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Abstract— Robots often operate in open-world environments,
where the capability to generalize to new scenarios is crucial
for robotic applications such as navigation and manipulation.
In this paper, we propose a novel multi-view self-supervised
framework (MVSS) to adapt off-the-shelf segmentation meth-
ods in a self-supervised manner by leveraging multi-view
consistency. Pixel-level and object-level correspondences are
established through unsupervised camera pose estimation and
cross-frame object association to learn feature embeddings that
the same object are close to each other and embeddings from
different objects are separated. Experimental results show that
it only needs to observe the RGB-D sequence once without
any annotation, our proposed method is able to adapt existing
methods in new scenarios to achieve performance close to that
of supervised segmentation methods.

I. INTRODUCTION

Robots often operate in open-world environments, where
the capability to discover and segment novel objects is
crucial for robotic tasks such as grasping, manipulation,
and navigation. As a fundamental task in robotics and
computer vision, object segmentation has been explored for
many years. Although deep learning-based approaches [1]—
[4] have achieved great progress in object segmentation, they
often require large amounts of labeled data, which is both
time-consuming and expensive to obtain. Moreover, real-
world scenarios often involve multiple objects arranged and
placed in various ways, the performance of supervised object
segmentation may suffer in real-world scenarios.

In recent years, self-supervised learning has been applied
to various computer vision tasks such as image classifi-
cation, object detection, semantic segmentation, and depth
estimation [5]-[7]. With reasonable prior knowledge as self-
supervised cues, self-supervised learning methods can sig-
nificantly reduce the need for labeled data and improve
the model generalization. As we know, there are a lot of
natural laws in the world, such as the motion coherence [8],
[9], spatio-temporal consistency [10]-[12] and photometric
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Fig. 1. Tllustration of multi-view consistency. We expect the segmentation
results of the model to be consistent under multi-view observations. Pixel-
level and object-level correspondences are established through unsupervised
camera pose estimation and cross-frame object association to learn feature
embeddings that the same object are close to each other and embeddings
from different objects are separated.

consistency [7]. By leveraging these self-supervised cues, the
learning process could be much more data efficient and cost
effective.

In this paper, we propose a method to self-supervisedly im-
prove object segmentation performance through multi-view
observations. Due to the irregularity and diversity of object
stacking in unstructured scenes, the observation of target
objects may be affected by severe occlusion and observation
angle differences. Observation differences from different per-
spectives will lead to large changes in the extracted feature
representations. However, when humans observe a scene
from multiple perspectives, they usually naturally associate
the observations from multiple perspectives, and thus contin-
uously learn to establish a consistent semantic relationship.
As shown in Fig. 1, our approach incorporates the concept
of multi-view consistency as the constraint in self-supervised
learning. We assume that multiple views of the same object
should produce similar segmentation results and feature
embeddings. We use this assumption as a regularization term
to ensure consistency in the generated segmentation results.
In order to leverage the information contained in multi-
view observation, it is necessary to establish the pixel-level
and object-level correspondences from different perspectives.
Many methods such as optical flow estimation [13], [14]
can be used here. However, optical flow based methods
may suffer under large motions. In order to obtain more
accurate correspondence, we introduce an unsupervised pose
estimation network to obtain relative poses between different
views, which does not require ground truth during training



and can be continuously optimized during observation.

After obtaining the relative poses, we then re-project the
segmentation masks across views and perform ROI match-
ing for object association to establish object-level corre-
spondence, in which matching pairs are considered robust
objects, and unmatched pairs are mis-segments. The object
matching pairs obtained in this way are spatially close and
semantically similar. Through this process, we obtain robust
object-level correspondence to learn feature embeddings for
segmentation. This provides robust positive and negative
samples for self-supervised contrastive learning. Therefore,
we introduce a multi-view contrastive loss that encourages
the feature embeddings of matching object pairs to be as
close as possible between different frames, while keeping
the embeddings of unmatched pairs separated. Despite the
potential noisy pseudo-labels, our network can still learn
discriminative features through multi-view observations, re-
sulting in improved segmentation performance in a self-
supervised manner.

Experimental results demonstrate that the proposed multi-
view self-supervised (MVSS) framework significantly im-
proves object segmentation performance without any human
involvement. We believe that our approach has the great
potential to adapt the performance of object segmentation
methods in new scenarios while reducing the need for labeled
data in various applications.

II. RELATED WORK
A. Object Segmentation

Object segmentation refers to the process of extracting
object masks from input images. In recent years, there has
been remarkable progress in object segmentation. Top-down
methods detect the objects first and then segment them to
obtain masks [1], [15]-[17], while bottom-up methods cluster
pixels into segments without relying on object proposals
[18]-[20].

Object segmentation provides high-level visual perception
capacity for robotic manipulation tasks. The ability to seg-
ment previously unseen objects is crucial in unstructured
robotic manipulation scenarios where robots may encounter
various environments and objects. Xie et al. [21] first gener-
ate initial segmentation masks from depth information, and
then use RGB information for refinement. Xie et al. [22]
further utilize both RGB and depth images to generate pixel-
level feature embeddings. Clustering is then performed to
achieve object segmentation. The network in [22] is trained
with metric learning in an end-to-end manner. Back et al.
[23] presents unseen object amodal instance segmentation
(UOAIS) for robotic manipulation in cluttered scenes. A
Hierarchical Occlusion Modeling (HOM) scheme is pro-
posed in [23] to reason about the occlusions. While these
methods are demonstrated to be effective in unseen object
segmentation, their deployment onto robots is hindered by
the inability to optimize further without additional labels.
Recently, Segment Anything Model (SAM) [24] is pro-
posed for zero-shot image segmentation. SAM is trained
on an extensive dataset of 1 billion masks and 11 million

images. The segmentation model is designed and trained
to be promptable. However, SAM may still produce over-
segmentation of the objects which highlights the necessity
for subsequent refinement to ensure its effectiveness in real-
world applications.

B. Self-supervised Learning

Self-supervised learning methodologies leverage the in-
herent characteristics of unlabeled data to automatically
generate data labels for subsequent learning processes. A
wide range of pretext tasks have been designed to provide
self-supervised signals [5]-[7], [25]-[27]. Self-supervised
learning also shown great promise in the field of image
segmentation. LOST [28] and FreeSOLO [29] use pre-
trained models to generate pseudo labels for segmentation.
Therefore, the performance of [28], [29] is inherently limited
by the pre-trained model. OGC [30] and LSMOL [31] rely on
motion cues instead of pre-trained models to generate pseudo
labels. The segmentation network is then trained through
iterative optimization to form positive feedbacks. While they
perform satisfactory in scenes with moving object, distin-
guish foreground and background in static scenes remains a
challenge.

C. Contrastive Learning

Contrastive learning is widely used in self-supervised
learning. Examples of contrastive learning methods include
SimCLR [5], Moco [6], SwAv [32] and SimSiam [33].
Typically, these methods use instance discrimination as the
proxy task, expecting different views of the same image to
have similar feature representations. Beyond operating at the
image level, contrastive learning can be also applied at the
point level [26] or region level [27] to obtain fine-grained
supervision signals, which is helpful for segmentation tasks.
For example, DenseCL [26] expects the same local region
in different augmented views of the same image to have
similar feature representations. Reco [27] expects the pixel-
level features in the same object region to be as close as
possible to the mean features of the category. By utilizing
fine-grained supervised signals, these methods successfully
improve the performance of the segmentation task.

III. MULTI-VIEW SELF-SUPERVISED SEGMENTATION
NETWORK

In this paper, we aim to adapt an off-the-shelf object seg-
mentation network in a self-supervised manner by leveraging
multi-view observations. When humans observe a scene from
multiple viewpoints, knowledge of the ego-motion allows
humans to effectively associate the observations. Robot is
desired to have the same capability to utilize the multi-view
consistency especially in indoor scenes where objects and
scenes are mostly stationary. For example, it is expected
that a pixel belonging to the same object should have the
same predicted segmentation labels and consistent feature
representations across views.

The overall architecture of our proposed MVSS frame-
work is shown in Fig. 2. Taking a sequence of RGB-D
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Fig. 2.

The architecture of our proposed MVSS framework. The model iteratively samples a reference frame I,- and a target frame I; as input, and

utilizes a camera pose estimation network and a segmentation network to obtain relative poses and segmentation masks. The segmentation masks of the
two views are re-projected according to the depth map and the relative pose, then cross-frame object association is performed in which matching mask
pairs are considered as object pairs, and unmatched masks are considered as mis-segments. The multi-view observations of matching objects are regarded
as augmented sample pairs. Our proposed multi-view consistency loss is utilized here to perform self-supervised feature embedding learning to improve the
performance of the segmentation network. Note that the pose network accepts RGB images as input and can be continuously trained in an unsupervised

manner when the input includes depth images.

images, we iteratively sample the reference frame I, and
the target frame I; as input. There are mainly two branches
of the MVSS framework: the segmentation network and the
camera pose estimation network. Pixel-level and object-level
correspondences are then established through camera pose
estimation and cross-frame object association to learn feature
embeddings that the same object are close to each other and
embeddings from different objects are separated. It can be
observed in experimental results that by utilizing both pixel-
level and object-level correspondences through multi-view
consistency, our proposed method is able to adapt existing
segmentation methods to learn discriminative features for
segmentation in new scenarios to achieve performance close
to that of supervised methods.

A. Camera Pose Estimation

We utilize the camera pose estimation network from SfM-
Learner [7] to estimate the relative camera poses between
pairs of RGB frames. Specifically, we take two RGB images,
the reference frame and the target frame as input, from which
the network estimates the camera pose of the target frame
relative to the reference frame. The network is trained in an
unsupervised manner by minimizing the photometric recon-
struction loss. We use the depth image obtained by the RGB-
D camera in computing the photometric loss, which differs
from the original SfMLearner where the pose estimation
network and the single-view depth CNN are jointly trained.
During testing, only RGB images are needed to estimate the
camera relative poses.

We denote I,.(p) as the reference frame, I;(p) as the
target frame, and denote I,.(p) as the image obtained by

differentially projecting the reference frame I,.(p) onto the
camera view of I;(p) through the depth map rendering.
E, (p) is the explainability prediction network [7] indicating
the network’s belief in where pixel correspondence is suc-
cessfully modeled. The view synthesis objective is weighted
correspondingly by:

Los =Y E(p)|Li(p) — I ()] (1)

Since there is no direct supervision for E, a regularization
term LTeg(ET) is added to encourage non-zero predictions
by minimizing the cross-entropy loss with constant label
1 at each pixel. The explainability network is jointly and
simultaneously trained with the pose network. With [ indexes
over different image scales, the total loss function of the pose

estimation network is formulated as follows:

Lpose = ) Luys + AeLreg(E}), )
l

B. Pixel Re-projection

To effectively leverage the information provided by the
multiple views, it is necessary to first establish the pixel
correspondence between different views. This involves pro-
jecting the depth map onto a point cloud and obtaining its
coordinates in the camera coordinates using the intrinsic
matrix, i.e. depth map rendering. Once we have the relative
pose of the camera, the point cloud can be projected onto
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where [u,,v,] and [us,v;] are the pixel coordinates in the
reference frame and target frame, respectively. [X,,Y,, Z,]
and [X3, Y, Z;] are the corresponding camera coordinates. K
is the intrinsic matrix of the camera. d, is the depth value
of [uy,v,]. T,—¢ is the projection matrix from the reference
frame to the target frame obtained from the aforementioned
camera pose estimation.

C. Cross-frame Object Association

In cross-frame object association, we project the segmenta-
tion results between two frames through pixel re-projection
introduced in the previous section. Assuming there are M
objects in the reference frame and /N objects in the target
frame, the intersection over union (IoU) for each pair of
objects is calculated as shown in Fig. 3. We employ the
Hungarian algorithm [34] for object association. Hungarian
algorithm addresses the unique constraint where the optimal
assignment can be obtained. Additionally, object pairs with
IoU scores below a threshold A are considered false matches.
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Fig. 3. The process of cross-frame object association. The segmentation
masks Mask, and Mask; and the relative pose 1r—¢ and Ty, are
obtained by the segmentation network and pose network, respectively. We
then re-project the mask to another view through depth map rendering. The
Intersection over Union (IOU) matrix of all object pairs between the two
frames are calculated for cross-frame object association.

After cross-frame object association, matched object pairs
are treated as the same object for self-supervised feature
embedding learning. Besides, unmatched segments may also
include objects that should not be considered as backgrounds
during subsequent training, which may lead to performance
degradation. Here, we aim to produce consistent segmenta-
tion results for well-segmented objects across different views.
The pixels from the unmatched segments will not be sampled
in the subsequent loss calculation. This process continues
until these challenging samples can establish bidirectional

matches in specific frames. Through this way, the self-
supervised feature learning is able to learn discriminative
features of objects for improved segmentation.

D. Self-supervised Feature Embedding Learning

We aim to achieve consistent and continuous segmentation
results across multiple views. Ideally, the feature embeddings
of the same object should be similar across frames, while
the feature embeddings of different objects should be far
apart, which we consider to be an important metric for
optimization. Suppose N object pairs are obtained through
cross-frame object association, we denote the mean feature
embeddings of all 2V object regions as 21, ...zon, Where 25,
and z9,_1 represent a matching pair. The cosine similarity
between ¢2 normalized w and v is denoted as sim(u,v) =
' v/||ul|||v]|. The multi-view consistency loss, or the multi-
view contrastive loss, is formulated as follows:

exp(sim(z;, z;)/T)

Lij = —log ) 4)
’ S Appgeap(sim(zi, zi) /7)
1 N
Lmvss = A7 L n—1,2n L n,2n— 5
N;[ on—1,2n + Lon,2n—1] )

where 7 is the temperature parameter. Furthermore, we
utilize dense contrastive learning to obtain more fine-grained
supervision signals. The region contrastive loss proposed in
[27] is extended to fit our experimental setting. Assuming
there are N matched object pairs in the two frames, we
perform pixel-to-region contrast on the sampled pixels and
objects. We denote R; as the set of sampled pixel repre-
sentations 7, from object n. r;"" is the representation of
the positive key, which is the mean representation of object
n. R} is the negative key set including pixel representations
sampled from other objects besides object n. Then, the dense
contrastive loss can be formulated as:

n, 1
Tk: + = |RZL ;% Tq (6)
Tq g’
1L 1
Laense = N; |R2L| Z

rqeRg
exp(ry - TZ’+/T)
exp(ry - 7"1?7+/T) + Zr;NRg exp(rg -7y, /T)

—log

(N

We also incorporate an intra-cluster loss similar to [20],
which improves the stability of clustering by pushing the
feature embeddings of all pixels belonging to the same object
to the corresponding cluster center. Suppose P pixels are
sampled on each object, and zj is the feature embedding
of the i-th pixel that belongs to object n. u™ is the average
of the pixel embeddings of the n-th object, d represents the

cosine distance, o is the margin. Then the intra-cluster loss
function is formulated as:

P

= (8)
[Doriea|
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The total loss function is formulated as follows:

Ltotal = )\intraLintra + )\mvssL'mvss + /\denseLdense + )\poseLpose
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IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed MVSS framework. We employ UCN [20], a state-of-
the-art class-agnostic RGB-D object segmentation network,
as our segmentation backbone. UCN achieves class-agnostic
segmentation through two steps of feature extraction and
clustering. The network is pre-trained on a simulated in-
door object dataset TOD [22]. Furthermore, we utilize the
unsupervised pose estimation network from SfMLearner [7]
to estimate the relative camera pose for pixel re-projection
and object association. Finally, we apply our MVSS (multi-
view self-supervised) framework on the GraspNet-1Billion
Dataset [35] to evaluate the effectiveness of our method.

A. Dataset and Metrics

GraspNet-1Billion Dataset. The GraspNet-1Billion [35]
dataset includes 88 daily objects with high-quality 3D mesh
models. The images are collected from 190 cluttered scenes,
each contributing 256 real-world RGB-D images, for a total
of 48,640 images. Annotations of the GraspNet-1Billion
dataset includes grasp poses, instance masks, camera poses
and object 6D poses.

To simulate real-world online learning scenarios, we sam-

ple two images including a reference frame I, and a target
frame I; during each iteration. Denoting the frame sampling
gap as T, then 256 — T' frame pairs can be sampled from
each video. All images are resized to 640 x 480 pixels during
training and evaluation.
Evaluation Metrics. We first optimize our network without
using any human annotations, and then use the following
metrics to evaluate the performance of segmentation network
and pose estimation network.

e Overlap P/R/F Following previous works [20]-[22], we
use the object precision, recall and F-measure as the
metrics to evaluate the performance of the object seg-
mentation network. Additionally, the Boundary P/R/F
is used to evaluate the accuracy of the segmentation
boundaries. Notably, the widely used IoU in seman-
tic segmentation, which is closely correlated with F-
measure, is not presented in evaluation.

o Absolute Trajectory Error (ATE) [36] directly measures
the difference between the camera pose of the estimated
trajectory and the ground truth. Following [7], we
employ ATE as the metric to evaluate the performance
of our pose estimation network.

B. Implementation Details

In our experiments, we set the hyperparameters \,,ss =
Adense = 0.3 and Ajpira = Apose = 10. We employ the
Adam optimizer with 81 = 0.9, 85 = 0.999, a learning rate
of 10~° for both segmentation network and pose estimation
network. The batch size is set to 2 (I, and I;). The frame
sampling gap n is set to 10. The threshold A is set to a
small value of 0.2. For the multi-view consistency loss and
the dense contrastive loss, we set the temperature parameter
7 to 0.5. With regard to the dense contrastive loss, we sample
256 anchor points with an equal number of negative samples
each time. For the intra-cluster loss, the number of sampled
points P and margin « are set to 1000 and 0.02, respectively.

C. Pose Estimation

The pose estimation network [7] is trained in an unsuper-
vised manner. During each optimization step, the network
takes two RGB images - the reference frame and the target
frame - as input, with the target depth map being required
to calculate the photometric reconstruction loss. Notably, the
network learns to estimate the relative camera pose between
the two input RGB images without relying on any ground
truth supervision. At the beginning of training, we optimize
the pose estimation network alone on the first 10 videos
observed by MVSS, and then jointly optimize with the
segmentation network through multi-view observations. As
shown in Fig 4, with the pose estimation network, we are able
to achieve fairly stable pose estimation performance without
any ground-truth camera pose, which is crucial in real-world
applications.
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Fig. 4. Performance evaluation of pose estimation as the increase of training
frames.

Furthermore, to mitigate the impact of estimation errors on
potential false matches, we simultaneously estimate the rel-
ative pose between the reference frame and the target frame
from two directions. The inverse matrix for these estimations
is calculated to evaluate the pose error. If the error exceeds a
predefined threshold, the estimation is considered inaccurate
and no subsequent matching is performed.



TABLE I

COMPARISON WITH STATE-OF-THE-ART METHODS

Overlap Boundary
Method P R P P R P
UCN (Pretrained on simulated TOD) | 77.3 522 529 | 541 373 36.0
SD-Mask R-CNN (Fully-supervised) | 88.6 76.7 82.1 | 56.9 50.7 534
UCN (Fully-supervised) 874 948 909 | 776 765 77.0
MVSS (Fully-supervised) 843 870 856 | 70.2 734 715
MVSS (w/o dense loss) 74.6 83.1 785 | 472 495 48.1
MYVSS (Self-supervised) 793 842 81.6 | 534 48.6 50.7
TABLE II

D. Object Segmentation

In this section, we compare our methods with the state-
of-the-art methods on GraspNet-1Billion Dataset. UCN [20]
and SD-Mask R-CNN [17] are both representative methods
for class-agnostic object segmentation, which we train super-
vised on the dataset. As shown in Table I, UCN pretrained on
the simulated dataset TOD significantly degrades on the real-
world dataset GraspNet-1Billion. However, after observing
the RGB-D sequence once without any manual annotation,
our proposed MVSS significantly improves the performance
of the F-measure of UCN (52.9% to 81.6%), even close to
the result of the supervised SD-Mask RCNN (82.1%).

It is worth noting that all supervised methods are trained
on the training set for multiple epochs until convergence,
while the self-supervised MVSS only trains for one epoch.
The best result comes from the fully-supervised UCN while
the fully-supervised MVSS takes the second place. Although
the self-supervised MVSS achieves satisfactory segmentation
results, due to the noises in pseudo-labels, pixel embeddings
produced by MVSS may aggregate around some specific
object parts for some objects. This occasionally leads to
instances of over-segmentation during the subsequent clus-
tering process. For example, objects like bottles might be
split into segments representing the body and cap. How-
ever, MVSS produces consistent segmentation results across
frames. The overall occurrence of the over-segmentation is
largely reduced.

E. Ablation Study

In this section, we perform experiments to analyze the per-
formance of different components of our MVSS framework.
Frame Sampling Gap. Selecting an appropriate sampling
gap is important for multi-view segmentation. A small sam-
pling gap leads to similarities in observations, constrain-
ing the advantages of the multi-view information. On the
contrary, a large sampling gap may result in occlusions of
the scene. The previous object may be occluded from the
current view due to the camera movement. In Table II, We
evaluate the influence of different sampling gaps and find
that a sampling gap of 10 frames produces the best results,
which is used by default for all experiments.

Multi-View Consistency Loss. In our experiments, we
find that the introduced multi-view consistency loss Lj,yss,
which associates the similarity of cross-frame object pairs

EVALUATION OF DIFFERENT FRAME SAMPLING GAPS

Sampling Overlap Boundary
Gap P R F P R F

1 68.7 781 73.0 | 385 451 414
4 713 786 747 | 433 46.8 448
7 732 814 77.0 | 457 487 470
10 793 842 81.6 | 534 48.6 50.7
13 754 819 784 | 4877 50.8 495
16 743 806 773 | 470 49.6 48.1

is crucial in segmentation. Experimental results indicate that
without incorporating the multi-view consistency loss, the
experiments all fail due to the noises in the pseudo-labels.
Here, we provide a more detailed discussion on our proposed
multi-view consistency loss.

The key to the effectiveness of self-supervised contrastive
learning is to learn mutual information from the positive
samples. Anchors are paired with corresponding positive and
negative samples. Positive samples are usually augmented
samples (e.g. SimCLR [5], Moco [6]), cluster means [32], or
embeddings of the corresponding region of the anchor [26].
Negative samples, on the other hand, are other unrelated pairs
randomly sampled from the dataset.

Some approaches such as Swav [32], BYOL [37] and
SimSiam [33] rely solely on positive samples for contrastive
learning and still achieve promising results. The key of these
methods is to ensure a stable correlation between the anchor
and positive samples. The sample positions are adjusted
in the embedding space during iterations, where positive
samples are getting closer to each other. Models trained by
self-supervised contrastive learning can be used as backbone
for downstream tasks and generally have good generalization
performance.

In our method, the object matching pairs obtained by
pixel re-projection and cross-frame object association yield
object pairs with spatial proximity and semantic similarity.
Other object pairs are naturally spatially and semantically
far apart. Despite the initial pseudo-label noises, our multi-
view contrastive learning effectively converges, generating
meaningful feature representations. Combining the pixel-
level and object-level correspondences via pixel re-projection
and cross-frame object association helps improve the effec-
tiveness of positive and negative sample selection, thereby
enabling the segmentation network to converge more effi-
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Examples of the feature maps and segmentation masks obtained by MVSS and UCN pretrained on TOD [20]. It is observed that the pre-trained

UCN yields mis-segmented samples in real-world scenes, even only a few objects can be correctly segmented in some scenes. Incorporating our proposed
MVSS framework, the network is able to utilize multi-view observations for self-supervised feature embedding learning, achieving improved accuracy and

consistency without the need for annotations.

ciently in the embedding space.

Dense Contrastive Loss. We study the effectiveness of
the proposed dense contrastive loss, as shown in Table I.
It is observed in Table I that the integration of the dense
contrastive loss brings improvements on all metrics. Note
that the optimization objective of the dense contrastive loss
is similar to the multi-view consistency loss. Both objectives
aim to push the embeddings of the same objects to be as
close as possible, while keeping the embeddings of different
objects far apart. The improvement of the performance
indicates that fine-grained supervision information is useful
for segmentation task.

Coefficients of Losses. Here we discuss the coefficients of
the four loss functions Ly,.ss, Ldenses Lintra and Lpoge.
The pose estimation network loss Lpese is independent of
the other three terms, the coefficient Apse is set to a fixed
value of 10. Note that L;,, is highly correlated with the
performance of the clustering, we also set the coefficient
Aintra to 10. In experiments, we find that similar results are
obtained when \,,,ss ranges from 0.2 to 0.8. Considering
that Lgense and Lyy,,ss have similar optimization objectives,
we finally set Agense and Ay,yss to the same value of 0.3.

V. CONCLUSIONS

In this paper, we proposed a novel multi-view self-
supervised framework (MVSS) for self-adaptive object seg-
mentation. Through pose estimation and cross-frame ob-
ject association, object-level and pixel-level correspondences

were established to optimize the multi-view consistency.
The spatial consistency of object matching pairs naturally
provides stable positive and negative samples, which pro-
vides robust supervision for contrastive learning, enabling the
network to learn discriminative feature representations and
multi-view consistent segmentations. Experimental results
show that our proposed MVSS achieves performance close
to supervised methods in novel scenes by observing RGB-
D sequences without any human annotations. If we apply
methods such as optical flow, which do not require depth
information to obtain pixel-level correspondences, MVSS
can be utilized to segmentation methods that use only RGB
data. We consider that this self-supervised consistency is also
useful for top-down methods and class-aware segmentation
methods, enabling off-the-shelf segmentation networks to
further improve the performance from multi-view observa-
tions without any human annotation.
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