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ARTICLE INFO ABSTRACT
Keywords: Long-tailed visual recognition has received increasing attention in recent years. Due to the extremely
Long-tailed visual recognition imbalanced data distribution in long-tailed learning, the learning process shows great uncertainties. For

Collaborative learning
Online distillation
Deep learning

example, the predictions of different experts on the same image vary remarkably despite the same training
settings. To alleviate the uncertainty, we propose a Nested Collaborative Learning (NCL++) which tackles the
long-tailed learning problem by a collaborative learning. To be specific, the collaborative learning consists
of two folds, namely inter-expert collaborative learning (InterCL) and intra-expert collaborative learning
(IntraCL). InterCL learns multiple experts collaboratively and concurrently, aiming to transfer the knowledge
among different experts. IntraCL is similar to InterCL, but it aims to conduct the collaborative learning on
multiple augmented copies of the same image within the single expert. To achieve the collaborative learning
in long-tailed learning, the balanced online distillation is proposed to force the consistent predictions among
different experts and augmented copies, which reduces the learning uncertainties. Moreover, in order to
improve the meticulous distinguishing ability on the confusing categories, we further propose a Hard Category
Mining (HCM), which selects the negative categories with high predicted scores as the hard categories. Then,
the collaborative learning is formulated in a nested way, in which the learning is conducted on not just all
categories from a full perspective but some hard categories from a partial perspective. Extensive experiments
manifest the superiority of our method with outperforming the state-of-the-art whether with using a single
model or an ensemble. The code will be publicly released.

1. Introduction learning [24,25]. Those methods can accomplish some accuracy im-
provements but still cannot deal with the long-tailed class imbalance

In recent years, deep neural networks have achieved resounding problem well. For example, class re-balancing methods are often con-
success in various visual tasks, e.g., image classification [1,2], object fronted with risk of overfitting. More recent efforts aim to improve
detection [3,4], semantic segmentation [5,6] and so on. Despite the the long-tailed learning by using multiple experts [26-30]. The multi-
advances in deep technologies and computing capability, the huge expert algorithms follow a straightforward idea of making them diverse
success also highly depends on large well-designed datasets of having from each other. To achieve this, some works [26,30] force different

a roughly balanced distribution, such as ImageNet [7], MS COCO [8]
and Places [9]. This differs notably from real-world datasets, which
usually exhibits long-tailed data distributions [10-18] where few head
classes occupy most of the data while many tail classes only have few
samples as shown in Fig. 1. In such scenarios, the model is easily
dominated by those few head classes, whereas low accuracy rates
are usually achieved for many other tail classes. Undoubtedly, the
long-tailed characteristics challenge deep visual recognition, and also
immensely hinder the practical use of deep models.

In long-tailed visual recognition, most early works focus on de-
signing the class re-balancing strategies [10,19-23] and decoupled

experts to focus on different aspects. For example, LFME [26] for-
mulates a network with three experts and it forces each expert to
learn samples from one of head, middle and tail classes. Besides, there
are some works [27] adopt some constraint losses to diversify the
multiple experts. For example, RIDE [27] proposes a distribution-aware
diversity loss to achieve this. The previous multi-expert methods can
achieve good performance mainly due to the diversity among them.
Also because of this, these methods obtain the predictions through the
ensemble rather than a single expert due to that only employing a single
expert hardly achieves reliable recognition.
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Fig. 1. An illustration of long-tailed data distribution. In the distribution, few head classes occupy most of the data while many tail classes have only a few samples.

However, we found that there are great uncertainties in the long-
tailed learning. The learning uncertainties mainly come from two as-
pects. One is that the same expert performs differently for the same
image with different augmentations. The other is that, for two experts
with the same configuration and the same training settings, they still
vary greatly on predictions with respect to the same input image. To
analyze this, we visualize the Kullback-Leibler (KL) distance® over the
predictions generated by two experts with the same training settings,
and the predictions generated by two augmented image copies with
respect to the same expert. As shown in Fig. 2(b), the green color
shows the KL distance distribution for two different experts of the
same structure and training settings with taking the same image as the
input, and the blue color shows that of the same expert with taking
different augmentations of the same image. Specifically, to analyze the
uncertainties across all categories, the Kullback-Leibler (KL) distance
is specifically calculated for all categories with reporting the average
distance over all images for each class. As we can see, the predictions
vary greatly especially in tail classes, which signifies the great uncer-
tainty in the learning process as well as the diversity in models. To
show the prediction differences in details, we visualize the detailed
predictions of the two experts with the same structure and training
settings on a randomly selected sample (corresponding to the green
color in Fig. 2(b)). According to previous works [26-30], a simple
ensemble like averaging the predictions could be employed to reduce
the uncertainty in the prediction stage, which can achieve a certain
performance improvement. However, an ensemble of multiple experts
also brings huge amount of calculation and parameters, which limits its
practical use. This brings up a question, can we utilize these uncertainties
to improve the performance of single model?

The goal of this paper is to enhance the performance of a single
model via reducing the learning uncertainty by the collaborative learn-
ing. In the multi-expert framework, owing to the uncertainty in the
learning process (e.g., the parameter initialization), different experts
capture various knowledge. Besides, the learning uncertainty of the
model itself can also lead to various predictions when adding some
noises or augmentations to the input. To reduce the uncertainty in
the learning process, the Inter-expert Collaborative Learning (InterCL)
is employed to collaboratively learn multiple experts concurrently,
where each expert serves as a teacher to teach others and also as a
student to learn extra knowledge from others. In this way, all experts
tend to learn the consistent and right knowledge. In addition to the
uncertainty among different experts, the predictions of the same expert
with taking different augmentations of the same image as the input also
show great uncertainties. Grounded in this, we augment the image by
multiple times and then input them to the same expert. Later, the Intra-
expert Collaborative Learning (IntraCL) is further employed to distill
knowledge among different augmentations and also reduce the learning

uncertainty among them. Specifically, we employ the online distillation
to achieve the goal of collaborative learning. In order to better cope
with the long-tailed data distribution, we further formulate the online
distillation in a balanced way, i.e., balanced online distillation. Specifi-
cally, in the proposed balanced online distillation, the contributions of
tail classes would be strengthened while that of head classes would be
suppressed.

Previous works [31-33] simply conduct the classification and dis-
tillation from a full perspective on all categories. It helps the network
to obtain the global discrimination on all categories, but lacks of
meticulous distinguishing ability on the confusing categories. In the
classification problem, the network should pay attention to the hard
negative categories with high predictive scores rather than simply
treating all categories equally, which helps to reduce the confusion
between the target category and the confusing categories. To achieve
this, we first propose a Hard Category Mining (HCM) to select the hard
categories for each sample, in which the hard category is defined as
the negative category with a high predictive score. Then, we formulate
a nested learning for the supervised individual learning of a single
network as well as the collaborative learning (including IntraCL and
InterCL). To the specific, the nested learning conducts the supervised
learning or distillation from two perspectives, where one is the full
perspective on all categories and the other is the partial perspective
only on the selected hard categories. In this way, not only the global
discriminative capability but also the meticulous distinguishing ability
can be captured.

The proposed method utilizes the collaborative learning for long-
tailed visual recognition. The proposed collaborative learning is two
folds, where one is inter-expert collaborative learning and the other is
intra-expert collaborative learning. The collaborative learning allows
the knowledge transferring among different experts and image augmen-
tations, which aims to reduce the learning uncertainties and promotes
each expert model to achieve better performance. Our method is in-
herently a multi-expert framework. However, unlike previous works
that need an ensemble of all experts to obtain the final predictions,
our method can achieve the state-of-the-art performance only based
on a single expert (better performance can be achieved based on the
ensemble of all). This is because we collaboratively learn multiple
experts by reducing the diversity of models rather than increasing
their diversity as in previous works [26-30]. Our contributions can be
summarized as follows:

» We propose a Nested Collaborative Learning (NCL++) to im-
prove long-tailed visual recognition via collaborative learning.
The collaborative learning consists of two folds, namely intra-
expert and inter-expert collaborative learning, which allow the
knowledge transferring among different image augmented copies
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Fig. 2. (a) The Kullback-Leibler (KL) distance calculated from two aspects. The green color indicates the KL distance of two experts with taking the same image as the input.
The blue color indicates the KL distance of an expert with taking two augmented image copies with respect to the same image as the inputs. (b) An illustration of the predictions
produced by two experts with respect to the same input. The two experts have the same structure and are trained with the same settings. The analysis is conducted on CIFAR100-LT
dataset with an Imbalanced Factor (IF) of 100. The predictions are visualized on the basis of a random selected example, and the KL distance is computed based on the whole test
set and then the average results of each category are counted and reported. The predictions differ largely from each other between different networks and different augmented
images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and experts, respectively. To our best knowledge, it is the
first work to adopt the collaborative learning to address the
problem of long-tailed visual recognition.

We propose a Nested Feature Learning (NFL) to conduct the
learning from both a full perspective on all categories and a
partial perspective of focusing on hard categories. This helps the
model to capture meticulous distinguishing ability on confusing
categories.

We propose a Hard Category Mining (HCM) to select hard cate-
gories for each sample.

The proposed method gains significant performance over the
state-of-the-art on five popular datasets including CIFAR-10/100-
LT, Places-LT, ImageNet-LT and iNaturalist 2018.

2. Related work
2.1. Long-tailed visual recognition

To alleviate the long-tailed class imbalance, lots of studies [26,
27,34-37] have been conducted in recent years. The existing methods

for long-tailed visual recognition can be roughly divided into three
categories: class-rebalancing [10,19-23], multi-stage training [24,25]

and multi-expert methods [26-30]. In the following, we will review
the methods in the above three categories.

Class re-balancing, which aims to re-balance the contribution of
each class during training, is a classic and widely used method for long-
tailed learning. Usually, there are two types for class re-balancing. The
first one is data re-sampling [24,37-40], including over-sampling [38],
under-sampling, square-root sampling [24] and progressively-balanced
sampling [24]. The goal of data re-sampling is to increase the sampling
probability of samples in tail classes while weakening that of samples in
head classes. The second one is loss re-weighting [36,37,41-44], that
is, re-weighting of loss function by the numbers of different classes.
The popular methods in loss re-weighting include Focal loss [41],
Seesaw loss [42], Balanced Softmax Cross-Entropy (BSCE) [36], Class-
Dependent Temperatures (CDT) [45], LDAM loss [25] and Equalization
loss [43]. Class re-balancing improves the overall performance but
usually at the sacrifice of the accuracy on head classes.

Multi-stage training methods divide the training process into several
stages [24,46-49]. For example, Kang et al. [24] decouple the training
procedure into representation learning and classifier learning, where
the representation learning adopts the instance-balanced sampling to
learn a good feature extractor and the classifier learning adopts the
class-balanced sampling to re-adjust the classifier. Besides, some other
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works [46-48,50] tend to improve performance via a post-process of
shifting model logits. Li et al. [49] propose a four-stage training strat-
egy on basis of knowledge distillation, self-supervision and decoupled
learning. To be specific, the network is first trained with classification
and self-supervised losses, and then the feature extractor is frozen and
the classifier is re-adjusted by the class-balanced sampling. Later, an
additional network is employed to distill the knowledge from the pre-
viously trained network, and finally, the network is further trained by
re-adjusting the classifier. As we can see, multi-stage training methods
may rely on heuristic design.

More recently, multi-expert frameworks [26-30,34,39,51] receive
increasing concern, e.g., Learning From Multiple Expert (LFME) [26],
Bilateral-Branch Network (BBN) [34], RoutIng Diverse Experts (RIDE)
[27], Test-time Aggregating Diverse Experts (TADE) [30] and Ally Com-
plementary Experts (ACE) [29]. For example, LFME [26] formulates
three experts with each corresponding to one of head, medium and
tail classes. RIDE [27] proposes a distribution-aware diversity loss to
the multi-expert network and it encourages the experts to be diverse
from each other. Multi-expert methods indeed improve the recognition
accuracy for long-tailed learning, but those methods still need to be
further exploited. For example, most current multi-expert methods
employ different models to learn knowledge from different aspects,
while the mutual supervision among them is deficient. Moreover, they
often employ an ensemble to produce predictions, which leads to an
increase in complexity.

2.2. Knowledge distillation

Knowledge distillation is a prevalent technology in knowledge
transferring. One typical manner of knowledge distillation is teacher—
student learning [52,53], which transfers knowledge from a large
teacher model to a small student model. Current methods in knowledge
distillation can be divided into three categories: offline distillation [52,
54-57], online distillation [31,33,58,58-60] and self-distillation [61-
65]. Early methods [52,55] often adopt an offline learning strategy,
which transfers the knowledge from a pretrained teacher model to
a student model. Most works [52,55,66] distill the knowledge from
the output distributions, while some works achieve the knowledge
transferring by matching feature representations [54] or attention
maps [57]. The offline distillation is very popular in the early stage.
However, the offline way only considers transferring the knowledge
from the teacher to the student, and therefore, the teacher normally
should be a more complex high-capacity model than the student. In
recent years, knowledge distillation has been extended to an online
way [31,33,58,58,59,67], where the whole knowledge distillation is
conducted in an one-phase and end-to-end training scheme. For exam-
ple, in Deep Mutual Learning [33], any one model can be a student
and can distill knowledge from all other models. Zhu et al. [32]
propose a multi-branch architecture with treating each branch as a
student to further reduce computational cost. Compared with offline
distillation, online distillation is more efficient by taking the learning in
an one-phase end-to-end scheme. For self-distillation [61-65], it can be
regarded as a special case in online distillation, where the teacher and
the student refer to the same network. In other words, self-distillation
means that the model distills the knowledge from itself. For example,
Zhang et al. [62] divide the network into several sections according to
their depth, and allow the low sections to distill the knowledge from
high sections. Our work aims to reduce the predictive uncertainty in
long-tailed learning by online distillation and self-distillation. However,
different from previous works, we formulate the distillation in a nested
way to focus on all categories as well as some important categories,
which facilitates the network to obtain the meticulous distinguishing
ability.
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3. Methodology

The proposed NCL++ aims to adopt the collaborative learning to
reduce the learning uncertainties in long-tailed visual recognition as
shown in Fig. 3. We first introduce the Balanced Individual Learning
(BIL), Intra-expert Collaborative Learning (IntraCL) and Inter-expert
Collaborative Learning (InterCL). Then, we present the Hard Category
Mining (HCM) of selecting hard categories, and further give a detailed
introduction of the Nested Feature Learning (NFL). Finally, we show
the overall loss of how to aggregate them together.

3.1. Balanced individual learning

We denote the training set with » samples as D = {x;, y;}, where x;
indicates the ith image sample and y; denotes the corresponding label.
Assume a total of K experts are employed and the kth expert model
is parameterized with 6,. Given image x;, the predicted probability of
class-j in the kth expert is computed as:

exp(z};)
c k
Z/=1 exp(z”)

where z".‘j is the model’s class-j output and C is the number of classes.
This is a widely used way to compute the predicted probability, and
some losses like Cross Entropy (CE) loss is computed based on it.
However, this way does not consider the data distribution, and is not
suitable for long-tailed visual recognition, where a vanilla model based
on p(x;;0;) would be largely dominated by head classes. Therefore,
some researchers [36] proposed to compute predicted probability of
class-j in a balanced way:

P;(x;;6,) = @

n jexp(zf‘j)
T mexp(h)
where n; is the total number of samples of class j. In this way,
contributions of tail classes are strengthened while contributions of
head classes are suppressed. Based on such balanced probabilities, Ren
et al. [36] further proposed a Balanced Softmax Cross Entropy (BSCE)
loss to alleviate long-tailed class imbalance in model training. We also
adopt the BSCE to conduct the individual learning for each expert,
which ensures that each one can achieve the strong discrimination
ability. Mathematically, the loss of the balanced individual learning for
expert-k can be denoted as:

LY, == log(p, (x;:6,) 3)
k

p;(x;30;) = 2

where 6, indicates the parameters of the kth expert. The superscript G
indicates the loss is conducted from a global view on all categories.

3.2. Inter-expert collaborative learning

To collaboratively learn multiple experts from each other, we em-
ploy the Inter-expert Collaborative Learning (InterCL) to allow each
model to learn extra knowledge from others. We employ the knowl-
edge distillation to allow the knowledge transferring among them, and
following previous works [31,33], the Kullback Leibler (KL) divergence
is employed to calculate the loss, which can be denoted as:

K K
c __ 2 . .
Lier = XK =T §k qZ#kKL(mx,,ek)up(x,,eq)) @

where K denotes the number of experts and K L(p||q) indicates the KL
divergence between the distributions p and q, which can be specifically
denoted as KL(pllq) = Y P jlog(%). Note that we adopt the balanced
probabilities p for distillation, which increases the contributions of tail
classes while suppressing that of head classes. In this way, each expert
can be the teacher to teach others, and each expert also can be a student
to learn knowledge from others. Such collaborative learning aims to
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Fig. 3. An illustration of our proposed NCL++ of containing three experts and three augmented image copies for conducting collaborative learning. The proposed NCL++ contains
five core components, namely Balanced Individual Learning (BIL), Intra-expert Collaborative Learning (IntraCL), Inter-expert Collaborative Learning (InterCL), Hard Category
Mining (HCM) and Nested Feature Learning. The BIL aims to enhance discriminative ability of a single expert. Both IntraCL and InterCL aim to reduce the learning uncertainty by
collaborative learning and thus improve the discriminative capability. For the proposed HCM, it selects the hard negative categories, which are used for improving the meticulous
distinguishing ability of the model. Based on the selected hard categories, the NFL is further employed to learning features from a global view on all categories and also a partial

view on hard categories.

reduce the prediction uncertainties among multiple experts through
minimizing the KL divergence. Note that the distillation is also set in
a balanced way, which helps the model to learn better for long-tailed
visual recognition.

3.3. Intra-expert collaborative learning

The learning uncertainty exists not only in different experts, but
also in the same expert which takes different augmented images as
the input. In other words, given an input image, if we augment it by
several times and then feed them into the network, the corresponding
outputs also vary greatly. Inspired by this, we further propose the
Intra-Expert Collaborative Learning (IntraCL), which helps the network
to alleviate the uncertainty within the expert. To be specific, for an
input image x;, assume it will be augmented for T times (like using
RandAugment [68] or other data augmentation strategies), and the
augmented images are denoted as {xl?},T: . All the augmented images
are fed to the expert-k and produce the corresponding balanced proba-
bilities {p(xf; Gk)}’i]. Then, the knowledge distillation is performed to
guide the network learning reliable and consistent outputs for different
augmented copies. Moreover, the distillation also allows the knowledge
transferring among the different augmented copies, which helps them
to learn extra knowledge from each other. Similarly, KL divergence is
adopted for loss calculation, and the corresponding loss of expert-k can
be represented as:

T T
2
L = 7 =T & 2K LGS 0011 0,) ®)
t T#t
Since the proposed method is a multi-expert framework, the proposed
IntraCL would be applied to all experts. The summed IntraCL loss on
all experts is represented as:

g  _ Gk
Limra - Z Lintra (6)
k

3.4. Hard category mining

In representation learning, one well-known and effective strategy to
boost performance is Hard Example Mining (HEM) [69]. HEM claims
that different examples have different importance, specifically, hard
samples are more important than easy samples. Therefore, HEM se-
lects hard samples for training, while discarding easy samples which
contribute very little and are even detrimental to features learning.
However, directly applying HEM to long-tailed visual recognition may
distort the data distribution and make it more skewed in long-tailed
learning. Although it cannot be directly used for long-tailed learning,

(RN EREEEENEN EEEENE
Output Logits

Value

For every J Ground Truth

single sample

Select TopK
(include GT)

SoftMax

[ HEN B N NN
Hard Categories’ Probability

Hard Category Mining
Fig. 4. An illustration of the proposed HCM module.

it still gives us an important inspiration, that is, do different categories
have different degrees of importance in the training process?

When conducting the classification, the image may be wrongly
classified to some confusing categories, like the categories similar to
the target category. Therefore, the network should pay close attention
to those confusing categories. The confusing category is also called as
the hard category in this paper. To be specific, the hard categories
are defined as the categories that are not the ground-truth category
but with high predicted scores. With the help of focusing on hard
categories, the ability of distinguishing the sample from the negative
hard categories can be explicitly improved. As shown in Fig. 4, we
propose a Hard Category Mining (HCM) to select the hard categories
and the target category out, and re-calculate the probabilities over
those categories, which are used to be trained in the NFL to increase the
ability of distinguishing the sample from the negative hard categories.
To be specific, assume we have C categories in total and suppose Cj,,
categories are selected to focus on. For the sample x; and expert k, the
corresponding set 'I’f‘ containing the outputs of selected categories is
denoted as:

Wi =TopHard{z};|j # y;} Uz}, } @)
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where TopH ard means selecting C,,,., examples with largest values. In
order to better adapt to long-tailed learning, we compute the probabil-
ities of the selected categories in a balanced way, which is shown as:

n;exp(zF)
P 0) = [ ————— Iz € ¥f). ®

k
sk ewk njexp(z;)
3.5. Nested feature learning

The nested feature learning means that the feature learning is
conducted on both the global view of all categories and the partial
view of some important categories. Following this idea, the nested
feature learning is conducted on the individual learning as well as the
intra-expert and inter-expert collaborative learning. For the individual
learning, formulating the learning in a nested way helps the network
achieve a global and robust learning on all categories, and also en-
hances the meticulous distinguishing ability to distinguish the input
sample from the most confusing categories. To be specific, the loss on
the selected important categories for the balanced individual learning
is denoted as:

Ly, ==Y 1og(P}, (x;:0,)). ©)
k

The whole loss of the balanced individual learning is the sum of
the global part Lfi, and partial part prﬁ, which is illustrated as the
following formula:

Ly =Lj,+Lp,. (10

The intra-expert and inter-expert collaborative learning also can be
conducted from the global view on all categories and a partial view
on the selected important categories. For InterCL, the corresponding
distillation on the selected important categories can be written as:

K K
P _ 2 (g - PO
Liver = KK =1 Zk qékKL(p (x;: 001 1p" (x;: 6,))- an

Similarly, the whole loss of the InterCL is as following:

Limer = Lig;n‘er + Ll?;)ner‘ (12)
The term Lﬁner transfers the global and structured knowledge from each

all categories, and the other term L” ~ focuses on some important
categories in which the experts vary greatly in predictions. For the
IntraCL, the distillation on some selected important categories can be
formulated in a similar way, and we denote it as L”, . Therefore, the
IntraCL with a nested form can be formulated as:

+17 a3

intra®

=19

intra

L

intra

3.6. Model training

The overall loss in our proposed method consists of three parts: the
loss L,; for learning each expert individually to enhance model’s dis-
criminative capability, the loss L,,,, and L,,,, for cooperation among
different augmented images and different experts, respectively. The
overall loss L is formulated as:

L= Lbi/ + )“1 Limra + )'2Limer (14)

where A, and 4, denote the weighting coefficients for IntraCL and
InterCL, respectively. Considering both IntraCL and InterCL are col-
laborative learning, we set their coefficients to the same and denote
it as 4 (i.e., A = 4; = A,). Those losses are optimized cooperatively
and concurrently, which enhances the discriminative capability of the
network and reduces the uncertainties in predictions. Moreover, our
method is essentially a multi-expert framework, and therefore, the
prediction in the test stage can be obtained by each single network or
an ensemble of all of them, one for high efficiency and one for high
performance.
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4. Experiments
4.1. Datasets and protocols

We conduct experiments on five widely used datasets, including
CIFAR10-LT [21], CIFAR100-LT [21], ImageNet-LT [11], Places-LT [9],
and iNaturalist 2018 [70].

CIFAR10-LT and CIFAR100-LT [21] are created from the original
balanced CIFAR datasets [71]. Specifically, the degree of data imbal-
ance in datasets is controlled by the use of an Imbalance Factor (IF),
which is defined by dividing the number of the most frequent category
by that of the least frequent category. The imbalance factors of 100 and
50 are employed in these two datasets. ImageNet-LT [11] is sampled
from the popular ImageNet dataset [7] under long-tailed setting follow-
ing the Pareto distribution with power value a=6. ImageNet-LT con-
tains 115.8 K images from 1,000 categories. Places-LT is created from
the large-scale dataset Places [9]. This dataset contains 184.5 K images
from 365 categories. iNaturalist 2018 [70] is the largest dataset
for long-tailed visual recognition. iNaturalist 2018 contains 437.5 K
images from 8,142 categories, and it is extremely imbalanced with an
imbalanced factor of 512.

According to previous works [21,24] the top-1 accuracy is employed
for evaluation. Moreover, for iNaturalist 2018 dataset, we follow the
works [24,29] to divide classes into many (with more than 100 images),
medium (with 20 ~ 100 images) and few (with less than 20 images)
splits, and further report the results on each split.

4.2. Implementation details

For CIFAR10/100-LT, following [25,37], we adopt ResNet-32 [1] as
our backbone network and liner classifier for all the experiments. Input
images are randomly cropped with size 32 x 32. We utilize ResNet-
50 [1], ResNeXt-50 [72] as our backbone network for ImageNet-LT,
ResNet-50 for iNaturalist 2018 and pretrained ResNet-152 for Places-LT
respectively, based on [11,24,73]. Following [48], the cosine classifier
is utilized for these models. Following previous works [24,34,73], we
resize the input image to 256 x 256 pixels and take a 224 x 224 crop
from the original image or its horizontal flip. We use the SGD with
a momentum of 0.9 and a weight decay of 2 x 10~* as the optimizer
to train all the models. As for experiments on CIFAR10/100-LT, the
initial learning rate is 0.1 and decreases by 0.1 at epoch 320 and 360,
respectively. The learning rate for Places-LT is 0.02 and decreases by
0.1 at epoch 10 and 20. For the rest datasets, the initial learning rate
is set to 0.2 and decays by a cosine scheduler to 1 x 10~*. Unlike
the previous works PaCo [73] and NCL [74], we utilize less training
epochs for ImageNet-LT and iNaturalist 2018, which is 200. And the
training epochs for Places-LT is 30, same as previous works [24,73].
Cumulative gradient [75] is utilized for ImageNet-LT and iNaturalist
2018. Specifically, the training batch size is set to 128, but the gradient
keeps accumulating and the parameters are updated every two epochs.
This trick uses less GPU memory to achieve similar training results
as batch size of 256. Two experts are utilized for all datasets. Two
augmented copies are utilized for ImageNet-LT and four for the rest.
In addition, for fair comparison, following [73], RandAugment [68] is
also used for all the experiments. The influence of RandAugment will
be discussed in detail in the Section 4.4. These models are trained on
8 NVIDIA Tesla V100 GPUs. The g = Cy,,,/C in HCM is set to 0.3, and
the coefficient of InterCL and IntraCL loss A is set to 0.6. The influence
of # and A will be discussed in detail in Section 4.4.

4.3. Comparisons to prior arts

We compare the proposed NCL++ with previous state-of-art meth-
ods, like BBN [34], RIDE [27], NCL [74]. Besides, the baseline result
of single network with using BSCE loss is also reported. Two experts
is the default setting for NCL++, which has smaller model size than
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Table 1

Comparisons on CIFAR100-LT and CIFAR10-LT datasets with the IF of 100 and 50.
Method Ref. CIFAR100-LT CIFAR10-LT

100 50 100 50

CB Focal loss [21] CVPR’19 38.7 46.2 74.6 79.3
LDAM+DRW [25] NeurIPS’19 42.0 45.1 77.0 79.3
LDAM+DAP [76] CVPR’20 44.1 49.2 80.0 82.2
BBN [34] CVPR’20 39.4 47.0 79.8 82.2
LFME [26] ECCV’20 42.3 - - -
CAM [37] AAAD'21 47.8 51.7 80.0 83.6
Logit Adj. [47] ICLR21 43.9 - 77.7 -
Xu et al. [77] NeurIPS’21 45.5 51.1 82.8 84.3
LDAM+M2m [78] CVPR’21 43.5 - 79.1 -
MiSLAS [79] CVPR’21 47.0 52.3 82.1 85.7
LADE [46] CVPR’21 45.4 50.5 - -
Hybrid-SC [80] CVPR21 46.7 51.9 81.4 85.4
DiVE [81] ICCV’21 45.4 51.3 - -
SSD [82] ICCV’21 46.0 50.5 - -
PaCo [73] ICcv’21 52.0 56.0 - -
XxERM [83] AAAT22 46.9 52.8 - -
RISDA [84] AAAI'22 50.2 53.8 79.9 84.2
Batchformer [85] CVPR’22 52.4 - - -
RIDE (4 experts)® [27] ICLR21 49.1 - - -
ACE (4 experts)® [29] ICCVv’21 49.6 51.9 81.4 84.9
TLC (4 experts)® [51] CVPR’22 49.8 - 80.4 -
NCL [74] CVPR’22 53.3 56.8 84.7 86.8
NCL (3 experts)* [74] CVPR’22 54.2 58.2 85.5 87.3
BSCE (baseline) - 50.6 55.0 84.0 85.8
NCL++ - 54.8 58.2 86.1 88.0
NCL++ (2 experts)? - 56.3 59.8 87.2 88.8

2 Indicates the ensemble performance is reported.

Table 2

Comparisons on ImageNet-LT and Places-LT datasets.
Method Ref. ImageNet-LT Places-LT

Resl0 Res50 ResX50 Resl52

OLTR [11] CVPR’'19 34.1 - - 35.9
BBN [34] CVPR’20 48.3 49.3 -
NCM [24] ICLR’20 35.5 44.3 47.3 36.4
cRT [24] ICLR’20 41.8 47.3 49.6 36.7
r-norm [24] ICLR’20 40.6 46.7 49.4 37.9
LWS [24] ICLR’20 41.4 47.7 49.9 37.6
BSCE [36] NeurIPS’20 - - - 38.7
Xu et al. [77] NeurIPS’21  42.9 48.4 - -
DisAlign [48] CVPR’21 - 52.9 - -
DiVE [81] ICcv’21 - 53.1 - -
SSD [82] ICCVv’21 - - 56.0 -
PaCo [73] ICCVv’21 - 57.0 58.2 41.2
ALA Loss [50] AAAT'22 - 52.4 53.3 40.1
xERM [83] AAAT'22 - - 54.1 39.3
RISDA [84] AAAD22 - 50.7 - -
MBJ [86] AAAT22 - - 52.1 38.1
WD [87] CVPR’22 - 53.9 - -
BatchFormer [85] CVPR’22 47.6 57.4 - 41.6
RIDE (4 experts)® [27] ICLR21 - 55.4 56.8 -
MBJ+RIDE (4 experts) [86] AAAI'22 - - 57.7 -
ACE (3 experts)* [29] ICCV’21 44.0 54.7 56.6 -
TLC (4 experts)* [51] CVPR22 - 55.1 - -
NCL [74] CVPR’22 46.8 57.4 58.4 41.5
NCL (3 experts)* [74] CVPR’22 47.7 59.5 60.5 41.8
BSCE (baseline) - 45.7 53.9 53.6 40.2
NCL++ - 49.0 58.0 59.1 42.0
NCL++ (2 experts)® - 49.9 59.6 60.9 42.4

2 Indicates the ensemble performance is reported.

NCL, but achieves better performance. Comparisons on CIFAR10/100-
LT are shown in Table 1, comparisons on ImageNet-LT and Places-LT
are shown in Table 2, and comparisons on iNaturalist 2018 are shown
in Table 3. Our proposed method achieves the state-of-the-art perfor-
mance on all datasets. For only using a single expert for evaluation,
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Table 3
Comparisons on iNaturalist 2018 dataset with ResNet-50.
Method Ref. iNaturalist 2018
Many Medium Few All

OLTR [11] CVPR’19 59.0 64.1 64.9 63.9
BBN [34] CVPR’20 49.4 70.8 65.3 66.3
DAP [76] CVPR’20 - - - 67.6
NCM [24] ICLR’20

cRT [24] ICLR’20 69.0 66.0 63.2 65.2
r-norm [24] ICLR’20 65.6 65.3 65.9 65.6
LWS [24] ICLR’20 65.0 66.3 65.5 65.9
LDAM+DRW [25] NeurIPS’19 - - - 68.0
Logit Adj. [47] ICLR’21 - - - 66.4
CAM [37] AAAI'21 - - - 70.9
SSD [82] ICCV’21

PaCo [73] ICCV’21 - - - 73.2
RIDE (3 experts)® [27] ICLR’21 70.9 72.4 73.1 72.6
ACE (3 experts)* [29] ICCV’21 - - - 72.9
ALA Loss [50] AAAT22 71.3 70.8 70.4 70.7
xERM [83] AAAT'22 - - - 67.3
RISDA [84] AAAT22 - - - 69.1
MBJ [86] AAAT22 - - - 70.0
MBJ+RIDE [86] AAAT'22 - - - 73.2
WD [87] CVPR’22 71.2 70.4 69.7 70.2
BatchFormer [85] CVPR’22 65.5 74.5 75.8 74.1
NCL [74] CVPR’22 72.0 74.9 73.8 74.2
NCL (3 experts)* [74] CVPR’22 72.7 75.6 74.5 74.9
BSCE (baseline) - 67.5 72.0 71.5 71.4
NCL++ - 71.6 73.9 74.7 74.0
NCL++ (2 experts)® - 72.2 75.3 75.7 75.2

2 Indicates the ensemble performance is reported.

our NCL++ outperforms previous methods on CIFAR10-LT, CIFAR100-
LT, ImageNet-LT and Places-LT with accuracies of 86.1% (IF of 50),
54.8% (IF of 100), 58.0% (with ResNet-50) and 42.0%, respectively.
Compared with NCL [74], the proposed NCL++ achieves significant
improvements on CIFAR-LT (54.8% vs. 53.3%) and ImageNet-LT with
ResNet10 (49.0% vs. 46.8%). When further using an ensemble for
evaluation, the performance on CIFAR10-LT, CIFAR100-LT, ImageNet-
LT, Places-LT and iNaturalist2018 can be further improved to 87.2% (IF
of 50), 56.3% (IF of 100), 59.6% (with ResNet-50), 42.4% and 75.2%,
respectively. NCL++ uses fewer experts than NCL (2 experts vs.
3 experts), but achieves better ensemble performance on all the
datasets. Similar to NCL, a single network can be used for evaluation,
which will not bring extra computation but still outperforms previous
multi-experts method, like ACE, TLC, etc. When using ensemble of two
experts, the performance has been further significantly improved.

4.4. Component analysis

Influence of the ratio of hard categories. The ratio of selected
hard categories is defined as § = Cj,,.,/C. Experiments on our BIL
model are conducted within the range of g from 0 to 1 as shown in
Fig. 5(a). The highest performance is achieved when setting  to 0.3.
Setting f# with a small and large values brings limited gains due to the
under and over explorations on hard categories.

Effect of loss weight. To search an appropriate value for A, exper-
iments on the proposed NCL++ with a series of 1 are conducted as
shown in Fig. 5(b). 4 controls the contribution of knowledge distilla-
tion among multiple experts and augmented images in total loss. The
best performance is achieved when A = 0.6, which shows a balance
is achieved between individual learning and collaborative learning.
Intuitively, the network achieves marginal improvements with a small
or a large 4, which shows that both ignoring and over emphasizing the
collaborative learning are not optimal.

Impact of different number of augmented copies in IntraCL.
As shown in Fig. 6(a), we take experiments for IntraCL with different
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Fig. 6. (a) Comparisons of using different number of augmented image copies in
IntraCL with a single network. (b) Comparisons of using hard categories selected by
HCM or random categories. All experiments are conducted on CIFAR100-LT with an IF
of 100.

number T of augmented copies. The experiments are taken without
using InterCL and thus only a single expert is employed. As we can
see, the performance achieves the highest when taking four augmented
copies for an image. Besides, T = 2 is also a nice choice where
the performance can be dramatically improved without a lot of extra
computation.

Hard categories vs. random categories. To further verify the
effectiveness of the proposed HCM, we also take the experiments with
random categories for comparisons as shown in Fig. 6(b) (denoted by
‘BSCE + random’). ‘BSCE + random’ performs slightly better than the
baseline method ‘BSCE’, but its performance is still far worse than
‘BSCE + HCM'. It shows that training on hard categories selected by the
proposed HCM really helps to improve the discriminative capability of
the model.

Impact of different number of experts in InterCL. As shown in
Fig. 7, experiments using different number of experts are conducted.
The ensemble performance is improved steadily as the number of
experts increases, while for only using a single expert for evaluation,
its performance can be greatly improved when only using a small
number of expert networks, e.g., two experts. Therefore, two experts
are mostly employed in our multi-expert framework for a balance
between complexity and performance.

Single expert vs. multi-expert. Our method is essentially a multi-
expert framework, and the comparison among using a single expert or
an ensemble of multi-expert is a matter of great concern. As shown in
Fig. 7, the ensemble can perform better than a single network on the
performance over all classes and many splits.

Influence of data augmentations. Data augmentation is a common
tool to improve performance. For example, previous works [29,37,
79] use Mixup [88] and RandAugment [68] to obtain richer feature
representations. Our method follows PaCo [73] to employ RandAug-
ment [68] for experiments. As shown in Table 4, the performance
is improved by about 3% to 5% when employing RandAugment for
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Fig. 7. Comparisons of using different expert numbers of InterCL on CIFAR100-LT with
an IF of 100. We report the performance on both a single network and an ensemble.
Specifically, the performance on a single network is reported as the average accuracy
on all experts, and the ensemble performance is computed based on the averaging
logits over all experts.

Table 4
Comparisons of training the network with simple augmentation (SimAug), Ran-

dAugment (RandAug) and Mixup. Experiments are conducted on CIFAR100-LT
dataset with an IF of 100.

Method SimAug RandAug Mixup
Current SOTA 49.1* [27] 52.4 [85] 49.4* [29]
CE 41.68 44.79 41.85
BSCE 45.69 50.60 49.84
BSCE+NCL++ 48.76 54.82 51.37
BSCE+NCL++* 51.57 56.33 53.38

S

Indicates the ensemble performance is reported.

training. However, our high performance depends not entirely on Ran-
dAugment. When using Mixup for augmentation, our method achieves
the performance of 51.37% and 53.38% for single expert and ensemble
of them respectively. Even with the simple data augmentation (random
crop, random horizontal flip), our method still performs very well, the
ensemble model reaches an amazing performance of 51.57%. The re-
sults show the superiority of our method over state-of-the-art methods
for both simple and complex data augmentation.

Analysis on computation cost. We compare the computation cost
between the proposed method and other state-of-the-art (SOTA) meth-
ods as shown in Table 5. For a fair comparison, we set two experts
equally for both NCL and NCL++. Due to using multiple networks for
collaborative learning, NCL and NCL++ have more computation costs
in the training stage. In the test stage, the NCL and its improved version,
NCL++, only uses a single network for evaluation and it contains less
computation cost but with a higher accuracy compared with other
SOTA methods, like NCM [24] and TCL [51]. Moreover, compared with
NCL++, NCL contains more computations (with higher GFLOPs) while
a lower performance accuracy (57.4% vs. 58.0%). As we know, the only
difference between NCL and NCL++ is that the self-supervision module
is replaced with the newly proposed IntraCL module. Obviously, by
replacing the self-supervision part with IntraCL, the computation cost
is largely reduced while the performance is improved.
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Table 5

Comparisons of computation cost between the proposed method and
other state-of-the-art methods. The analysis is conducted on ImageNet-LT
dataset with the network of ResNet-50.

Method FLOPs (G) Accuracy (%)
Train Test

NCM [24] 4.11 4.11 44.3

TLC [51] (3 experts) 6.55 6.55 55.1

NCL [74] (3 experts) 17.03 4.117 57.4

NCL++ (2 experts) 8.24 4.11* 58.0

a Evaluating the model with a single expert.

Table 6
Comparisons of using fixed and learnable loss weights. The
experiments are conducted on CIFAR100-LT dataset with an

IF of 100.
Method Acc. on train set Acc. on test set
Fixed 76.7 54.8
Learnable 82.3 54.5

Fixed vs. learnable loss weights. In this paper, we fixedly set
the loss weights 4, and 4, and select the appropriate values for them
by a cross-validation (see Fig. 5). The loss weights also can be learn
automatically as opposed to the fixed values. In this sub-section, we
set loss weights A, and 4, as learnable parameters and compare it
with the fixed manner. Following the work [61], we normalize the two
learnable values 4, and 4, by a softmax function before using them
to aggregate the losses, which ensures that 4, and 4, are non-negative
values and A, + 4, = 1. The experimental results are shown in Table 6.
As we can see, compared to the fixed weights, using the learnable loss
weights can obtain a higher accuracy on the train set but receive a
lower accuracy on the test set. It shows that the learnable loss weights
may lead to overfitting and setting the parameters as fixed values may
achieve better generalizations.

Ablations studies on all components. In this sub-section, we per-
form detailed ablation studies for our NCL++ on CIFAR100-LT dataset,
which is shown in Table 7. To conduct a comprehensive analysis,
we evaluate the proposed components including Balanced Individual
Learning (BIL), IntraCL, InterCL and the Nested Feature Learning on
hard categories (denoted as ‘NFL,,.,”). The ablation studies start from
a naive method, which does not take any one of above components. To
be specific, the naive method is indeed a plain network with taking the
Cross-Entropy (CE) loss as the loss function. Compared with the naive
method, the BIL improve the performance from 44.79% to 50.60%,
which is a considerable improvement. This is because the naive method
does not consider anything about the imbalanced data distribution.
For the BIL, it dramatically increases the contributions of tail classes
while suppressing that of head classes, which could greatly improve
the performance by picking low hanging fruit. For other components

Table 7

Ablation studies on CIFAR100-LT dataset with an IF of 100. ‘BIL’, ‘InterCL’ and ‘IntraCL’
represent the individual learning or collaborative learning of the global view on all
categories. For ‘NFL,,.,’, it means adding the nested feature learning of the partial
view on hard categories. ‘Ensemble’ means that the final predictions are obtained by
averaging the results on multiple experts. In the proposed NCL++, two experts are
employed.

BIL InterCL

IntraCL Ensemble Acc.

44.79

50.60

v 51.24

v 53.13
53.94
54.36
54.82
56.33

NFLygr4

AN N N N N

SNENEN
ANANENEN
<

like IntraCL, InterCL and NFL,,,, all of them can steadily improve
the performance. For example, based on BIL, the proposed InterCL and
IntraCL improve the performance by 2.53% and 3.34%, respectively.
When both InterCL and IntraCL are employed, this improvement can be
enlarged to 3.76%. Then, the NFL,,,, also gains the improvements from
54.36% to 54.82%. Finally, we take the model ensemble of all experts
(two experts are employed) to produce the final predictions, and the
performance is further improved to 56.33%. The steadily performance
improvements clearly show the effectiveness of the proposed NCL++.

4.5. Discussion and further analysis

KL distance of pre/post collaborative learning. To analyze the
uncertainty of pre/post collaborative learning, we visualize the average
KL distance of two different augmented copies (see Fig. 9(a)) or two
experts (see Fig. 9(b)) with CE, BSCE, NCL and NCL++. As we can
see, both CE and BSCE do not consider the uncertainty in long-tailed
learning, and thus the corresponding learned experts still show large
KL distances among different experts and different image augmented
copies. For the NCL, it only considers the learning uncertainty among
different experts. Therefore, the KL distance between different image
augmented copies is still large in NCL, which shows the intra-expert
uncertainty has not been reduced. For the proposed NCL++, the KL
distances between different experts and different image augmented
copies are greatly reduced, which shows that both the intra- and
inter-expert uncertainties are effectively alleviated.

Score distribution of hardest negative category. Deep models
normally confuse the target sample with the hardest negative cate-
gory. Here we visualize the score distribution for the baseline method
(‘BSCE’) and our method (‘NCL++’) as shown in Fig. 11(a). The higher
the score of the hardest negative category is, the more likely it is to pro-
duce false recognition. The scores in our proposed method are mainly
concentrated in the range of 0-0.4, while the scores in the baseline
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Fig. 9. The average KL distance between (a) the output probabilities of two experts with respect to the same image and (b) the output probabilities of two augmented image
copies with respect to the same expert. Analysis is conducted on CIFAR100-LT with an IF of 100.
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Fig. 10. t-SNE visualization between BSCE and NCL++ on CIFAR10-LT with an IF of
100. Different colors indicate different categories.

model are distributed in the whole interval (including the interval with
large values). This shows that our NCL++ can considerably reduce the
confusion with the hardest negative category.

t-SNE visualizations. We use the t-SNE [89] to visualize the fea-
tures of the baseline method BSCE and the proposed NCL++. Compared
to the baseline BSCE, the two-dimensional t-SNE map of the proposed
NCL++ seems to be better clustered as shown in Fig. 10, (e.g., the
red color). It shows that the proposed NCL++ generate more compact
feature representation than the baseline BSCE, where the features of
the same category extracted by the network stay closer. The nicely
clustered and compact features indicate the model are well-trained for
long-tailed visual recognition, which can achieve better classification
and recognition performance.

Experiments on balanced datasets. Although NCL++ is proposed
based on the phenomenon of long-tailed datasets, except for the re-
balanced part, the rest components of NCL++ can still be applied
to classification tasks on balanced datasets, such as CIFAR [71]. We
conduct experiments on CIFAR100 as shown in Table 8. Cross Entropy
(denoted as ‘CE’) is utilized as the baseline method and the result
of the single expert is reported. As we can see from the results, the
proposed NCL++ achieves considerable improvement over the baseline.
The performance is improved by 2.61% with ResNet-10 and 3.20% with
ResNet-32. It is undeniable that even in balanced datasets there are
still confusing categories and the uncertainty of model training will still
exist. In these scenarios, NCL++ also shows its advantages.

Analysis on all categories. As shown in Fig. 8, we present the
accuracy on all categories for three methods, namely the proposed
method NCL++, the naive method CE and the baseline method BSCE.
Compared with the naive method CE, the proposed method NCL++
can dramatically improve the performance of tail classes, which mainly

10

Table 8

Comparisons on CIFAR100 dataset.

Method ResNet-10 ResNet-32
CE 64.45 73.68
NCL 64.79 74.24
NCL++ 67.06 76.88

benefits from the balanced learning (including balanced individual
learning and balanced online distillation). For example, for the sixth
category from the last, the accuracy is improved from about 13%
to 74%, where over 60% is improved. Moreover, compared with the
baseline method BSCE, our NCL++ can improve the performance on
almost all categories, which clearly shows the effectiveness of the
proposed collaborative learning and NFL.

Visual comparisons to prior arts. As shown in Fig. 11, we compare
the proposed method with prior arts on many (with more than 100
images) and few (with less than 20 images) splits. The comparisons
on CIFAR100-LT are shown in Fig. 11(b). As we can see, the proposed
method achieves remarkable improvements on both many and few
splits compared with previous SOTAs (e.g., RIDE and ACE). We take the
comparisons on CIFAR100-LT as an example. Many previous methods
could perform well on many split (69.2% for RIDE) but perform poorly
on few split (only 26.3% for RIDE). For the proposed NCL++, it
dramatically improves the accuracy of the few split to 38.7% with a
single network through collaborative learning.

InterCL without balancing probability. As shown in Fig. 12(a),
when removing the balancing probability in InterCL (denoted as ‘w/o
balanced scale’) both the performance of a single expert and an ensem-
ble decline about 1%, which manifests the importance of employing the
balanced probability for the distillation in long-tailed learning.

Offline distillation vs. InterCL. To further verify the effectiveness
of our InterCL, we employ an offline distillation for comparisons.
The offline distillation (denoted as ‘BIL+OffDis’) first employs three
teacher networks of NIL to train individually, and then produces the
teacher labels by using the averaging outputs over three teacher mod-
els. The comparisons are shown in Fig. 12(b). Although BIL+OffDis
gains some improvements via an offline distillation, but its performance
still 1.5% worse than that of BIL+InterCL. It shows that our InterCL
of the collaborative learning can learn more knowledge than offline
distillation.

Performance vs. data scale. We have conducted more experiments
on ImageNet-LT to explore the relationship between performance and
dataset size. As shown in Table 9, the performance will increase as
the dataset scale increases. Compared to baseline method (BSCE),
NCL++ consistently shows improvements across different dada scales.
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Fig. 11. (a) The distribution of the probability of hardest negative category. (b) Comparisons of our proposed method and some representative methods over many and few splits.

Experiments are conducted on CIFAR100-LT with an IF of 100.
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Fig. 12. (a) Comparisons of whether using balanced scale in InterCL. (b) Comparisons
of using offline distillation or our InterCL. Analysis is conducted on CIFAR100-LT with
an IF of 100.

Table 9
The impact of training data with different ratios. Experiments
are conducted on ImageNet-LT with ResNet-10.

Data ratio Baseline Acc. (%) NCL++ Acc. (%)

20% 40.64 44.24 (+3.60)

40% 44.04 47.93 (+3.89)

60% 44.66 48.05 (+3.39)

80% 44,91 48.70 (+3.79)

100% 45.70 49.00 (+3.30)
Table 10

Comparisons between our NCL++ and other
contrastive learning methods. Experiments
are conducted on CIFAR100-LT with an IF of

100.

Method Acc. (%)
Hybrid-PSC [80] 45.0
PaCo [73] 52.0
NCL [74] 53.3
NCL++ (ours) 54.8

For example, our NCL++ improves the performance by 3.60% when
only using 20% data, and improves the performance by 3.30% when
using all data.

Comparisons to contrastive learning methods. There are some
similarities between our method and contrastive learning methods. For
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contrastive learning, it aims to narrow the distance between positive
pairs (augment copies from the same image) by contrastive learning
losses. For our NCL++, it employs the KL loss to minimize the distance
between positive sample pairs. Specifically, the definition of the pos-
itive sample pairs are two folds: one is the different augment copies
from the same image in our IntraCL, and the other is the different
predictions of the same image from different networks in InterCL.
However, there are also some differences among them. For example,
contrastive learning is an unsupervised method while our method is a
supervised method. It is precisely because of supervised learning where
each sample has a certain label, we further propose the nested feature
learning to increase the network’s ability to distinguish the sample from
the negative hard categories. We have compared the performance of
our method and other contrastive learning based methods (including
Hybrid-PSC [80] and PaCo [73]) as shown in Table 10. For the super-
vised contrastive learning methods, like [90], the previous work [73]
has conducted lots of experiments to show that it is not directly
applicable to long-tailed recognition. Therefore, here we do not take
supervised contrastive learning methods for comparisons. As we can
see, our method outperforms them by a considerable margin. Regarding
the aspect of hard sample mining, Hybrid-PSC enhances training on
the tail by reweighting, while PaCo enhances training on the tail by
resampling. These approaches mine hard samples based on categories.
While in our method, we proposed HCM to focus on each individual
sample, extracting hard categories specific to that sample. Therefore,
our method is still different from the hard example mining, and has not
been proposed before. We further take a simple experiment to compare
the performance of our IntraCL and a classic contrastive learning MoCo.
Actually, when replacing the IntraCL with MoCo’s contrastive learning
module, our NCL++ degenerates to the previous version NCL [74].
As shown in Table 10, our IntraCL could achieve better performance,
which shows the advantages of the proposed method.

5. Conclusions

In this work, we have proposed a Nested Collaborative Learning
(NCL++) to enhance the discriminative ability of the model in long-
tailed learning by collaborative learning. Five components including
BIL, IntraCL, InterCL, HCM and NFL were proposed in our NCL++.
The goal of BIL is to enhance the discriminative ability of a single
network. IntraCL and InterCL conduct the collaborative learning to
reduce the learning uncertainty. For HCM and NFL, they aim to select
hard negative categories and then formulate the learning in a nested
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way to improve the meticulous distinguishing ability of the model.
Extensive experiments have verified the superiorities of our method
over the state-of-the-art.

Limitations and broader impacts. One limitation is that more
GPU memory and computing power are needed when training our
NCL++ with multiple experts and augmented copies, which will bring
higher training costs. But fortunately, one expert is also enough to
achieve promising performance in inference, which still shows some
advantages compared to the ensemble-based multi-expert approaches.
Moreover, the proposed method improves the accuracy and fairness of
the classifier, which promotes the visual model to be further put into
practical use. To some extent, it helps to collect large datasets without
forcing class balancing preprocessing, which improves efficiency and
effectiveness of work. The negative impacts can yet occur in some
misuse scenarios, e.g., identifying minorities for malicious purposes.
Therefore, the appropriateness of the purpose of using long-tailed
classification technology is supposed to be ensured with attention.
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