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A B S T R A C T

Central pattern generators (CPGs) have been widely applied in robot motion control for the spontaneous
output of coherent periodic rhythms. However, the underlying CPG network exhibits good convergence
performance only within a certain range of parameter spaces, and the coupling of oscillators affects the
network output accuracy in complex topological relationships. Moreover, CPGs may diverge when parameters
change drastically, and the divergence is irreversible, which is catastrophic for the control of robot motion.
Therefore, normalized asymmetric CPGs (NA-CPGs) that normalize the amplitude parameters of Hopf-based
CPGs and add a constraint function and a frequency regulation mechanism are proposed. NA-CPGs can realize
parameter decoupling, precise amplitude output, and stable and rapid convergence, as well as asymmetric
output waveforms. Thus, it can effectively cope with large parameter changes to avoid network oscillations
and divergence. To optimize the parameters of the NA-CPG model, a reinforcement-learning-based online
optimization method is further proposed. Meanwhile, a biomimetic robotic fish is illustrated to realize the
whole optimization process. Simulations demonstrated that the designed NA-CPGs exhibit stable, secure, and
accurate network outputs, and the proposed optimization method effectively improves the swimming speed
and reduces the lateral swing of the multijoint robotic fish by 6.7% and 41.7%, respectively. The proposed
approach provides a significant improvement in CPG research and can be widely employed in the field of
robot motion control.
. Introduction

Central pattern generators (CPGs) are originally found in animals as
neural circuit that spontaneously generates rhythmic neural activity
ithout receiving any rhythmic inputs [1,2]. They provide rhythms for
asic movements, such as breathing, digestion, swimming, and walk-
ng. More importantly, CPGs provide interesting features, including
istributed control, the ability to handle redundancy, fast control loops,
nd the ability to modulate motion through simple control signals [3].
hen these properties are converted to mathematical models, CPGs

ecome useful building blocks to control robot motion. Through chang-
ng the simplified parameters of the CPG model, complex and vari-
ble rhythmic signals are easily generated to regulate the multimodal
ocomotion of robots.

Various mathematical CPG models that can generate periodic os-
illation signals to meet the needs of rhythmic movement have been
stablished based on the principles of biological CPGs. The classic CPG
odels can be divided into neuron-based CPG models and nonlinear

scillator-based CPG models. In particular, neuron-based CPG models
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such as the Matsuoka model [4] and the Kimura model [5] have
clear biological significance but involve many complicated parameters
and dynamic characteristic analysis, whereas nonlinear oscillator-based
CPG models such as Kuramoto phase oscillators [6] and Hopf harmonic
oscillators [7] have fewer parameters and mature mathematical ex-
pressions. The essence of an oscillator is a set of coupled differential
equations, usually implemented by numerical computation on a micro-
controller or processor. Most oscillators have a stable output waveform
under the given parameters; thus, when applying CPGs in robot control,
CPG parameters must be set according to the specific control scenario.

Recently, CPGs have been widely applied to legged robots, amphibi-
ous robots, underwater swimming robots, and so on. Fig. 1 illustrates
CPGs applied in various types of robots [8–24]. For legged robots, CPGs
are employed to generate gait control rhythms and then coordinate
the movement of multiple legs. For example, Liu et al. designed a
Matsuoka oscillator-based gait rhythm generator to produce the walk-
ing patterns of biped robots, the parameters of which were tuned to
achieve flexible trajectories [9]. Li et al. developed a ring-type CPG
model using a Hopf oscillator for a new type of hexapod robot with
ttps://doi.org/10.1016/j.birob.2022.100075
eceived 29 July 2022; Received in revised form 6 September 2022; Accepted 19 S
vailable online 7 October 2022
667-3797/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Shandon
http://creativecommons.org/licenses/by-nc-nd/4.0/).
eptember 2022

g University. This is an open access article under the CC BY-NC-ND license

https://doi.org/10.1016/j.birob.2022.100075
https://www.elsevier.com/locate/birob
http://www.elsevier.com/locate/birob
http://crossmark.crossref.org/dialog/?doi=10.1016/j.birob.2022.100075&domain=pdf
mailto:zhengxing.wu@ia.ac.cn
https://doi.org/10.1016/j.birob.2022.100075
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Tong, C. Qiu, Z. Wu et al. Biomimetic Intelligence and Robotics 2 (2022) 100075
Fig. 1. Applications of CPGs in robotics.
a four-bar linkage mechanism [8]. The designed CPG network outputs
stable and smooth signals with steady phase relationships, achieving
smooth robot walking under the triangular gait mode. Fukui et al.
verified the effectiveness and practicability of vestibular feedback to
CPGs employed for the locomotion of quadruped robots [11]. As for
amphibious robots, switching between gaits under different modes
is achieved by CPGs with smooth transition characteristics. Ijspeert
et al. proposed a CPG model for an amphibious salamander-like robot,
which is composed of 20 amplitude-controlled phase oscillators and
outputs the desired joint angle position [13]. Yan et al. designed a
navigation and crawl underwater unmanned vehicle (NCUUV) and
studied a smooth switching strategy for two motion modes based on
CPGs [15]. Specifically, the CPG network has two configurations, a
triangular fully symmetrical network and a hexagonal fully symmetrical
network, which control the swimming and crawling of the NCUUV,
respectively, and are switched according to the instructions of the upper
controller. Similarly, CPGs play an important role in the coordinated
flapping of multiple fins of biomimetic swimming robots [16–18]. Wu
et al. realized the coordinated motion control of the multiple joints of
the robotic dolphin based on CPGs [20]. Xie et al. developed improved
CPGs for wire-driven robotic fish that has two special parameters, a
time ratio and a shape parameter, to adjust the frequency of four
flapping stages and the shape of rhythmic signals [19].

In addition, CPGs are used for performance evaluation, optimiza-
tion, and redundancy/fault tolerance control of robots. For example,
CPG parameters are used to analyze the energy performance of a
miniature robotic fish and help optimize energy consumption [23].
Furthermore, rhythm control based on parametric CPGs can effectively
improve locomotion performance based on mathematical optimiza-
tion methods. Alessandro et al. adopted a gradient-free optimization
method and Powell’s method to improve the CPG-governed locomo-
tion controller [14]. The feedback information can also be utilized to
make the robot withstand external disturbances, while the feedforward
compensator speeds up the convergence of the overall control sys-
tems [18]. Although CPGs are widely applied in robot motion control,
the existing CPG models do not fully satisfy the requirements for the
actual use cases of robots. First, CPG-based locomotion control relies
more on empirical testing and requires a certain amount of time and
effort. Second, the CPG network parameters (learning rate, coupling
coefficient, etc.) greatly impact the convergence of the network and
2

the cooperative movement of multiple joints. Third, in recent years,
CPG networks have been widely studied in terms of locomotion learn-
ing and intelligent control [25,26]. During locomotion learning, CPG
networks often output violent oscillations or even divergence due to
large changes in parameters (i.e., amplitude and frequency), making it
difficult to cope with parameter uncertainty when applied in intelligent
control algorithms, such as reinforcement learning, and it is difficult to
transition between parameters smoothly and safely.

In this work, to realize smooth gait transition during the modifi-
cation of CPG parameters and further improve the diversity of gait
control and CPG stability under the intelligent learning framework,
an improved CPG network, namely normalized asymmetric CPGs (NA-
CPGs), is proposed. Specifically, the improvements are concluded in
three aspects: First, the Hopf-based CPG network is normalized to
improve the network’s tracking accuracy of the set amplitude. Second,
a constraint function is added to limit the abrupt mutation of the
oscillator to transition smoothly between different parameters and thus
improve network stability. Finally, an adjustment parameter is added
to change the network frequency to realize asymmetric rhythmic out-
put and in turn, increase network diversity. Furthermore, to optimize
CPG parameters, a reinforcement-learning-based online optimization
method for a multijoint robotic fish is proposed for stable forward
high-speed swimming. Simulations and experiments proved that the
proposed NA-CPGs provide a stable, accurate, and adjustable rhyth-
mic output. Meanwhile, the online optimization method for NA-CPGs
achieved obvious performance improvements demonstrated by a 6.7%
increase in the swimming speed and a 41.7% reduction in the lateral
oscillations of the robotic fish. The proposed method offers high control
accuracy and stability and can be applied in robot motion control.

The remainder of this paper is structured as follows: The normalized
asymmetric CPG model is proposed in Section 2. Section 3 introduces
the online optimization method based on NA-CPGs in detail. Results
and analyses are discussed in Section 4. Finally, concluding remarks
are provided in Section 5.

2. Normalized asymmetric CPGs

In nature, biological nerve centers can produce rhythmic signals to
maintain normal activities, such as walking, swimming, and breathing.
With the development of bionic engineering, CPGs capable of pro-
ducing rhythmic signals have been increasingly applied to construct
locomotion controllers for bionic robots.
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Fig. 2. Unexpected conditions of original Hopf-based CPGs. (a) Output oscillations caused by a large learning rate. (b) Slow convergence caused by a small learning rate. (c)
Spikes caused by drastic changes in CPG parameters. (d) Divergence caused by drastic changes in CPG parameters.
2.1. Hopf-based CPG model

Existing CPG networks are constructed via nonlinear oscillations,
including the Kuramoto phase oscillator and the Hopf oscillator. Bene-
fiting from a stable limit cycle, the Hopf oscillator can quickly converge
under an appropriate learning rate, 𝛼. The original Hopf-based CPG
model is expressed as follows:
[
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(1)

where 𝑖 refers to the biological neuron, 𝑥𝑖 and 𝑦𝑖 are CPG outputs,
𝑟2𝑖 = 𝑥2𝑖 + 𝑦2𝑖 , 𝛼 denotes the learning rate, 𝛥𝛽𝑖𝑗 is the phase difference
between neuron 𝑖 and neuron 𝑗, 𝜔𝑖 indicates the angular frequency,
𝐴𝑖 is the amplitude, d𝑡 is the control period, and ℎ is the coupling
coefficient.

Using the original CPG model, only symmetric signals can be gen-
erated. However, in nature, asymmetric motion is widespread and
indispensable. Therefore, this CPG model cannot effectively reflect all-
real nervous control signals. As for bionic robots, single output signals
of the CPG model greatly limit performance improvement and the
exploration of motion modes. Besides, the optimal learning rate 𝛼 often
does not have the same value under different amplitudes in the original
CPG model. If both 𝛼 and amplitudes are large, the outputs oscillate
strongly, as shown in Fig. 2(a). On the contrary, if they are both
small, the outputs converge slowly, as shown in Fig. 2(b). Obviously,
3

the optimal learning rate of the CPG network should not be fixed.
In addition, when the CPG parameters (frequency or amplitude) are
changed sharply, the oscillator may produce a large �̇�𝑖 and �̇�𝑖 for
quickly converging, leading to a bad spike, even divergence, for the
joint angle curve of the robot, as shown in Figs. 2(c) and 2(d).

2.2. Normalized asymmetric CPGs

To cope with the problems mentioned above, we propose an up-
dated NA-CPG model, i.e., Eqs. (2)–(6), which has a single-chain topol-
ogy, as shown in Fig. 3. Generally, two strategies are applied to obtain
stable and multimodal rhythmic outputs. First, the oscillator amplitude
is normalized to unit 1, and a constraint function is added to improve
the stability and precision of CPGs. Second, an asymmetric parameter
is utilized to adjust the velocity of the limit cycle at different positions
to generate asymmetric signals. More details are introduced in the
following:

[
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Fig. 3. The single-chain topology of NA-CPGs.

[

𝑥𝑖
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]

=
[

𝑥𝑖
𝑦𝑖

]

+
[

�̇�𝑖
�̇�𝑖

]

d𝑡 (5)

𝜃𝑖 = 𝐴𝑖 × 𝑦𝑖 (6)

where 𝑖 refers to the biological neuron (𝑖 = 1,… , 𝑛), 𝑥𝑖 and 𝑦𝑖 are NA-
PG outputs, whose amplitudes are set to 1, 𝛼 is the learning rate,
2
𝑖 = 𝑥2𝑖 + (𝑦𝑖 − 𝑏𝑖)2, 𝐴𝑖 is the amplitude, 𝜃𝑖 is the output angle, 𝑏𝑖 is the
ffset ratio of the rhythmic signals, 𝛥𝜑𝑖𝑗 is the phase difference between
and 𝑗, 𝜔𝑖 is the angular frequency, 𝜁𝑖 is the adjustment parameter, d𝑡

s the control period, and ℎ is the coupling coefficient.
The stability and precision of the CPG network are effectively

mproved owing to amplitude normalization. Since the amplitude is
ormalized to unit 1, the gain should be compensated in the following
alculation of the control angles, as shown in (6). Note that if the
mplitudes are suddenly modified, the system states 𝑥𝑖, 𝑦𝑖 must be
ivided by the old amplitudes, which indicates that the initial position
f the limited cycle of Hopf oscillators is altered. Thereafter, the new
alue can be assigned to the amplitude. Thus, CPGs can generate
mooth control signals even if the amplitude parameters are modified.
o constrain �̇�𝑖 and �̇�𝑖, a constraint function, CF

(

𝑤𝑖
)

, is employed,
s illustrated in (4). It is fitted by the maximum values of �̈�𝑖 and �̈�𝑖
t different angular frequencies. Meanwhile, an adjustment parameter,
𝑖, is applied to obtain asymmetric rhythmic signals, which can be
alculated by (3). Note that 𝜁𝑖 only changes the velocity of the limit
ycle at different positions but not the trajectory of the limit cycle.
hen ℎ𝑎,𝑖 is positive, the extra acceleration is applied when �̇�𝑖 > 0,

nd the extra deceleration is applied in the other phase. Thus, with
he acceleration and deceleration in different phases, the output of
A-CPGs becomes asymmetric. Since the acceleration and deceleration
f the limit cycle are symmetric, the outputs of NA-CPGs can remain
onstant in frequency and amplitude steadily. In this way, the pro-
osed NA-CPGs can achieve different speeds in one period, and the
egree of the asymmetric oscillation can be adjusted by ℎ𝑎,𝑖. Combined
ith the structural improvement and the asymmetric parameter, the
eveloped NA-CPGs can produce stable and diverse rhythmic signals.
n conclusion, the NA-CPGs have the following characteristics:

(1) The optimal learning rate matching unit amplitude can ensure
the transition of CPGs to the next convergence state as quickly
as possible when other parameters are modified.

(2) The error between the actual and set amplitudes can be kept
within a fixed range through adjusting the learning rate.

(3) The constraint function ensures a smooth transition even when
the parameters change drastically.

(4) The adjustment parameter 𝜁𝑖 can regulate the velocity of the
limit cycle at different positions to generate asymmetric rhyth-

mic signals.
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Fig. 4. Fully-connected NA-CPGs topology.

2.3. Matrix form of NA-CPGs

When performing numerical calculations, we take the matrix form
of NA-CPGs. The matrix form of NA-CPGs has higher computational
efficiency and is more advantageous in numerical calculations, espe-
cially in large-scale intelligent algorithms. To universalize the NA-CPG
model, we propose the following fully connected mathematical model
of NA-CPGs (Fig. 4) and establish a matrix form to be widely applied
to robot motion control. Assuming there are 𝑛 joints, i.e., 𝑛 oscillators,
he phases of each oscillator are 𝜑1, 𝜑2, ..., 𝜑𝑛, and the 𝛥𝜑𝑖𝑗 in the
oupling term is 𝜑𝑖−𝜑𝑗 . The coupling term is obtained by the weighted
uperposition of the membrane potential and the adjustment potential
f all oscillators connected to the 𝑖th oscillator at the sine and cosine
alues of the phase difference. The analysis of the 𝑖th oscillator is as
ollows:

�̇�𝑖
�̇�𝑖

]

= 𝐾
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𝑥𝑖, 𝑦𝑖
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, 𝑖 = 1, 2,… , 𝑛 (7)

where
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(8)
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, 𝛥𝜑𝑖𝑗 = 𝜑𝑖 − 𝜑𝑗 (9)

𝑟2𝑖 = 𝑥2𝑖 + 𝑦2𝑖 (10)

For the oscillator itself, 𝛥𝜑𝑖𝑖 = 0, 𝑅𝑖𝑖 =
[

1 0
0 1

]

, the polynomials to

the right of (7) are merged to give the matrix form of NA-CPGs:
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2.4. Selection of inherent network parameters

Generally, CPG networks have two types of parameters: inherent
parameters and adjustable parameters. Inherent parameters such as
learning rate, coupling rate, and time interval, which are generally set
to fixed values. Adjustable parameters related to the output rhythm,
such as frequency, amplitude, and phase relationship, which are gener-
ally changed with the mode of motion. Inherent parameters are critical

to the dynamic performance of the CPG network. For example, the
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Fig. 5. Experimental platform. (a) Prototype of the robotic fish. (b) Coordinate systems of the robotic fish.
earning rate affects the vibration speed. The larger the learning rate
s, the faster the vibration. However, if the learning rate is too large,
he oscillator may become unstable. As mentioned above, the proposed
A-CPGs enhance network adaptability to parameter changes at a

ixed optimal learning rate owing to amplitude normalization. Notably,
he network can also realize performance optimization by adjusting
nherent parameters, e.g., learning rate, in the absence of amplitude
ormalization.

Time interval also impacts the numerical calculations of CPGs. The
maller the interval is, the smoother the output rhythm is. As the time
nterval decreases, the learning rate can be increased appropriately, and
he network can converge to a stable rhythmic output more quickly. In
he proposed NA-CPGs network, the time interval is set to 0.01 s, and
orrespondingly, the learning rate is set to 30 because the time interval
f 0.01 can meet the computing requirements of CPG networks at high
requencies, and it can be easily obtained from the timer peripherals in
he STM32 chip.

The amplitude of CPGs’ output is precise relative to the set value
n a single Hopf oscillator or in the condition that all oscillators have
he same amplitude in a multi-oscillator-coupled CPG system. However,
hen oscillators have different amplitudes, the amplitudes of rhythmic
utputs are affected by phase coupling and deviate from the set am-
litude. There are two ways to address the effect of strong coupling
etween joints on the output amplitude: One is to weaken the coupling
erm and the interaction between the joints; however, this method
eeds to compensate for the amplitude, and the output accuracy of
he amplitude cannot be guaranteed. The other is to normalize the
mplitude in topological coupling and gain the desired amplitude at the
utput rhythm so that all oscillators have the same amplitude of 1; this
ethod reduces the influence of the coupling term on the amplitude

nd is adopted in NA-CPGs.
In summary, the normalized network greatly weakens the coupling

etween adjustable parameters and inherent parameters so that the net-
ork obtains optimal convergence performance under fixed inherent
arameters, more smoothly copes with random changes in adjustable
arameters, and more robustly adapts to different combinations of
otion parameters.

. Online optimization method based on NA-CPGs

In this section, we propose an online optimization method for
he constructed NA-CPGs to improve the motion performance of the
eveloped robot. In particular, a multijoint robotic fish is illustrated
s the optimization object. In the following, a robotic fish platform is
irst built based on the hydrodynamic analysis. Subsequently, in the
onstructed robotic environment, an optimization algorithm based on
einforcement learning is proposed to improve the speed performance

f the robotic fish.

5

3.1. Robotic fish platform setup

The employed robotic fish was developed in our previous work [27],
which consisted of a four-joint tail, a hard-shelled head, and two
pectoral fins with 2 degrees of rotational freedom. Its mechanical
structure and prototype are illustrated in Fig. 5(a), and the tail joints
are driven by four servomotors. The control signal comes from a STM32
microcontroller, which obtains the motion information of the robotic
fish from an IMU module and a depth sensor and communicates with
the experimental console through the radio frequency module. This
robotic fish can not only obtain comprehensive sensor information but
also swim flexibly with the cooperation of the tail joints. The real-time
communication and control capabilities enable online optimization.

Considering the multijoint robotic fish as a multilink mechanism,
the head speed can be calculated by the Newton–Euler equation using
the kinematic analysis, and the kinematic data of each tail joint are
calculated by the converting matrix of the coordinate system of the
multilink. The recursive relationship of the velocity vector is built as
follows:

𝑽 𝑖 =
[

𝑼 𝑖
𝜴𝑖

]

= 𝑯 𝑖
𝑖−1𝑽 𝑖−1 + �̇�𝑖𝑲 𝑖,

𝑯 𝑖
𝑖−1 =

[

𝑹𝑖
𝑖−1 𝑹𝑖

𝑖−1𝑷
𝑖
𝑖−1

03×3 𝑹𝑖
𝑖−1

]

,𝑲 𝑖 =
[

𝟎3×1
𝒌𝑖

]

𝑹𝑖−1
𝑖 =

⎡

⎢

⎢

⎣

cos 𝜃𝑖 − sin 𝜃𝑖 0
sin 𝜃𝑖 cos 𝜃𝑖 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑷 𝑖−1
𝑖 =

⎡

⎢

⎢

⎣

𝑙𝑖−1
0
0

⎤

⎥

⎥

⎦

(13)

where 𝑯 𝑖
𝑖−1, 𝑹

𝑖−1
𝑖 and 𝑷 𝑖−1

𝑖 are the converting matrix, rotation matrix,
and position vector, respectively; 𝑽 𝑖 is the 𝑖th joint’s velocity vector; 𝜃𝑖
is the 𝑖th joint angle; 𝒌𝑖 is the vertical upward unit vector at each joint.

With regard to dynamic analysis, the thrust of the robotic fish is
mainly generated at the last joint of the tail. The force can be converted
forward in turn through the coordinate system converting matrix of
the multilink, and finally, the force of the head can be obtained. Thus,
the kinematic data such as speed and attitude can be computed by the
Newton–Euler law. The recurring relationship of the interaction forces
between adjacent joints is as follows:

𝑮𝑖
𝑖+1,𝑖 = 𝑯 𝑖

𝑖+1𝑮
𝑖+1
𝑖+1,𝑖 = 𝑯 𝑖

𝑖+1𝑮
𝑖+1
𝑖,𝑖+1 (14)

where 𝑮𝑘
𝑖,𝑗 is the representation of the force of the 𝑖th joint on the 𝑗th

joint in the 𝑘th joint coordinate system.
The force analysis of each joint is obtained based on hydrodynamic

theory [28]. Each joint is mainly subject to lift 𝑳𝑖 and drag 𝑫𝑖 of
the tail fin, additional mass forces 𝒇 𝑎𝑑,𝑖, resistance 𝒇 𝑑𝑟,𝑖 from water,

Corioli forces, and conceding forces 𝜸𝑖. According to the Newton–Euler
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Fig. 6. Schematic diagram of data flow in the robotic fish environment.
equation, the relationship between the force and the acceleration of the
joints is as follows:

𝑮𝑖
𝑖−1,𝑖 −𝑮𝑖

𝑖+1,𝑖 +𝑳𝑖 +𝑫𝑖 + 𝒇 𝑎𝑑,𝑖 + 𝒇 𝑑𝑟,𝑖 = 𝑴 𝑖𝑽 𝑖 + 𝜸𝑖 (15)

where 𝒇 𝑎𝑑,𝑖 = −𝑴𝑎𝑑,𝑖𝑽 𝑖−𝜸𝑎𝑑,𝑖; 𝒇 𝑎𝑑,𝑖 is the additional mass force of each
joint; 𝜸𝑎𝑑,𝑖 is the Corioli force and conceding force caused by additional
mass.

The speed is recursive from the head to the tail, and the force is
recursive from the tail to the head. In the head, the speed and the force
are connected by (13)–(15) so that the explicit dynamic equation is
obtained as follows:

�̇�0 = −

[ 𝑛
∑

𝑖=0

(

𝐇0
𝑖
(

𝐌𝐢 +𝐌𝑎𝑑,𝑖
)

𝐇𝑖
0
)

]−1

[ 𝑛
∑

𝑖=1
𝐇0

𝑖
(

�̇�𝑖
𝑖−1𝐕𝑖−1 + �̈�𝑖𝐊𝑖

)

𝑛
∑

𝑗=𝑖
𝐇𝑖

𝑗
(

𝐌𝑗 +𝐌𝑎𝑑,𝑗
)

𝐇𝑗
𝑖

−
𝑛
∑

𝑖=0
𝐇0

𝑖
(

𝐋𝑖 + 𝐃𝑖 − 𝛾𝑎𝑑,𝑖 − 𝛾𝑖 + 𝐟𝑑𝑟,𝑖
)

]

(16)

Note that the hydrodynamic parameters in the model were obtained
by performing aquatic experiments, and more details on the dynamic
model can be found in [17].

To clearly demonstrate the relationship between the robotic fish
platform and the optimization algorithm for NA-CPGs, the calculation
process and data flow are summarized, as shown in Fig. 6. Until now,
the multijoint robotic fish environment has been established.

3.2. Optimization algorithm based on reinforcement learning

The optimization algorithm is used to build an original RL-Agent
for the adaptive update of NA-CPG parameters and then obtain a set
of optimized NA-CPG parameters. Owing to the deep network’s ability
to fit complex functions, the learning problem in a multi-dimensional
action space can be solved based on a deep Q network (DQN) method.
In this work, a six-layer neural network was designed to serve as an
approximator of the action value 𝑄 function. For the multijoint robotic
fish environment, the action space can be constrained by the prior
knowledge of NA-CPG parameters, and the globally optimal NA-CPG
parameters can be recorded throughout the training process to reset
the NA-CPG parameters in the next episode. Prior knowledge and global
data can improve the convergence speed of training to a certain extent.

The learning algorithm involves the following five aspects:

• Action space. It is composed of 15 discrete actions. In detail,
8 actions control the increase or decrease of the amplitude of
four-joint angles, 6 actions control the increase or decrease of
the phase difference between the four joints, and the last action
does not change any CPG parameter. The execution of the action
is based on the prior knowledge of the CPG parameters of the
robotic fish system. The prior knowledge is reflected in that the
amplitude of each joint increases from front to back and that
the phase differences between the joints are positive, that is,
the phase of the next joint is behind the previous joint. Due to
mechanical limits, the effective amplitude range is set to [0, 60◦],
and the phase difference range is set to [0, 60◦]. A nonzero
exploration rate 𝜀 is configured to accelerate the exploration of

the action space.

6

• State space. It is an 8 × 1 vector, as shown in (17). 𝑉 𝑥 is the
average speed in one period after the speed stabilizes.

𝑆𝑡𝑎𝑡𝑒 =
[

𝑨4×1,𝜟𝝋3×1, 𝑉 𝑥

]

(17)

• Reward function. Its design is related to the expected swimming
performance. The desired performance in this work was high
swimming speed and small head swing. The small head swing
is reflected in the small fluctuation range of the lateral velocity.
As a result, the reward function was designed using the forward
speed 𝑉𝑥 and the speed interval 𝑉𝑟𝑎𝑛𝑔𝑒 in one period. After sev-
eral attempts, a feasible reward function was designed as (18).
The reward function consists of two parts, i.e., kinetic energy
reward and fluctuation range penalty, respectively. 𝑎 and 𝑏 are
the weights of the two parts.

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑎 × 𝑉
2
𝑥 − 𝑏 × 𝑉𝑟𝑎𝑛𝑔𝑒 (18)

• Termination condition. It is mainly determined by two factors.
The one is the maximum executions. It is expected that the trained
agent can obtain optimized parameters within 30 executions of
the action. The other one is the abnormal condition. It is never
expected that the forward speed is negative. Therefore, when the
speed reaches a negative value, a large penalty is given, and
consequently, the episode ends.

• Environment reset. When the environment is reset, the CPG
parameters are reset with the recorded global optimal ones, which
are used as the initial state of the next episode, effectively speed-
ing up training.

4. Results and discussion

In this section, the results of the experimental work conducted to
validate the improved performance of the designed NA-CPGs model and
the effectiveness of the proposed online optimization method.

4.1. Testing on the performance of NA-CPGs

The first simulation focuses on the diversity and stability of the
developed NA-CPG model. By adjusting some key parameters, the NA-
CPGs can output various control rhythmic signals for the robot. For
example, ℎ𝑎 decides the asymmetry of the output rhythmic signals.
Fig. 7(a) shows the asymmetric oscillation pattern of the NA-CPGs
under different ℎ𝑎. The output signals have a symmetric pattern when
ℎ𝑎 = 0; however, when ℎ𝑎 is 0.4, the signals obviously become asym-
metric. These asymmetric control signals are very important for robotic
control. As for the robotic fish, high flapping speed can generate a large
hydrodynamic force to swim. When tail flapping becomes asymmetric,
the asymmetric force acts on the robotic fish to improve its steering
ability. Besides, the developed NA-CPGs have superior accuracy and
stability. Relying on an appropriate learning rate, the error between
the actual amplitude and the set amplitude can be kept within a fixed
range. By adjusting the learning rate according to control requirements,
the error magnitude can be controlled. As shown in Fig. 7(b), in the case
of 𝛼 = 30, the amplitude error is only (1.053 − 1)÷1 ≈ 5.3%. Based on the
experiments under different parameters, the statistical value of the am-

plitude error is 4.85%(±3.14%). In the case of the normalized amplitude,



R. Tong, C. Qiu, Z. Wu et al. Biomimetic Intelligence and Robotics 2 (2022) 100075

t
t
p
d
i
c
g
c
a

s
ℎ
r
s
o
t
t
m
a

4

A
C
f

Fig. 7. Output characteristics of the NA-CPG model. (a) Asymmetric output. (b) Precise rhythmic output. (c) Smooth outputs of NA-CPGs with parameter variation.
he optimal learning rate matching unit amplitude is selected to ensure
hat CPGs can be transited to the next convergence state as quickly as
ossible when the CPG parameters are modified. When dealing with
rastically changing network parameters, NA-CPGs behave as shown
n Fig. 7(c). NA-CPGs have a smooth transition when the parameters
hange significantly, offering two benefits: The smooth output rhythm
reatly improves the control safety of the robot’s end, and NA-CPGs
an still ensure a stable output of the control signal when applied to
lgorithms with black boxes, such as reinforcement learning.

Fig. 8 shows the comprehensive performance of NA-CPGs. Within 12
of decreasing the frequency 𝜔, adjusting the asymmetric parameters
𝑎, increasing the amplitude 𝐴2, setting the offset parameters 𝑏, and
educing the phase difference 𝛥𝜑12 sequentially, the curve can all be
moothly and quickly transitioned. In the outputs of multiple coupled
scillators, the amplitude of each joint is maintained at the set value,
he offset and asymmetric settings can be smoothly implemented, and
he change of phase difference can be easily achieved. The rhyth-
ic outputs of the comprehensive experiment verified the stability,

ccuracy, safety, and diversity of NA-CPGs.

.2. RL-based online optimization of the robotic fish

Within the algorithm framework presented in Section 3, the RL-
gent was trained. According to previous experiences, the initial NA-
PG parameters were set to 𝑨 = [10, 15, 20, 25], 𝜟𝝋 = [30, 15, 15]. The

requency of NA-CPGs was a fixed value, 2𝜋 rad∕s, that is, the tail
flaps once per second. The weight 𝑎 and 𝑏 were set to 200 and 100,
respectively. The exploration rate 𝜀 was set to 0.1.

After training for 60 episodes, the training curve was converged,
as shown in Fig. 9(a). From the convergence curve, after training 30
episodes, the original RL-Agent and optimized NA-CPGs parameters
were obtained.

To highlight the effects of the optimized NA-CPG parameters, the
initial parameters before training and the optimized parameters after
7

training were used to control the robotic fish. The curves of forward
speed under two sets of parameters are illustrated in Fig. 9(b). The blue
curve is the speed under the initial parameters, while the red curve is
the speed under the optimized parameters. At 1 Hz, the forward speed
increased from 0.30 m∕s to 0.32 m∕s and the head swing amplitude
reduced from 0.24 m∕s to 0.14 m∕s, verifying the effectiveness of the
optimization algorithm. After obtaining the RL-Agent, we can load
the RL-Agent on the robotic fish. The RL-Agent no longer needs the
exploration of random actions; thus, the 𝜀 is set to zero. The optimized
NA-CPG parameters are used as the initial parameters of the robotic
fish. The RL-Agent can optimize the parameters online through the
sensor data and improve its intelligence. Through online learning dur-
ing swimming, the robotic fish gradually learns to adjust tail flapping
parameters more robustly. As a result, irrespective of the environment
the robotic fish swims in, the optimized parameters can be used as the
initial parameters.

The optimization algorithm is not limited to the swimming speed
performance. By designing appropriate reward functions according to
the intended performance, the optimization algorithm based on NA-
CPGs can be adopted for other tasks, such as high acceleration, fast
turning, and high energy efficiency, to name a few.

5. Conclusions and future work

Based on the classic Hopf-based oscillator, we proposed a novel
rhythm generator, NA-CPGs, which normalized the network amplitude
and added a constraint function and adjustment parameters. In par-
ticular, normalized networks set the optimal learning rate to obtain
better convergence performance and more accurate amplitude output.
The constraint function ensured a safe and smooth transition of the NA-
CPGs when the network parameters were switched, improving system
stability. Meanwhile, the adjustment parameters provided asymmetric
factors for the network, increasing the diversity of the network. Based
on the proposed NA-CPGs, we designed an online NA-CPGs parameter
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Fig. 8. Comprehensive performance of NA-CPGs, where 𝐴1 = 8, 𝐴3 = 15, 𝛥𝜑12 = 𝜋∕2.
Fig. 9. Results of the optimization methods. (a) Plot of training convergence curve. (b) Speed performance comparison under NA-CPG parameters before and after training. Note:
𝑉𝑥 is along the direction of 𝑥𝜔, the forward swimming speed of the robotic fish. 𝑉𝑦 is along the axis 𝑦𝜔, and the range of 𝑉𝑦 refers to the 𝑉𝑟𝑎𝑛𝑔𝑒 in formula (18).
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R

ptimization method based on reinforcement learning for a biomimetic
obotic fish to improve its swimming performance, and trained an
nline optimizer that can adjust NA-CPG parameters. The simulation
esults proved that NA-CPGs can generate a stable, diverse, and safe
hythmic output, and the intelligent optimization method for NA-
PGs improves the swimming speed (6.7%), reduces the lateral swing
41.7%), and optimizes the motion control of the robotic fish.

In the future, we will expand the output waveform of NA-CPGs and
onduct optimization training based on NA-CPGs to improve steering
aneuverability, etc., and further verify the effectiveness of optimiza-

ion in actual experiments.
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