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Abstract

Sign Language Translation (SLT) is a challenging task
due to its cross-domain nature, involving the translation
of visual-gestural language to text. Many previous meth-
ods employ an intermediate representation, i.e., gloss se-
quences, to facilitate SLT, thus transforming it into a two-
stage task of sign language recognition (SLR) followed
by sign language translation (SLT). However, the scarcity
of gloss-annotated sign language data, combined with the
information bottleneck in the mid-level gloss representa-
tion, has hindered the further development of the SLT
task. To address this challenge, we propose a novel Gloss-
Free SLT based on Visual-Language Pretraining (GFSLT-
VLP), which improves SLT by inheriting language-oriented
prior knowledge from pre-trained models, without any
gloss annotation assistance. Our approach involves two
stages: (i) integrating Contrastive Language-Image Pre-
training (CLIP) with masked self-supervised learning to
create pre-tasks that bridge the semantic gap between vi-
sual and textual representations and restore masked sen-
tences, and (ii) constructing an end-to-end architecture with
an encoder-decoder-like structure that inherits the param-
eters of the pre-trained Visual Encoder and Text Decoder
from the first stage. The seamless combination of these
novel designs forms a robust sign language representation
and significantly improves gloss-free sign language trans-
lation. In particular, we have achieved unprecedented im-
provements in terms of BLEU-4 score on the PHOENIX14T
dataset (≥+5) and the CSL-Daily dataset (≥+3) com-
pared to state-of-the-art gloss-free SLT methods. Further-
more, our approach also achieves competitive results on
the PHOENIX14T dataset when compared with most of the
gloss-based methods1.

*Benjia Zhou and Zhigang Chen contributed equally to this paper.
†Corresponding author.
1https://github.com/zhoubenjia/GFSLT-VLP

Sign Language 
Video

NACH
(after)

Mid-level 
representation: 

Gloss

und dazu kommt nachmittags dieser starke südwind .
(and then there is this strong southerly wind in the 

afternoon.) 

Sign Language 
Sentence

SLR

SLT

MITTAG 
(midday)

STARK
(strong)

WEHEN
(blow)

(a) Gloss-based approach.

Sign Language 
Video

Language-oriented
visual representation

und dazu kommt nachmittags dieser starke südwind .
(and then there is this strong southerly wind in the 

afternoon.) 

Sign Language 
Sentence

SLT

(b) Gloss-free approach (ours).

Figure 1: Comparison of Two SLT Approaches:
(a) incorporating gloss sequences as intermediates, e.g.,

Sign2Gloss2Text (directly) and Sign2Text (indirectly), and

(b) excluding gloss information throughout the training and

inference process.

1. Introduction
Sign language is the main medium of communication

among deaf people. To facilitate effective communica-

tion with hard-of-hearing people, developing Sign Lan-

guage Translation (SLT) techniques is a promising direc-

tion. SLT refers to translating sign language into fluent

spoken language sentences, which is more challenging than

traditional Natural Machine Translation (NMT) due to its
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cross-domain translation nature and the scarcity of anno-

tated data.

Recently, a growing body of literature [4, 41, 11, 6, 5]

has promoted the SLT by directly or indirectly employ-

ing the intermediate representations, namely sign glosses.

Gloss is a simplified representation of each sign language

in continuous video as illustrated in Figure 1a. Although

gloss-based methods have significantly improved the SLT

performance compared to end-to-end gloss-free approaches

(as illustrated in Figure 1b), the former still suffers from

the following problems: (i) annotating glosses is a labor-

intensive task, which requires fine-grained alignment and

labeled by specialists, significantly constraining the scala-

bility of gloss-based SLT methods and (ii) the gloss-based

approach introduces an information bottleneck in the mid-

level gloss representation [4], which limits the network’s

ability to understand sign language as the translation model

can only be as good as the sign gloss annotations it was

trained from.

Drawing inspiration from CLIP [29], which utilizes nat-

ural language supervision for image representation learn-

ing, we discovered that learning language-indicated visual

representation from sign language videos is an effective pre-

training task for SLT as it establishes a potential connection

between visual signs and language context. However, di-

rectly applying CLIP to SLT faces two challenges: (i) it

lacks the ability to jointly pretrain the Visual Encoder and

Text Decoder for SLT, and (ii) sufficient SLT data is neces-

sary for this pretraining task. To address these obstacles, we

must answer two key questions: (i) how can we efficiently

perform joint pretraining using the limited SLT dataset? and

(ii) how can we ensure that the pretrained model offers the

most effective assistance for the downstream SLT task?

To overcome the first challenge, we present a solution

that operates at both the algorithmic and data levels. Al-

gorithmically, we introduce a fresh pre-training approach

known as VLP (Visual-Language Pretraining), shown in

Figure 2a, which combines masked self-supervised learning

with CLIP. Specifically, we design a pretext task that aligns

visual and textual representations in a joint multimodal se-

mantic space, guiding the Visual Encoder to learn language-

indicated visual representations. Meanwhile, we incorpo-

rate masked self-supervised learning into the pre-training

process to help the Text Decoder to capture the syntactic

and semantic properties of sign language sentences. At the

data level, we investigate a set of strong data augmentation

techniques for sign videos to increase the diversity of visual

data. This aspect has often been overlooked in previous SLT

techniques.

To cope with the second aspect, as depicted in Figure 2b,

we design an end-to-end Gloss-Free SLT architecture re-

ferred to as GFSLT. This architecture takes the form of an

encoder-decoder structure and inherits parameters from the

pre-trained Visual Encoder and Text Decoder of the initial

phase. GFSLT allows us to directly transform visual repre-

sentations into spoken sentences without needing any inter-

mediate steps or guidance. Furthermore, unlike alternative

methods [4, 42, 5] that solely fine-tune the spatial feature

extractor (visual embedding module) in the Visual Encoder,

we fine-tune both the spatial feature extractor and the tem-

poral relationship modeling network (Transformer encoder)

as a unified whole.

In summary, the main contributions are listed:

• In this work, we have achieved unprecedented im-

provements in the BLEU-4 score for SLT with-

out using gloss annotations. Specifically, compared

with state-of-the-art gloss-free SLT methods, our

method has got ≥+5 and ≥+3 improvements on the

PHOENIX14T dataset and CSL-Daily dataset, respec-

tively. We believe that these improvements represent a

significant breakthrough in the task of gloss-free SLT.

• To the best of our knowledge, this is the first attempt to

introduce the VLP strategy to align visual and textual

representations in a joint semantic space in the gloss-

free SLT task.

• We propose a novel pre-training paradigm that incor-

porates masked self-supervised learning together with

contrastive language-image pre-training to facilitate

the gloss-free SLT task. This approach represents a

significant improvement over previous methods and

has the potential to greatly enhance the accuracy and

efficiency of SLT systems.

2. Related Works
Generally speaking, there are two methods for Sign Lan-

guage Translation (SLT), namely, gloss-based and gloss-

free. Before briefly surveying works along these two di-

rections, we first introduce the Sign Language Recognition

(SLR) task as it is an essential step for gloss-based SLT

methods.

2.1. Sign Language Recognition

Sign Language Recognition (SLR) consists of two dif-

ferent tasks: Isolated Sign Language Recognition (ISLR)

and Continuous Sign Language Recognition (CSLR). The

goal of ISLR is to translate an isolated sign into a corre-

sponding single sign language word [14, 15, 20, 22], which

is somewhat similar to the isolated gesture recognition task

[33, 18, 9, 38, 40, 39, 36]. CSLR is a more challenging

task, which is dedicated to recognizing a continuous video

of sign language into ordered sign language words, referred

to as gloss sequences [4, 6, 11, 13, 17, 27, 42, 43]. Previous

SLT work often utilized CSLR as a pre-task to predict gloss
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Figure 2: Method Overview. GFSLT-VLP improves the SLT by (a) performing Visual-Language Pretraining in stage 1

first, and then (b) transferring parameters of the pre-trained Visual Encoder and Text Decoder in stage 2. Initially, N video-

language pairs are individually processed by a visual and text encoder to extract hidden visual and textual features (solid line

in the figure). These features are subsequently projected onto a shared multimodal space through dedicated mapping heads

to calculate the similarity. Simultaneously, the masked text is fed into a shared text encoder and a text decoder equipped with

a causal mask to reconstruct the masked content (dotted line in the figure). Ultimately, the trained visual encoder and text

decoder are utilized to train the downstream SLT model.

or obtain better visual representations [4, 42, 41, 5, 6]. Such

methods often have high requirements on the accuracy of

CSLR. In this work, however, we abandon gloss sequences

entirely and explore a new gloss-free SLT approach.

2.2. Gloss-based Sign Language Translation

To improve the Sign Language Translation (SLT), sev-

eral works have employed the mid-level representation of

sign glosses. SLRT [4] first introduces a Transformer-

based encoder-decoder framework to perform end-to-end

SLT. This approach improves performance by using a Con-

nectionist Temporal Classification (CTC) loss to soft-match

sign representations and gloss sequences. STMC-T[42] ap-

proaches sign language understanding with multi-cue learn-

ing. It models sequence information by introducing intra-

cue and inter-cue CTC [10] losses. SignBack[41] attempts

to introduce advanced machine translation techniques such

as back-translation [41] into SLT. Moreover, thanks to the

successful application of transfer learning on NMT, Chen et
al. [5, 6] made the first attempt to introduce large language

models into SLT. All the above methods used the Gloss an-

notation directly or indirectly in SLT model training. How-

ever, in our case, we completely abandon the Gloss annota-

tion because its existence limits the scale of sign language

datasets. Instead, a more general design of sign language

pre-training is introduced in this paper.

2.3. Gloss-free Sign Language Translation

“Gloss-free SLT” refers to the absence of gloss su-

pervision throughout the training and testing, including

pre-training and fine-tuning stages. NSLT [3] utilized

CNN+RNN for end-to-end SLT, where CNN learned visual

features of sign language, and RNN with attention [2, 26]

managed sequence and text modeling. TSPNet [21] em-

ployed inter-scale and intra-scale attention to enhance vi-

sual feature learning by capturing local and global context

in sign language videos. GASLT [35] revealed the essential

role of gloss annotations for SLT and introduced the gloss-

attention to leverage gloss-related benefits. In contrast, CS-

GCR [37] aimed to improve the accuracy and fluency of

SLT by proposing three modules: word existence verifi-

cation, conditional sentence generation, and cross-modal

re-ranking to learn better grammatical features. However,

aligning modalities without gloss guidance is tough due to

the significant difference in sign language video and spoken

language order. Consequently, gloss-free SLT underper-

forms gloss-based SLT. In this paper, we adopt a VLP-based

approach to obtain better cross-modal representations, ef-

fectively reducing the performance gap between gloss-free

and gloss-based SLT.
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Figure 3: (a) The framework of the Gloss-free SLT Model, where PE means Positional Encoding. (b) The structure of the

Vision Embedding layer.

3. Method

In this paper, we suggest that language-indicated vi-

sual representations enjoy both low-redundancy and high-

abstract properties of language information that can im-

prove SLT. To this end, we introduce a new pre-training

paradigm for SLT that combines masked self-supervised

learning with CLIP, allowing us to jointly pre-train the Vi-

sual Encoder ψV E(·) and Text Decoder ψTD(·) for the

downstream GFSLT model (Section 3.1). Subsequently, we

transfer the parameters of the pre-trained Visual Encoder

ψ∗
V E(·) and Text Decoder ψ∗

TD(·) to the GFSLT model

ψGFSLT (·) meticulously to enhance its translation capabil-

ities (Section 3.2). Algorithm 1 elaborates our entire algo-

rithm flow.

3.1. Visual-Language Pretraining

In order to learn language-indicated visual representa-

tions from sign videos, two crucial issues need to be consid-

ered: (i) how to design a pretext task that can effectively
reduce the semantic gap between visual and textual rep-
resentations? and (ii) how to achieve jointly pretraining
on the limited SLT dataset?

To cope with the first issue, we draw inspiration from

CLIP [29] in the field of zero-shot transfer learning, which

developed the “image-to-text” as a standardized input-

output interface, allowing for transferable visual models

from natural language supervision. CLIP has highlighted

the advantages of learning from natural language over other

task-agnostic pretraining methods, making it particularly

suitable for sign language translation tasks. In other words,

learning visual representations through language supervi-

sion is a straightforward yet effective pretext task for SLT,

given that SLT data inherently has an image-text pair struc-

ture. From this insight, we present a new Visual-Language

Pre-training scheme, termed VLP, as illustrated in Fig-

Algorithm 1 Two-Stage Gloss-free SLT.

Stage1: Visual-Language Pre-training (VLP)
1: Input: Dataset D = {V (n), S(n)}Nn=1
2: Initialize the parameters Θ∗ of ψV E(·), ψTD(·) and ψTE(·)
3: while not converged do
4: for V (i), S(i) in D do
5: Update the ψV E(·) by descending �Ls(ΘV E , V

(i)) +
Ls(ΘTE , S

(i))
6: Obtain the masked sentences S̃(i)

7: Update the ψTD(·) by descending �Lc(ΘTD, S̃(i))
8: end for
9: end while

10: Output: ψ∗
V E(·) and ψ∗

TD(·)
Stage2: Gloss-Free Sign Language Translation (GFSLT)

1: Initialize the parameters ΘGFSLT of ψGFSLT (·) with

ψ∗
V E(·), ψ∗

TD(·)
2: while not converged do
3: for V (i), S(i) in D do
4: Update the ψGFSLT (·) by descending

�Lg(ΘGFSLT , S̃
(i))

5: end for
6: end while
7: Output: ψ∗

GFSLT (·)

ure 2a. It jointly trains a Visual Encoder ψV E(·) and

a Text Encoder ψTE(·) to predict the correct pairings of

a batch of (sign video, language sentence) training ex-

amples. Formally, the video-text pair is first input into

ψV E(·) and ψTE(·) in parallel to obtain corresponding

high-dimensional semantic features:

If = ψV E(V ), V = (v1, ..., vT );

Iy = ψTE(S), S = (s1, ...sU );
(1)

where V is a sign language video with T frames and S is a

spoken language sentence with U words.

Visual Encoder: The Visual Encoder consists of a Visual
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Embedding layer, as shown in Figure 3b, followed by a

Transformer Encoder with multiple layers. Each frame of

the video is first encoded by the weight-sharing 2D CNN

layers; The resulting visual encoding is then fed through

two temporal blocks, which use a combination of Conv1D-

BN-Relu-Maxpooling to capture short-term dependencies.

Finally, the features are passed through the Transformer En-

coder to capture long-term dependencies in the video.

Text Encoder: To encode text data effectively, it is crucial

to have a strong Text Encoder. As a result, we have opted

to use the parameters initialized encoder with 12 layers in

mBART [24]. This is an NMT model that has been pre-

trained on CC25 [24], a multilingual corpus that covers 25

languages.

Then, the captured visual features If and textual features Iy
are input to the corresponding heads to be linearly projected

to the joint multimodal semantic space for similarity com-

putation. Here, both heads are composed of a simple Linear

layer. Formally, we can express the process as follows:

Ĩf,c = Linear(If,c), Ĩy,k = Linear(Iy,k); (2)

where If,c denotes the activation of the last layer of the

Visual Encoder at the [CLS] token2, and Iy,k denotes the

activation of the last layer of the Text Encoder at the

<EOS>token3. Subsequently, similar to CLIP [29], Ĩf,c
and Ĩy,k are layer-normalized and pairwise-scaled, and then

used to calculate the loss value via a symmetric Cross-

entropy loss function:

Ls = −1

2

(∑
V log(Ĩf,c) +

∑
S log(Ĩy,k)

)
(3)

To tackle the second question, we take a dual approach

at both the algorithm and data levels. At the algorithm level,

as illustrated in Figure 2a, we introduce an additional aux-

iliary supervision stream - masked self-supervised learning

(indicated by the dotted line in the figure) - to enable joint

pre-training. Wherein the Text Decoder ψTD(·) takes as

input the linguistic features extracted from the masked sen-

tences via the weight-sharing Text Encoder, to predict the

words in the masked regions.

Text Decoder: The Text Decoder is actually a standard

Transformer decoder [31] with the causal mask. Its opti-

mization goal can be formulated as follows:

min
Θ

1

N

N∑

i=1

Lc

(
ψTD(ψ∗

TE(S̃
(i))), S(i)

)
(4)

where S̃ denotes the masked sentences, N is the number of

training samples, Lc is the loss function.

2It is a special token that is added to make a global representation of

the whole sequence.
3The text sequence is bracketed with <BOS>and <EOS>tokens.

This consideration of joint pre-training stems from the fact

that different pre-training paradigms can capture different

aspects of the data, and combining them can provide a more

comprehensive representation of the data [16, 19].

At the data level, we introduce strong data augmentation

(implemented by VIDAUG library [7]) for input videos in

SLT, including geometric transformation, color space trans-

formation, and temporal transformation. During training,

we randomly combine these three augmentation methods to

enlarge the data space.

In fact, this paradigm facilitates the Visual Encoder to

acquire potent language representation skills that are simi-

lar to those of the Text Encoder, resulting in the generation

of more robust and representative visual features. This is the

reason why acquiring language-indicated visual features for

SLT is feasible. Hence, after the Visual Encoder and Text

Decoder have established such modeling capability, we em-

ploy them to perform the SLT task in the second stage.

3.2. Gloss-free Sign Language Translation

In this section, we present our Gloss-Free SLT (GFSLT)

network, which can generate the corresponding sentence

S from the given sign video V without any gloss annota-

tion assistance. To achieve this, as illustrated in Figure 3a,

we utilize Transformer [31] as the main framework of the

model, as it has shown superior performance in Neural Ma-

chine Translation (NMT). Initially, the sign video is passed

through the Visual Encoder ψ∗
V E pretained in the VLP stage

to get the hidden semantic vectors:

h1:M = ψ∗
V E(v1:T ) (5)

where M = T/4. Meanwhile, Text Decoder ψ∗
TD pre-

tained in the VLP stage takes the corresponding sentence

S = (s1, .., sU ) along with the last encoder hidden state as

input to generate one word at a time:

zu = ψ∗
TD(s1:u−1, h1:M ) (6)

where the first word of a sentence is artificially set to a spe-

cial flag word <BOS>, and the Transformer Decoder will

end the generation until the flag word <EOS>. Finally, we

calculate the conditional probability p(S|V ) after a Linear

and a Softmax layer, and optimize the whole network by

minimizing the video-to-sentence cross-entropy loss:

p(S|V ) =

U∏

u=1

p(su|ou), ou = softmax(Wzu+b) (7)

Lg = − log p(S|V ) (8)

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We evaluated our proposed method on two

widely used SLT datasets: RWTH-PHOENIX-Weather
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Method Publisher Dev Test
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Gloss-based

SLRT [4] CVPR20 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32 -

STN-SLT [32] ICCV21 49.12 36.29 28.34 23.23 - 48.61 35.97 28.37 23.65 -

STMC-T [42] TMM21 47.60 36.43 29.18 24.09 48.24 46.98 36.09 28.70 23.65 46.65

BN-TIN-Transf.+SignBT [41] CVPR21 51.11 37.90 29.80 24.45 50.29 50.80 37.75 29.72 24.32 49.54

MMTLB [5] CVPR22 53.95 41.12 33.14 27.61 53.10 53.97 41.75 33.84 28.39 52.65

TS-SLT [6] NeurIPS22 54.32 41.99 34.15 28.66 54.08 54.90 42.43 34.46 28.95 53.48

Gloss-free

NSLT [3] CVPR18 28.10 16.81 11.82 9.12 31.00 27.10 15.61 10.82 8.35 29.70

NSLT [3] + Bahdanau [2] CVPR18 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58 31.80

NSLT [3] + Luong [26] CVPR18 31.58 18.98 13.22 10.00 32.60 29.86 17.52 11.96 9.00 30.70

SLRT-GF‡ [4] CVPR20 - - - - - 30.88 18.57 13.12 10.19 31.10

TSPNet [21] NeurIPS20 - - - - - 36.10 23.12 16.88 13.41 34.96

CSGCR [37] TMM21 35.85 24.77 18.65 15.08 38.96 36.71 25.40 18.86 15.18 38.85

GASLT [35] CVPR23 - - - - - 39.07 26.74 21.86 15.74 39.86

GFSLT (ours) - 41.97 31.04 24.30 19.84 40.70 41.39 31.00 24.20 19.66 40.93

GFSLT-VLP (ours) - 44.08 33.56 26.74 22.12 43.72 43.71 33.18 26.11 21.44 42.49

Improvement - +8.23 +8.79 +8.09 +7.04 +4.76 +4.64 +6.44 +4.25 +5.70 +2.63

Table 1: Experimental results on PHOENIX14T dataset. Wherein ‡ denotes results reproduced by [35]. We bold the best

results in the gloss-based setting and gloss-free setting. Improvement represents the result of comparison with the latest

gloss-free methods.

Method Publisher Dev Test
BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Gloss-based

SLRT� [4] CVPR20 37.47 24.67 16.86 11.88 37.96 37.38 24.36 16.55 11.79 36.74

BN-TIN-Transf. [41] CVPR21 40.66 26.56 18.06 12.73 37.29 40.74 26.96 18.48 13.19 37.67

BN-TIN-Transf.+SignBT [41] CVPR21 51.46 37.23 27.51 20.80 49.49 51.42 37.26 27.76 21.34 49.31

MMTLB [5] CVPR22 53.81 40.84 31.29 24.42 53.38 53.31 40.41 30.87 23.92 53.25

TS-SLT [6] NeurIPS22 55.21 42.31 32.71 25.76 55.10 55.44 42.59 32.87 25.79 55.72

Gloss-free

TSPNet‡ [21] NeurIPS20 - - - - - 17.09 8.98 5.07 2.97 18.38

SLRT† [4] CVPR20 21.03 9.97 5.96 4.04 20.51 20.00 9.11 4.93 3.03 19.67

GASLT [35] CVPR23 - - - - - 19.90 9.94 5.98 4.07 20.35

NSLT [3] + Luong� [26] CVPR18 34.22 19.72 12.24 7.96 34.28 34.16 19.57 11.84 7.56 34.54

GFSLT (ours) - 37.60 23.30 14.89 9.92 35.42 37.69 23.28 14.93 9.88 35.16

GFSLT-VLP (ours) - 39.20 25.02 16.35 11.07 36.70 39.37 24.93 16.26 11.00 36.44

Improvement - +4.98 +5.30 +4.11 +3.11 +2.42 +5.21 +5.36 +4.42 +3.44 +1.90

Table 2: Experimental results on CSL-Daily dataset. � denotes results reproduced by [41]; ‡ denotes results reproduced by

[35]; and † denotes our reproduced result under the gloss-free setting.

2014T [3] and CSL-Daily [41]. PHOENIX-2014T contains

8257 parallel German sign language (DGS) videos with

German translations from weather forecast programs, split

into train, dev, and test sets of sizes 7096, 519, and 642 re-

spectively. The German translations have a vocabulary size

of 2887. CSL-Daily focuses on daily topics in Chinese sign

language, containing 20654 parallel CSL videos with Chi-

nese translations. The dataset is split into train, dev, and

test sets of sizes 18401, 1077, and 1176, respectively, and

the Chinese translations have a vocabulary size of 2343.

Evaluation Metrics. Following previous works [4, 41,

5, 6], we adopt BLEU [28] and ROUGE [23] to evaluate

SLT. Higher BLEU and ROUGE-L indicate better transla-

tion performance.

4.2. Implementation details

GFSLT Model. We used ResNet18 [12] pre-trained on Im-

ageNet [8] as our 2D-CNN. For the temporal blocks, we

followed the configuration of [41], using a stride size of 1/2

and a kernel size of 5/2 for the Conv1D/Maxpooling layers.

Our Transformer encoder and decoder both have 3 layers,

with a hidden size of 1024 and a feed-forward size of 4096.

Each layer has 8 attention heads, and we set the dropout to

0.1 to avoid overfitting.
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VLP Aug-S1 Aug-S2 Dev Test
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

� � � 41.97 31.04 24.30 19.84 41.39 31.00 24.20 19.66

� � � 41.50 31.26 24.64 20.12 41.81 31.34 24.40 19.77

� � � 42.19 32.49 26.28 22.05 42.09 32.01 25.60 21.23

� � � 41.84 30.98 24.12 19.65 40.57 29.59 22.73 18.41

� � � 44.08 33.56 26.74 22.12 43.71 33.18 26.11 21.44

Table 3: Effect of VLP and data augmentation strategies. VLP: Visual-Language Pre-training, Aug-S1: strong data augmen-

tation employed during stage 1 for sign video, Aug-S2: strong data augmentation employed during stage 2 for sign video.

Visual-Language Pretraining. We conduct respective pre-

training tasks on the training sets of the two sign language

datasets. The mini-batch size is set to 16 (we use AMP [1]

technology to expand the batch size). The input sequences

are first resized into 256×256, and then randomly/centrally

cropped into 224 × 224 during training/inference. We em-

ploy SGD with 0.9 momentum as the optimizer and the

learning rate is decayed with a cosine schedule [25] from

0.01 (maximum) to 1e-5 (minimum). The training lasts for

80 epochs.

SLT Training and Inference. The GFSLT network

is trained end-to-end using cross-entropy loss with label

smoothing of 0.2 and a mini-batch size of 8. We used SGD

optimizer [30] with 0.9 momentum and initialized the learn-

ing rate to 0.01 with the cosine annealing scheduler. The

network is trained for 200 epochs. During inference, de-

coding is performed using the beam search strategy with a

length penalty [34] of 1, and a beam size of 5 is employed.

4.3. Comparison with State-of-the-art Methods

Results on PHOENIX14T dataset. Table 1 presents a

comparison of our approach with state-of-the-art gloss-

based and gloss-free methods for sign language translation.

Our method achieves a significant performance gain when

compared to other gloss-free approaches, such as CSGCR

[37]. Specifically, our method improves the BLEU-4 score

by approximately +7.0 (on Dev set) and +5.7 (on Test set),

and improves the ROUGE score by approximately +4.8
(on Dev set) and +2.6 (on Test set). Moreover, our results

are highly competitive when compared to most gloss-based

methods. Notably, our method achieves competitive perfor-

mance with SLRT [4] (22.38 vs. 22.12) and STMC-T [42]

(24.09 vs. 22.12), highlighting its potential.

Results on CSL-Daily dataset. Table 2 compares our

method with the state-of-the-art approaches on the CSL-

Daily dataset. CSL-Daily is a large Chinese sign language

dataset released in 2021 by [41] and there are therefore only

a few methods that tested on it, especially gloss-free ones.

Note that the result of SLRT[4] and NSLT+Loung[3, 26] are

reproduced by [41]. As it can be seen, our method surpasses

the gloss-free method NSLT+Loung[3, 26] in all metrics,

especially improving the BLEU-4 score about 3.2±0.1 and

ROUGE score about 2.2±0.2 on this dataset. Furthermore,

compared with gloss-based methods, we are close to the

SLRT[4] and BN-TIN-Transf[41] which did not use semi-

supervised back-translation auxiliary training unlike BN-

TIN-Transf+SignBT[41], large model transfer training such

as MMTLB[5] or a multi-stream model like the one from

TS-SLT[6].

4.4. Ablation Studies

The ablation studies were conducted mainly on the

PHOENIX14T dataset, with a primary focus on improving

the BLEU-4 score as it is the most reliable measure of SLT

accuracy. Additionally, unless stated otherwise, we utilized

the configuration outlined in Section 4.2 as the baseline set-

tings for our network.

Visual-Language Pretraining. In our investigation of

VLP, we delved into the key factors that affect its effi-

cacy and discovered several phenomena. Firstly, from Ta-

ble 3, we observed that data augmentation on sign videos

plays a significant role in the success of VLP. Specifically,

when utilizing lightweight data augmentation such as ran-

dom cropping, the improvement of VLP for SLT is limited,

only increasing the BLEU-4 score by about +0.3 on the

Dev set and +0.1 on the Test set. However, when com-

bined with strong data augmentation, VLP significantly en-

hances the SLT task, improving the BLEU-4 score from

19.84 to 22.05 (+2.2). This emphasizes the data-hungry na-

ture of VLP. Secondly, we observed that without VLP, rely-

ing solely on strong data augmentation in stage 2 does not

provide much benefit for SLT and may even impair perfor-

mance slightly. But when combined with VLP, SLT perfor-

mance can be continuously improved. This is because ag-

gressive data augmentation methods may introduce exces-

sive variations or distortions to the training data, which may

pose challenges for the SLT model to adapt to the distribu-

tion of the augmented data. However, the VLP stage lever-

ages the LLM to encourage the Visual Encoder to adapt

to the distribution differences introduced by the augmented
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Visual Encoder T-Decoder Dev Test
V-Embedding T-Encoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

� � � 41.97 31.04 24.30 19.84 41.39 31.00 24.20 19.66

� � � 41.31 30.88 24.25 19.83 40.12 30.03 23.34 18.93

� � � 42.75 32.31 25.65 21.23 42.94 32.68 25.83 21.25

� � � 43.30 32.52 26.31 22.07 43.29 32.74 25.96 21.43

� � � 42.27 31.68 25.14 20.70 41.55 31.11 24.56 20.27

� � � 44.08 33.56 26.74 22.12 43.71 33.18 26.11 21.44

Table 4: Investigating the impact of fine-tuning individual components within the Visual-Language-Pretrain (VLP) frame-

work. V-Embedding: Visual Embedding module; T-Encoder: Transformer Encoder; T-Decoder: Transformer Decoder.

Notations�and�denote the initialization of corresponding layers with random parameters and pre-trained parameters, re-

spectively.

period 40 epoch 80 epoch 160 epoch 200 epoch
fixing the training time (80 epochs) of stage 1.

stage 2 18.23 20.42 21.13 22.12

fixing the training time (200 epochs) of stage 2.

stage 1 20.62 22.12 22.13 22.07

Table 5: Effect of longer training regimes. We explore the

optimal training time for both stages by fixing the training

time of stage 1 to investigate the optimal training time of

stage 2 and vice versa in this table.

data, helping the downstream SLT model develop the abil-

ity to generalize from the augmented data. Additionally,

from Table 4, we find that fine-tuning the Visual Embed-

ding module and Transformer Encoder as a unified whole

can result in significant performance gains (+2.23) com-

pared to fine-tuning them separately (-0.01 and +1.39, re-

spectively). Finally, we observe that fine-tuning the Text

Decoder can also bring some gains, but it seems limited

(≤ 1). These results confirm that a good visual feature

is critical to Gloss-Free SLT. The VLP strategy facilitates

the learning of low-redundancy and high-abstract features

present in language representations by the Visual Encoder,

which makes it a crucial component of the system.

Investigation of Training Time. The training time of

gloss-based SLT models typically does not exceed 100

epochs. However, as shown in Table 5, with a fixed pre-

training time, the gloss-free SLT model requires a longer

training regime (> 100 epochs) to achieve satisfactory per-

formance. This is because without the aid of intermediate

representation, the convergence speed of the network is re-

duced, necessitating more training time to make the model

fit the desired effect. Moreover, we investigated the influ-

ence of pre-training duration on model performance. As

observed, it doesn’t seem necessary to have an extended

pre-training duration. 80 epochs appears to be a trade-off

(a) BLEU-4 score on Dev data. (b) Loss value on Dev data.

Figure 4: Analysis of the impact of model parameter size.

Increasing the network depth (to 4 layers) did not yield any

positive results, but instead exacerbated model overfitting.

between the two sign language datasets.

Impact of Model Parameter Size. It is widely acknowl-

edged that the size of the network parameters has a signifi-

cant effect on the ultimate performance of the model, and a

more intuitive perception is that the deeper the network, the

better the performance. Nevertheless, for the GFSLT net-

work, we noticed that adding network layers would cause

more severe overfitting as shown by the green line in Figure

4. We attribute this to the limited scale of SLT data, sug-

gesting that a sufficiently large SLT dataset may be able to

alleviate this issue.

Impact of Freezing the Text Encoder. Considering that

the Text Encoder is derived from the pre-trained Mbart [24],

so in this experiment, we attempted to freeze its parame-

ters and use it as a teacher model to supervise the learning

of the Visual Encoder. Contrary to our expectations, this

pre-training strategy did not produce satisfactory results, as

shown in Table 6. We hypothesize that the reason for this

may be that the text and visual features have fundamentally

different underlying representations, and they must be opti-

mized to a common representation for meaningful compar-
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V-Encoder T-Encoder Dev Test
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

update freeze 40.28 29.83 22.13 18.32 40.81 29.32 21.24 16.93

update update 44.08 33.56 26.74 22.12 43.71 33.18 26.11 21.44

Table 6: Analyze the impact of freezing the Text Encoder during the pretraining stage. update means updating the network

parameters, and freeze means freezing the network parameters.

isons and analysis. As a result, directly freezing the parame-

ters of the Text Encoder may not provide sufficient guidance

for the Visual Encoder to learn robust representations.

5. Qualitative Results

Reference: sonst regnet es teilweise kräftig

(Otherwise it rains heavily at times)

GFSLT: sonst regnet es hier und da

( Otherwise it rains here and there )

GFSLT-VLP: sonst regnet es teilweise kräftig

( Otherwise it rains heavily at times )

Reference: am tag wechseln sonne und wolken einander ab teilweise ist es auch längere zeit sonnig

(During the day sun and clouds alternate partly it is sunny for a long time)

GFSLT: am tag sonne und wolken im wechsel nur vereinzelt schauer

( During the day sun and clouds alternate only sporadic showers )

GFSLT-VLP: am tag wechseln sonne und wolken einander ab es bilden sich längere zeit viel sonnenschein

( During the day, sun and clouds alternate There is a lot of sunshine for a long time )

Reference: am tag nur hier und da einige sonnige momente vor allem an den alpen

(During the day only here and there some sunny moments, especially in the Alps)

GFSLT: gebietsweise zeigt sich morgen häufig die sonne

( In some areas, the sun will often show up tomorrow )

GFSLT-VLP: morgen zeigt sich mal die sonne wenn dann vor allem an den alpen

( Tomorrow the sun will show up , especially in the Alps )

Reference: und nun die wettervorhersage für morgen sonntag den zwölften dezember

(And now the weather forecast for tomorrow Sunday the twelfth of December)

GFSLT: und nun die wettervorhersage für morgen sonntag den zwölften november

( And now the weather forecast for tomorrow Sunday the twelfth of November )

GFSLT-VLP: und nun die wettervorhersage für morgen sonntag den zwölften dezember

( And now the weather forecast for tomorrow Sunday the twelfth of December )

Table 7: Qualitative results of PHOENIX14T. We highlight

the difference between sentences. Green means totally

same as the reference. Yellow means correct but differ-

ent words. Red means totally wrong.

We visually demonstrate our model’s performance on

several sign language videos from PHOENIX14T test set in

Table 7. While both models understand the general meaning

of sign language videos and produce complete sentences,

the baseline model is more error-prone on some keywords,

resulting in drastically different translations (first and sec-

ond rows). Additionally, the VLP model outperforms the

baseline in recognizing named entities, accurately translat-

ing place names and months (third and fourth rows).

6. Conclusion and Future work
In this work, we propose a new perspective for the gloss-

free SLT task by reducing the semantic gap between vi-

sual and textual representations, which enables us to learn

language-indicated visual representations from sign videos.

To achieve this, we introduce a novel pre-training paradigm

that combines masked self-supervised learning with visual-

language supervision learning. Our experiments reveal that

both data scale and model parameters have a significant im-

pact on the performance of this method. While our pro-

posed pre-training paradigm is a crucial step towards gloss-

free SLT, we acknowledge that further research is needed,

especially in pre-training on a large-scale SLT dataset (with-

out gloss annotations). We hope that our work will inspire

future research in this area.
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[18] Jakub Konečnỳ and Michal Hagara. One-shot-learning ges-

ture recognition using hog-hof features. The Journal of Ma-
chine Learning Research, 15(1):2513–2532, 2014. 2

[19] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do

better imagenet models transfer better? In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2661–2671, 2019. 5

[20] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li.

Word-level deep sign language recognition from video: A

new large-scale dataset and methods comparison. In Pro-
ceedings of the IEEE/CVF winter conference on applications
of computer vision, pages 1459–1469, 2020. 2

[21] Dongxu Li, Chenchen Xu, Xin Yu, Kaihao Zhang, Benjamin

Swift, Hanna Suominen, and Hongdong Li. Tspnet: Hier-

archical feature learning via temporal semantic pyramid for

sign language translation. Advances in Neural Information
Processing Systems, 33:12034–12045, 2020. 3, 6

[22] Dongxu Li, Xin Yu, Chenchen Xu, Lars Petersson, and

Hongdong Li. Transferring cross-domain knowledge for

video sign language recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6205–6214, 2020. 2

[23] Chin-Yew Lin. Rouge: A package for automatic evaluation

of summaries. In Text summarization branches out, pages

74–81, 2004. 6

[24] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey

Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke

Zettlemoyer. Multilingual denoising pre-training for neu-

ral machine translation. Transactions of the Association for
Computational Linguistics, 8:726–742, 2020. 5, 8

[25] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 7

[26] Minh-Thang Luong, Hieu Pham, and Christopher D Man-

ning. Effective approaches to attention-based neural machine

translation. In Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, 2015. 3, 6, 7

[27] Yuecong Min, Aiming Hao, Xiujuan Chai, and Xilin Chen.

Visual alignment constraint for continuous sign language

recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 11542–11551, 2021.

2

[28] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing

Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pages 311–318,

2002. 6

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language super-

vision. In International Conference on Machine Learning,

pages 8748–8763. PMLR, 2021. 2, 4, 5

[30] Herbert Robbins and Sutton Monro. A stochastic approxi-

mation method. The annals of mathematical statistics, pages

400–407, 1951. 7

20880



[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 5

[32] Andreas Voskou, Konstantinos P Panousis, Dimitrios Kos-

mopoulos, Dimitris N Metaxas, and Sotirios Chatzis.

Stochastic transformer networks with linear competing units:

Application to end-to-end sl translation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 11946–11955, 2021. 6

[33] Jun Wan, Qiuqi Ruan, Wei Li, and Shuang Deng. One-shot

learning gesture recognition from RGB-D data using bag of

features. 14(1):2549–2582, 2013. 2

[34] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,

Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,

Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s

neural machine translation system: Bridging the gap be-

tween human and machine translation. arXiv preprint
arXiv:1609.08144, 2016. 7

[35] Aoxiong Yin, Tianyun Zhong, Li Tang, Weike Jin, Tao Jin,

and Zhou Zhao. Gloss attention for gloss-free sign language

translation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2551–

2562, 2023. 3, 6

[36] Zitong Yu, Benjia Zhou, Jun Wan, Pichao Wang, Haoyu

Chen, Xin Liu, Stan Z Li, and Guoying Zhao. Searching

multi-rate and multi-modal temporal enhanced networks for

gesture recognition. IEEE Transactions on Image Process-
ing, 2021. 2

[37] Jian Zhao, Weizhen Qi, Wengang Zhou, Nan Duan, Ming

Zhou, and Houqiang Li. Conditional sentence generation and

cross-modal reranking for sign language translation. IEEE
Transactions on Multimedia, 24:2662–2672, 2021. 3, 6, 7

[38] Benjia Zhou, Yunan Li, and Jun Wan. Regional attention

with architecture-rebuilt 3d network for rgb-d gesture recog-

nition. Proceedings of the AAAI Conference on Artificial In-
telligence, 35(4):3563–3571, May 2021. 2

[39] Benjia Zhou, Pichao Wang, Jun Wan, Yanyan Liang, and Fan

Wang. A unified multimodal de- and re-coupling framework

for rgb-d motion recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–15, 2023. 2

[40] Benjia Zhou, Pichao Wang, Jun Wan, Yanyan Liang, Fan

Wang, Du Zhang, Zhen Lei, Hao Li, and Rong Jin. De-

coupling and recoupling spatiotemporal representation for

rgb-d-based motion recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20154–20163, June 2022. 2

[41] Hao Zhou, Wengang Zhou, Weizhen Qi, Junfu Pu, and

Houqiang Li. Improving sign language translation with

monolingual data by sign back-translation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1316–1325, 2021. 2, 3, 6, 7

[42] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li.

Spatial-temporal multi-cue network for sign language recog-

nition and translation. IEEE Transactions on Multimedia,

24:768–779, 2021. 2, 3, 6, 7

[43] Ronglai Zuo and Brian Mak. C2slr: Consistency-enhanced

continuous sign language recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5131–5140, 2022. 2

20881


