e-mail: tangm3@sustech.edu.cn).

(*Corresponding author: Meng Zhang)

and transmission rate, need to be considered when designing

offloading schemes. Task offloading schemes in MEC systems

present two key challenges.

Challenge 1: The natural MEC network environments are
full of dynamics and uncertainty.

The scheduling of offloading in MEC systems is challenging

due to the dynamic and unpredictable nature of users’ work-

loads and computing requirements. The presence of stochastic

parameters in the problem poses challenges to the application

of traditional optimization methods. Myopically optimizing the

offloading decision of the current step is ineffective since it

cannot account for long-term utilities.

The application of deep reinforcement learning (DRL) has

shown substantial potential in addressing sequential decision-

making problems and is an attractive technique for dynamic

MEC environments [4], [5]. The existing works have demon-

strated the effectiveness of applying DRL in MEC systems

to address unknown dynamics. For instance, Cui et al. [6]

employed DRL to solve the user association and offloading

sub-problem in MEC networks. Lei et al. [7] investigated

computation offloading and multi-user scheduling algorithms in

edge IoT networks and proposed a DRL algorithm to solve the

continuous-time problem, supporting implementation based on

semi-distributed auctions. Jiang et al. [8] proposed an online

DRL-based resource scheduling framework to minimize the

delay in large-scale MEC systems. However, there is another

challenge that requires consideration.

Challenge 2: Users who initiate tasks may have diverse
preferences regarding delay and energy consumption.

In various mobile applications such as health care, trans-

portation, and virtual reality, among others, delay in processing

data can have serious consequences, particularly in emergency

situations. However, in industrial and unmanned aerial net-

works, energy consumption is subject to strict limits, and thus,

computing applications in these areas may prioritize energy

over delay. Therefore, offloading scheduling in MEC systems

requires a well-designed balance between delay and energy

consumption. Moreover, one of the most critical considerations

in designing an offloading scheme for MEC systems is that

target applications may not be known in advance.

Regretfully, existing studies on MEC (e.g., [4], [6]–[10]),

most of them have focused exclusively on single-objective

methods. In practice, many scheduling problems in MEC sys-

tems are in nature multi-objective. Since these studies have not

taken into account multi-objective methods, they cannot address

the second challenge of MEC systems, which is dealing with

diverse and unknown preferences. The dynamic and uncertain

ISBN 978-3-903176-55-3 © 2023 IFIP 1
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

nature of the environments, the diversity of preferences, and the

computational infeasibility of classical methods motivate us to

seek out new methodologies to address these issues.

Note that although some may argue that we can still directly

apply single-objective DRL by simply taking a weighted sum

(known as scalarization), this is, in fact, not true due to the

following issues [11]:

1) Impossibility: Weights may be unknown when designing

or learning an offloading scheme.

2) Infeasibility: Weights may be diverse, which is true when

MEC systems have different restrictive constraints on

latency or energy.

3) Undesirability: Even if weights are known, nonlinear

objective functions may lead to non-stationary optimal

policies.

To effectively address these challenges, we propose employ-

ing multi-objective reinforcement learning (MORL) to design a

task offloading method. We summarize our main contributions

as follows:

• Multi-objective MEC Framework: We formulate the multi-

objective MDP (Markov decision process) problem frame-

work. Compared with previous works, our framework

focuses on the Pareto optimal solutions, which characterize

the performance of the offloading scheduling policy with

multiple objectives under different preferences.

• Multi-objective Decision Model: We propose a novel

MORL method based on proximal policy optimization

(PPO) to solve the multi-objective problem. Our proposed

method aims to achieve the Pareto near-optimal solution

for diverse preferences. Moreover, we introduce a well-

designed encoding method to construct features for multi-

edge systems and a sophisticated reward function to com-

pute delay and energy consumption.

• Numerical Results: Compared to benchmarks, our MORL

scheme increases the hypervolume of the Pareto front up

to 233.1%.

II. SYSTEM MODEL

We consider a set of servers E = {0, 1, 2, ..., E} with one

remote cloud server (denoted by index 0) and E edge servers,

and consider a set of users U = {1, 2, ..., U} in a MEC system,

as shown in Fig. 1. We use index e ∈ E to denote a server. Index

u ∈ U denotes a user. Our model is a continuous-time system

and has discrete decision steps. Consider one episode consisting

of T steps, and each step is denoted by t ∈ {1, 2, ..., T}, each

with a duration of Δt seconds.

Multiple users request MEC services from servers. At the

beginning of each step, the arrival time of a series of tasks

follows a Poisson distribution for each user, and the Poisson

arrival rate for each user is λp. The tasks are placed in a queue

with a first in, first out (FIFO) queue strategy. In each step,

the system will offload the first task in the queue to one of the

servers. Then the task is removed from the queue. Let M =
{1, 2, ...,M} denote the set of tasks in an episode. We use

m ∈ M to denote a task and use Lm to denote the size of task

Cloud
server

Edge
server E

Edge
server 2

Edge
server 1Task 1

Task 2

Task M

...
...

Fig. 1: An illustrative example system model of MEC.

m, which follows an exponential distribution [12] with mean

L̄.

We consider a Rayleigh fading channel model in the MEC

network. We denote h ∈ RU×(E+1) as the U×(E+1) channel

matrix. Thus, the achievable data rate from user u to server e
is

Cu,e = W log2

(
1 +

poff |hu,e|2
σ2

)
, ∀u ∈ U , e ∈ E , (1)

where σ2 is additive white Gaussian noise (AWGN) power,

and W is the bandwidth. The offloading power is poff , and the

channel coefficient from user u to server e is hu,e.

Offloading: We denote the offloading decision (matrix) as

x = {xm,e}m∈M,e∈E , where xm,e ∈ {0, 1} is an offloading

indicator variable; xm,e = 1 indicates that task m is offloaded

to server e. If task m comes from user u. The offloading delay

for task m is given by [13]

T off
m =

∑
e∈E

xm,e
Lm

Cu,e
, ∀m ∈ M. (2)

The offloading energy consumption for task m with offloading

power poff is

Eoff
m = poffT off

m , ∀m ∈ M. (3)

Execution: Each server executes tasks in parallel. We denote

the beginning of step t as time instant τt, given by τt = tΔt.
The computing speed for each task in server e at time instant

τt is

qe(τt) =
fe

nexe
e (τt)η

, ∀e ∈ E , (4)

where fe is the CPU frequency (in cycles per second) of server

e, and η is the number of CPU cycles required for computing a

one-bit task. We define nexe
e (τt) as the number of tasks that are

being executed in server e at time τt. The nexe
e (τt) tasks share

equally the computing resources of server e. Thus, we give the

relation between task size Lm and execution delay T exe
m for

task m as

Lm = gm(T exe
m)

=
∑
e∈E

xm,e

∫ mΔt+T off
m +T exe

m

mΔt+T off
m

qe(τ) dτ, ∀m ∈ M,
(5)

ISBN 978-3-903176-55-3 © 2023 IFIP 2
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

where τ is a time instant. The integral function gm(T exe
m)

denotes the aggregate executed size for task m from mΔt+T off
m

to mΔt + T off
m + T exe

m . Therefore, execution time delay T exe
m

of task m is

T exe
m = gm

−1(Lm), ∀m ∈ M. (6)

The total energy consumption of execution for task m is given

by [13]

Eexe
m =

∑
e∈E

xm,eκηf
2
eLm, ∀m ∈ M, (7)

where κ denotes an effective capacitance coefficient for each

CPU cycle.

To summarize, the overall delay and the overall energy

consumption for task m ∈ M are

Tm = T off
m + T exe

m , Em = Eoff
m + Eexe

m , (8)

respectively.

The mean of task size L̄ represents the demand for tasks.

If the computational capability of the system exceeds the

demand, the scheduling pressure decreases. Conversely, if the

demand surpasses the capability, the system will continuously

accumulate tasks over time. Therefore, we consider a system

that balances computational capability and task demand. The

mean of task size L̄ satisfies

Δt

(∑
e∈E

fe
η

)
= λpL̄U, (9)

.

A. Problem Formulation

Based on different application scenarios, MEC networks

have diverse preferences over energy consumption and delay.

Therefore, we aim to design a scheduling policy to achieve

the Pareto optimal solution between energy consumption and

delay. We cannot directly apply single-objective DRL by simply

taking a weighted sum due to impossibility (i.e., weights may

be unknown), infeasibility (i.e., MEC systems have different

restrictive constraints on latency or energy), and undesirability

(i.e., non-stationary optimal policies). This motivates us to use

MORL to achieve Pareto optimal solution for any potential

preference. We introduce the preference vector ω = (ωT, ωE)
to weight delay and energy consumption, which satisfies ωT +
ωE = 1. The subscript T denotes delay about, while the

subscript E denotes energy consumption about in our study.

A (stochastic) policy is a mapping π : S×A → [0, 1], where

S is the state space of the system and A is the offloading

action space, we will formally define them in next section.

For any given task m and system state, policy π selects an

offloading decision xm,e according to a certain probability

distribution. Given any one possible ω, the multi-objective

resource scheduling problem under the policy π is given by

min
π

Ex∼π

[∑
m∈M

γm (ωTTm + ωEEm)

]
(10a)

s.t. xm,e ∈ {0, 1}, ∀m ∈ M, ∀e ∈ E , (10b)∑
e∈E

xm,e ≤ 1, ∀m ∈ M, (10c)

where constraint (10b) restricts task offloading variables to be

binary, and constraint (10c) guarantees that each task can be

only offloaded to one server. A discount factor γ characterizes

the discounted objective in the future. The expectation E
accounts for the distribution of the task size Lm, the arrival

of users , and stochastic policy π.

B. Multi-objective Metrics

To facilitate multi-objective analysis, we further intro-

duce the following notions. Consider a preference set Ω =
{ω1,ω2, ...,ωn} with n preferences. A scheduling policy set

Π = [π1, π2, ..., πn] with n policies solving problem (10a)

given corresponding preferences in Ω. Let y denote the per-

formance, given by

y = {yT, yE} =

{ ∑
m∈M

Tm,
∑

m∈M
Em

}
. (11)

A performance of Π is denoted as Y = {yπ1 ,yπ2 , ...,yπn}.

We consider the following definition to characterize the optimal

trade-offs between two performance metrics:

Definition 1 (Pareto front [11]): For a policy set Π, Pareto
front PF (Π) is the undominated set :

PF (Π) = {π ∈ Π | �π′ ∈ Π : yπ′ �P yπ}, (12)

where �P is the Pareto dominance relation, satisfying

yπ �P yπ′ ⇐⇒
(∀i : yπi ≥ yπ

′
i) ∧ (∃i : yπi > yπ

′
i), i ∈ {T,E}. (13)

We aim to approximate the exact Pareto front [11] by searching

for policies set Π. The following hypervolume metric can

measure the quality of an approximation:

Definition 2 (Hypervolume metric [14]): In the multi-
objective MEC scheduling problem, as a Pareto front approxi-
mation PF (Π), the hypervolume metric is

V(PF (Π)) =
∫
R2 IVh(PF (Π))(z)dz, (14)

where Vh(PF (Π)) = {z ∈ Z|∃π ∈ PF (Π) : yπ �P

z �P yref}, and yref ∈ R2 is a reference performance point.

Function IVh(PF (Π)) is an indicator function that returns 1 if

z ∈ Vh(PF (Π)′) and 0 otherwise.

The multi-objective resource scheduling problem is still a

challenge for MEC networks for the following reasons:

• The natural MEC network environments are full of dy-

namics and uncertainty, leading to unknown preferences

of MEC systems.

• The computation complexity of the conventional optimiza-

tion method is demanding since the goal is to get a vector

reward instead of a reward value. The objective function

ISBN 978-3-903176-55-3 © 2023 IFIP 3
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

(10a) and the feasible set of constraints (10b) and (10c)

are non-convex due to binary variables x.

The aforementioned problems motivate us to design a MORL

scheme to solve (10).

III. MORL SCHEDULING SOLUTION

This section considers the situation of multiple preferences.

We consider that a (central) agent makes all offloading de-

cisions in a fully-observable setting. We model the MEC

environment as a MOMDP framework. In the subsection, we

first introduce the MOMDP framework, which includes a well-

designed state encoding method and a sophisticated reward

function. Then, we present our algorithm by introducing aspects

including the neural network architecture and policy update

method.

A. The MOMDP Framework

Definition 3 (MOMDP [11]): A MOMDP is a tuple
〈S,A, T , γ, μ,R〉 that contains state space S , action space
A, probabilistic transition process T : S ×A → S , discount
factor γ ∈ [0, 1), a probability distribution over initial
states μ : S → [0, 1], and a vector-valued reward function
R : S ×A → R2 that specifies the immediate reward for the
delay objective and the energy consumption objective.

For a decision step t, an agent offloads task m from user u.

It has m = t for task index m and step-index t. We specify the

MOMDP framework in the following:

State S: We consider E + 1 servers (E edge servers and a

cloud server). Hence, the state st ∈ S at step t is a fixed length

set and contains E+1 server information vectors. We formulate

state st as st = {st,e|e ∈ E}. The information vector of server

e at step t is

st,e = (Lm, Cu,e, fe, n
exe
e (τt), E,Be), ∀e ∈ E . (15)

State st,e contains task size Lm, data rate Cu,e, CPU frequency

fe, the number of execution task nexe
e (τt), the number of edge

server E, and task histogram vector Be, which is the residual

size distribution for tasks executed in server e at time instant

τt. That is,

Be(τt) = (bexe1,e (τt), b
exe
2,e (τt), ..., b

exe
N,e(τt)). (16)

Histogram vector Be has N bins. We denote one of previous

tasks as m′ and denote the execution residual size of task m′ at

time instant τt as Lres
m′(τt). In Eq. (16), the i-th value bexei,e (τt)

in Be denotes the number of tasks with execution residual size

Lres
m′(τt) within the range of [i−1, i) Mbits. Specifically, the last

element bexeN,e(τt) denotes the number of tasks with execution

residual size Lres
m′(τt) within the range of [N − 1,+∞) Mbits.

The execution residual size Lres
m′(τt) is given by

Lres
m′(τt) = Lm′ −min (gm′ ((τt −m′Δt) , Lm′) ,

∀τt ∈ [tΔt, TΔt],m′ ∈ {1, 2, . . . ,m− 1}. (17)

Action A: The action at ∈ A denotes that offloading task

m to which server. The action space is A = {0, 1, 2, . . . , E}.

Hence, the action at step t is represented by the following

at =
∑
e∈E

exm,e(t). (18)

Transition T : It describes the transition from st to st+1

with action at, which is denoted by P (st+1|st, at).

Reward R: Unlike a classical MDP setting in which

each reward is a scalar, a multi-objective setting requires a

vector. Therefore, our reward (profile) function is given by

R : S ×A → R2. We denote the reward of energy consump-

tion and delay as rE and rT. If the agent offloads task m to

server e at step t, the reward of energy consumption for state

st and action at is

rE(st, at) = −Êm, (19)

where Êm is the estimated energy consumption of task m.

Through (8), we can compute the energy consumption of task

m. The MORL algorithm maximizes the reward, which is thus

the negative of energy consumption. For one episode, the total

reward for energy consumption is given by

RE =
T∑

t=1

rE(st, at) = −
∑

m∈M
Êm. (20)

The reward for the delay is

rT(st, at) = −

⎛
⎝T̂m +

∑
m′∈Me(τt)

ΔT̂ at

m′

⎞
⎠ , (21)

where T̂m is the estimated delay for task m, and Me(τt) is a

set of tasks, which are executed in server e at time instant τt.
The estimated correction of delay ΔT̂ at

m′ describes how much

delay will increase to task m′ with action at. For one episode,

the total reward of delay has

RT =
T∑

t=1

rT(st, at) = −
∑

m∈M
Tm. (22)

To compute reward rT , we rewrite Eq.(21) as

rT(st, at) = −T̂m −
∑

m′∈Me(τt)

(T̂ at

m′ − T̂
a∗(t)
m′),

(23)

where T̂ at

m′ denotes the estimated residual delay of task m′ with

taking action at at step t. The residual delay of task m′ without

taking action at is T̂
a∗(t)
m′ , which is the estimated residual delay

at the end of step t−1. Next, we introduce the computation of

the two cases.

(1) The case without taking action at: For task set Me(τt)
with nexe

e (τt) tasks, the execution residual size is a set

Lres
Me(τt)

= {Lres
m′(τt)|m′ ∈ Me(τt)}. We sort residual task size

set Lres
Me(τt)

in the ascending order and get a vector Lsort
Me(τt) =

(Lsort
1,e (τt), L

sort
2,e (τt), ..., L

sort
nexe
e (τt),e

(τt)), where Lsort
i,e (τt) is the

i-th least residual task size in Lres
Me(τt)

. Specifically, we define

ISBN 978-3-903176-55-3 © 2023 IFIP 4
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

Lsort
0,e (τt) = 0. Then, we have

∑
m′∈Me(τt)

T̂
a∗(t)
m′ =

nexe
e (τt)∑
i=1

(nexe
e (τt)− i+ 1)T̂ dur

i,e

=

nexe
e (τt)∑
i=1

η

fe
(nexe

e (τt)− i+ 1)2(Lsort
i,e (τt)− Lsort

i−1,e(t)),

(24)

where T̂ dur
i,e denotes the estimated during of time from the

completing instant of residual task Lsort
i−1,e(τt) to the completing

instant of residual task Lsort
i,e (τt).

(2) The case with action at: The MEC system completes

offloading task m at time instant τ ′t = τt+T off
m . We consider a

high-speed communication system that offloading delay T off
m is

short than the duration of one step Δt and satisfies T off
m < Δt.

For task set Me(τ
′
t) with nexe

e (τ ′t) tasks, the execution residual

size is a set Lres
Me(τ ′

t)
= {Lres

m (τ ′t)|m ∈ Me(τ
′
t)}. We sort set

Lres
Me(τ ′

t)
in the ascending order and get a vector Lsort

Me(τ ′
t)

=

(Lsort
1,e (τ ′t), L

sort
2,e (τ ′t), ..., L

sort
nexe
e (τ ′

t),e
(τ ′t)), where Lsort

i,e (τ ′t) is the

i-th least residual task size in Lres
Me(τ ′

t)
. Then, it satisfies

T̂m +
∑

m′∈Me(τ ′
t)

T̂ at

m′

=

nexe
e (τt)∑
i=1

(nexe
e −i+1)min

⎛
⎝T̂ dur

i,e ,max

⎛
⎝T̂ off

m −
i−1∑
j=1

T̂ dur
j,e , 0

⎞
⎠
⎞
⎠

+

nexe
e (τ ′

t)∑
i=1

η

fe
(nexe

e (τ ′t)−i+1)2(Lsort
i,e (τ ′t)−Lsort

i−1,e(τ
′
t)) + T̂ off

m ,

(25)

where T̂ off
m is the estimated offloading delay for task m with

Eq.(2). In Eq.(25), the first term to the right of the equation

estimates the sum of delay for tasks Me(τt) from time instant

τt to τ ′t . The second term to the right of Eq.(25) estimates the

sum of delay for tasks Me(τ
′
t) from time instant τ ′t to infinity.

The expression η
fe
(Lsort

i,e (τ ′t)−Lsort
i−1,e(τ

′
t) in Eq. (25) represents

the required time from completing residual size Lsort
i−1,e(τ

′
t) to

completing residual size Lsort
i,e (τ ′t). To simplify the calculation

of Lsort
1,e (τ ′t)− Lsort

0,e (τ ′t), we define Lsort
0,e (τ ′t) = 0 specifically.

To summarize, if the agent offloads task m to server e at

step t, the reward of delay is

rT(st, at) = −T̂ off
m +

nexe
e (τt)∑
i=1

(nexe
e (τt)− i+ 1)T̂ dur

i,e

−
nexe
e (τt)∑
i=1

(nexe
e −i+ 1)min

⎛
⎝T̂ dur

i,e ,max

⎛
⎝T̂ off

m −
i−1∑
j=1

T̂ dur
j,e , 0

⎞
⎠
⎞
⎠

−
nexe
e (τ ′

t)∑
i=1

η

fe
(nexe

e (τ ′t)− i+ 1)2(Lsort
i,e (τ ′t)− Lsort

i−1,e(τ
′
t)).

(26)

To achieve the MORL algorithm, we compute a scalarized

reward given preference ω:

rω(st, at) = ωT × (αTrT(st, at), αErE(st, at)), (27)

where αT and αE are coefficients for adjusting delay rT(t) and

energy consumption rE(t) to the same order of magnitude. The

total reward of one episode is

Rω =

T∑
t=1

rω(st, at). (28)

B. MORL Scheduling

We train DRL-based scheduling policies based on a PPO

algorithm [15], which is a family of policy gradient (PG)

methods. The PPO algorithm can sample the data from the

transition several times instead of one time within each episode.

It improves the sampling efficiency than traditional PG meth-

ods. The neural networks with parameters θ contain an actor

network and a critic network. In the training phase, the MORL

algorithm trains a parametric network for each preference.

In the evaluation phase, the parametric network evaluates the

Pareto front of energy consumption and delay for multi-edge

servers in the MEC environment.

We use generalized advantage estimator (GAE) technology

to reduce the variance of policy gradient estimates [16]. The

GAE advantage function for objective i ∈ {T,E} is

Âi(t)=
T−1∑
t′=t

γλ (αiri(st′ , at′)+γVi,θ(st′+1)−Vi,θ(st′)), (29)

where λ is a GAE discount factor within [0, 1], and Vi,θ(s(t))
denotes the value of state s(t). Value function Vi,θ(·) is

estimated by a critic network.

In the PPO algorithm, the gradient direction of objective i ∈
{T,E} is given as

∇θL
clip
i (θ)=Et[min (rprt (θ), clip(rprt (θ), 1−ε, 1+ε))

Âi(t)∇ log πθ(at|st)],
(30)

where ε is a clip hyperparameter. The probability ratio is

rprt (θ) = πθ(at|st)
πθold

(at|st)
. The surrogate objective is rprt (θ)Ât,

which corresponds to a conservative policy iteration. The ob-

jective is constrained by clip(rprt (θ)Ât, 1−ε, 1+ε), to penalize

the policy move outside interval [1− ε, 1 + ε].

Given the gradient directions of the two objectives, a policy

can reach the Pareto front by following a direction in ascent

simplex [17]. An ascent simplex is defined by the convex com-

bination of single–objective gradients. As shown in Fig. 2, the

green arrow and blue arrow denote the gradient directions of the

delay objective and energy consumption objective, respectively.

The light blue area stands for an ascent simplex.

For reward function rω(·), the gradient direction of prefer-

ence ω is

∇θL
clip
ω (θ)=Et[min (rprt (θ), clip(rprt (θ), 1−ε, 1+ε))

ωT(Â1(t), Â2(t))∇ log πθ(at|st)]
= ωT(∇θL

clip
1 (θ),∇θL

clip
2 (θ)).

(31)

ISBN 978-3-903176-55-3 © 2023 IFIP 5
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The ascent simplex in a 2–objectives problem.

Fig. 3: The neural network framework of a scheduling policy.

The vector ∇θL
clip
ω (θ) is a gradient direction in ascent simplex.

It makes a policy to the Pareto front by optimizing neural

network parameters θ.

As an example shown in Fig. 3, a neural network contains

convolution layers and multi-layer perceptron (MLP) layers.

The convolution layers encode the input state with point-wise

convolution kernel and turn information vector st of each server

to feature vector F . We reshape all feature vectors and concate-

nate them to get the total feature vector. The MLP layers encode

the total feature vector to get the output. For an actor-network,

the output is probability πθ(at|st) of each action. For a critic

network, the output is estimated value ωT[VT,θ(st), VE,θ(st)]
for preference ω. Additionally, we apply deep residual learning

technology [18] to build the neural network architecture to

address the problem of vanishing/exploding gradients.

We present the proposed MORL algorithm in Algorithm

1. For each preference ω in set Ω, we train a policy with

PPO method to maximize reward Rω and approximate Pareto

front PF (Π). To improve the training efficiency achieved

by [19], we reuse trained neural network parameters θωi

(i ∈ {1, 2, . . . , n− 1}) to initialize the next parameters θωi+1 ,

with a similar preference.

IV. SIMULATION RESULTS

In this section, we evaluate the performances of the MORL

scheduling scheme and compare it with benchmarks. We in-

troduce the simulation setup and evaluation metrics. Then,

we analyze the Pareto fronts and compare them with the

benchmarks.

Algorithm 1 MORL-based Scheduling

1: Initialize replay memory buffer Dω , policy parameters θω

for each preference ω
2: Initialize the learning rate α and the number of episodes

T epi for training.

3: Set policies set Π ← ∅
4: for each preference ω do
5: for each episode T epi do
6: for each step t do
7: at ∼ πθω (st)
8: st+1 ∼ T (st+1|st,)
9: Dω=Dω ∪ {(st, at, rω(st, at), st+1}

10: end for
11: θω ← θω + α∇θωL

clip
ω (θω)

12: end for
13: Π ← Π ∪ πθω

14: end for
15: Compute Pareto front PF (Π)

(a) (b)

Fig. 4: The Pareto front of the MORL scheme.

A. Simulation Setup

We set the preference set as Ω with an equal interval 0.02 and

obtain 50 preferences to fit the Pareto front. Each preference’s

performance contains total delay and energy consumption for

all tasks in one episode. We evaluate a performance (delay

or energy consumption) with an average of 1000 episodes.

Furthermore, we analyze the Pareto front of the proposed

scheme and compare it with benchmarks. A disk coverage has

a radius of 1000m to 2000m for a cloud server and 50m to

500m for an edge server. Each episode needs to initial different

radiuses for the cloud and edge servers. We set the mean of

task size L̄ according to Eq. (9).

B. Evaluation Metrics

We consider the following metrics to evaluate the perfor-

mances of the proposed algorithms.

• Energy Consumption: The total energy consumption of

one episode given as
M∑

m=1
Eoff

m +Eexe
m , and average energy

consumption per Mbits task of one episode given by
M∑

m=1

Eoff
m +Eexe

m

ML̄
.

• Task Delay: The total task delay given as
M∑

m=1
T off
m +T exe

m

and average delay per Mbits task of one episode given by

ISBN 978-3-903176-55-3 © 2023 IFIP 6
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Model Parameters

Resource Scheduling Hyperpa-
rameters Values

The number of steps for one

episode T
100

Step duration Δt 1 s

The number of users U 10

The number of tasks M 100

System bandwidth W 16.6MHz [20]

Offloading power poff 10 mW

The number of CPU cycles η for

one-bit task
103

Effective capacitance coefficient κ 5× 10−31

CPU frequency of cloud server f0 4.0 GHz

CPU frequency of edge server fe 2.0 GHz

Poisson arrival rate λp for each

user
0.1

DRL Hyperparameters Values
The episodes for training T epi 1.92× 106

Replay memory 1× 105

Batch size 4096

Learning rate 1× 10−6

Discount factor γ 0.9

GAE discount factor λ 0.95

Clip parameter ε 0.2

Fig. 5: The Pareto fronts of MORL scheme and other schemes.

M∑
m=1

T off
m +T exe

m

ML̄
.

• Pareto Front: PF (Π)={π∈Π | �π′ ∈ Π : yπ′�Py
π},

where the symbols are defined by Eq. (12).

• Hypervolume metric:
V(PF (Π)) =

∫
R2 IVh(PF (Π))(z)dz, where the symbols

are defined by Eq. (14).

C. Simulation results

1) Pareto Front Analysis: Fig. 4a presents the Pareto front

of the proposed MORL scheme. In this scenario, the number of

edge servers is E = 8, and the mean of task size L̄ = 20 Mbits.
The Pareto front shows that minimizing the delay (the leftmost

point) increases energy by 67.3%, but minimizing energy (the

(a) Pareto fronts of total delay and
energy consumption

(b) Pareto fronts of total delay and energy
consumption per Mbits task

Fig. 6: Pareto fronts of the proposed MORL algorithm.

rightmost point) increases the delay by 77.6%. Fig. 4b shows

the points of the Pareto front with trained and untrained

preferences. Each untrained preference lies intermediate to the

adjacent trained preferences. The result shows that by reusing

trained parameters to the most similar preference, our MORL

scheme has generalization for new preferences.
2) Performance Comparison with Benchmarks: We evalu-

ate the performance of the proposed MORL algorithms and

compare it with a linear upper confidence bound (LinUCB)-

based scheme [21], a heuristics-based scheme, and a random-

based scheme. LinUCB algorithms belong to contextual multi-

arm bandit (MAB) algorithms, widely used in task offloading

problems [22], [23]. Some work [24], [25] apply heuristic

methods to schedule for offloading.

• LinUCB-based scheme: Offloading scheme based on a

kind of contextual MAB algorithm. This scheme uses

states as MAB contexts and learns a policy by exploring

different actions.

• Heuristics-based scheme: Heuristic methods greedily se-

lect the server with the optimal weighted sum of estimated

running speed and energy consumption for the current

step.

• Random-based scheme: The agent offloads a task to a

cloud server or a random edge server according to proba-

bility. We adjust the probability to compute a Pareto front.

Fig. 5 illustrates the Pareto front comparison of the proposed

MORL scheme with other schemes. In this scenario, the system

has E = 8 and L̄ = 20 Mbits. We select the position

which denotes the maximum delay and energy consumption

of the performance profiles in Fig. 5 as the reference point to

compute the hypervolumes. The hypervolume of the proposed

MORL scheme is 80.7, the LinUCB-based scheme is 69.9, the

heuristics-based scheme is 63.9, and a random-based scheme is

24.2. Compared with a LinUCB-based scheme and a random-

based scheme, the proposed MORL scheme increases the

hypervolume of the Pareto front by 80.7−69.9
69.9 = 15.5% and

80.7−24.2
24.2 = 233.1%. As shown, the proposed MORL scheme

significantly outperforms other schemes. The MORL scheme

has dynamic adaptability to learn the dynamics of task arrival

and server load, which enables it to achieve better scheduling.
3) Pareto Front Analysis in Multi-edge Scenarios: We eval-

uate the Pareto front of the proposed MORL algorithm in sce-

narios with different edge server quantities. Fig. 6a illustrates

the Pareto fronts of the proposed MORL algorithm in the case

ISBN 978-3-903176-55-3 © 2023 IFIP 7
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

of edge quantity E ∈ {4, 6, 8, 10}. The mean of task size,

represented by L̄, is determined by Eq. (9) to balance the supply

and demand of computational capability. The result shows that,

in the balance case, the Pareto front of fewer edge servers and

less demand case can dominate the more one. It means that

while more edge servers may increase computational capability,

matching them with more task demands may result in increased

total energy consumption and task delay. The performances are

computed per 1 Mbits task in Fig. 6b for a fair comparison.

As the number of edge servers increases, the Pareto front of a

more edge servers case can dominate the less one. The result

shows that though more edge servers match more task demands,

deploying more edge servers can significantly improve delay

and energy consumption per Mbits tasks for each preference.

V. CONCLUSION

In this work, we investigated the offloading problem in

MEC systems and proposed a MORL-based algorithm that can

achieve Pareto fronts. A key advantage of the proposed MORL

method is that it employs a MORL framework to offload tasks

adopting various preferences, even untrained preferences.

We present a novel MOMDP framework for the multi-

objective offloading problem in MEC systems. Our framework

includes two key components: (1) a well-designed encoding

method to construct features of multi-edge MEC systems. (2) a

sophisticated reward function to evaluate the immediate utility

of delay and energy consumption. Simulation results demon-

strate the effectiveness of our proposed MORL scheme, which

achieves Pareto fronts in various scenarios and outperforms

benchmarks by up to 233.1%.

ACKNOWLEDGMENTS

The research leading to these results received funding from

“Research on Combinatorial Optimization Problem Based on

Reinforcement Learning” supported by Beijing Municipal Nat-

ural Science Foundation under Grant Agreement Grant No.

4224092. This work was supported in part by the National

Natural Science Foundation of China under Grants 62202427

and Grants 62202214. In addition, it received funding from

National Key RD Program of China (2022ZD0116402).

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[2] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605,
2016.

[3] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2016.

[4] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in 2018 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2018, pp. 1–6.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[6] G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy optimization for
mec enhanced sat-iot networks,” IEEE Access, vol. 8, pp. 55 915–55 926,
2020.

[7] L. Lei, H. Xu, X. Xiong, K. Zheng, W. Xiang, and X. Wang, “Multiuser
resource control with deep reinforcement learning in iot edge computing,”
IEEE Internet of Things J., vol. 6, no. 6, pp. 10 119–10 133, 2019.

[8] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang, “Stacked autoencoder-
based deep reinforcement learning for online resource scheduling in large-
scale mec networks,” IEEE Internet of Things J., vol. 7, no. 10, pp. 9278–
9290, 2020.

[9] N. Yang, H. Zhang, and R. Berry, “Partially observable multi-agent deep
reinforcement learning for cognitive resource management,” in GLOBE-
COM 2020-2020 IEEE Global Communications Conference. IEEE,
2020, pp. 1–6.

[10] H. Zhang, N. Yang, W. Huangfu, K. Long, and V. C. Leung, “Power
control based on deep reinforcement learning for spectrum sharing,” IEEE
Transactions on Wireless Communications, vol. 19, no. 6, pp. 4209–4219,
2020.

[11] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of
multi-objective sequential decision-making,” Journal of Artificial Intelli-
gence Research, vol. 48, pp. 67–113, 2013.

[12] L. Lei, H. Xu, X. Xiong, K. Zheng, and W. Xiang, “Joint computation
offloading and multiuser scheduling using approximate dynamic program-
ming in nb-iot edge computing system,” IEEE Internet of Things J., vol. 6,
no. 3, pp. 5345–5362, 2019.

[13] K. Wang, F. Fang, D. Costa, and Z. Ding, “Sub-channel scheduling, task
assignment, and power allocation for oma-based and noma-based mec
systems,” IEEE Trans. Commun., vol. PP, no. 99, pp. 1–1, 2020.

[14] E. Zitzler and L. Thiele, “Multi-objective evolutionary algorithms: A
comparative case study and the strength pareto approach,” IEEE trans.
Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[16] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[17] S. Parisi, M. Pirotta, N. Smacchia, L. Bascetta, and M. Restelli, “Policy
gradient approaches for multi-objective sequential decision making,” in
2014 International Joint Conference on Neural Networks (IJCNN). IEEE,
2014, pp. 2323–2330.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] S. Natarajan and P. Tadepalli, “Dynamic preferences in multi-criteria rein-
forcement learning,” in Proceedings of the 22nd International Conference
on Machine learning, 2005, pp. 601–608.

[20] “Ieee standard for telecommunications and information exchange between
systems - lan/man specific requirements - part 11: Wireless medium
access control (mac) and physical layer (phy) specifications: High speed
physical layer in the 5 ghz band,” IEEE Std 802.11a-1999, pp. 1–102,
1999.

[21] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on World wide web, 2010, pp. 661–
670.

[22] L. Chen and J. Xu, “Task replication for vehicular cloud: Contextual
combinatorial bandit with delayed feedback,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. IEEE, 2019, pp. 748–
756.

[23] H. Zhao, X. Li, S. Han, L. Yan, and J. Yu, “Collaboration-aware relay
selection for auv in internet of underwater network: Evolving contextual
bandit learning approach,” IEEE Internet of Things Journal, 2022.

[24] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 4177–
4190, 2018.

[25] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

ISBN 978-3-903176-55-3 © 2023 IFIP 8
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on June 05,2024 at 06:49:30 UTC from IEEE Xplore. Restrictions apply.

