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Abstract. Domain adaptive object detection (DAOD) aims to adapt
the detector from a labelled source domain to an unlabelled target
domain. In recent years, DAOD has attracted massive attention since
it can alleviate performance degradation due to the large shift of data
distributions in the wild. To align distributions between domains, adver-
sarial learning is widely used in existing DAOD methods. However, the
decision boundary for the adversarial domain discriminator may be inac-
curate, causing the model biased towards the source domain. To alleviate
this bias, we propose a novel Frequency-based Image Translation (FIT)
framework for DAOD. First, by keeping domain-invariant frequency com-
ponents and swapping domain-specific ones, we conduct image transla-
tion to reduce domain shift at the input level. Second, hierarchical adver-
sarial feature learning is utilized to further mitigate the domain gap at
the feature level. Finally, we design a joint loss to train the entire net-
work in an end-to-end manner without extra training to obtain translated
images. Extensive experiments on three challenging DAOD benchmarks
demonstrate the effectiveness of our method.

Keywords: Unsupervised Domain Adaptation · Object Detection ·
Frequency Domain · Image Translation · Adversarial Learning

1 Introduction

In recent years, object detectors [1–3] based on deep convolutional neural net-
works have demonstrated outstanding performance on a variety of datasets. How-
ever, existing object detection models still face serious challenges when deployed
in practice such as autonomous driving and robotic manipulation, due to var-
ious changes in weather, illumination, object appearance, etc. These changes
may lead to domain gaps between the training and testing data, which has been

This work was supported in part by the National Key Research and Development Plan
of China under Grant 2020AAA0108902 and the Strategic Priority Research Program
of Chinese Academy of Science under Grant XDB32050100.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13625, pp. 240–252, 2023.
https://doi.org/10.1007/978-3-031-30111-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30111-7_21&domain=pdf
https://doi.org/10.1007/978-3-031-30111-7_21


Frequency-Based Image Translation for Domain Adaptive Object Detection 241

Fig. 1. Visualization of frequency decomposition of source image: (a), (b) and (c) show
original image, low-pass and high-pass filtered image.

observed to cause dramatic drops in the performance of the trained detector [6].
Although we can annotate for each new data to mitigate the problem, it is costly
and even infeasible because of the countless situations in the real world. There-
fore, adaptive object detectors that can bridge the domain gap from the source
to the target domain are highly desirable.

Domain adaptive object detection (DAOD), which trains with labelled source
datasets and unlabelled target datasets, aims to tackle domain shift to get
better performance on the visually distinct target domain. Many previous
works [4,6,7,20,22–24] attempt to utilize adversarial feature learning [8] to align
feature distributions to extract domain-invariant features. But the adversarial
training process could be unstable [22,24], which makes the decision boundary
for the adversarial domain discriminator inaccurate, causing the model biased
towards the source domain. To alleviate this problem, some methods [5,9,16,21]
utilize the image translation model GANs, like CycleGAN [10] to translate source
images to target-like images or vice versa to further mitigate the domain gap
and make the detector perform better on the target datasets. However, GANs for
domain adaption object detection have two following limitations. First, GANs
could fail to keep semantic consistency and tend to lose important structural
characteristics [25]. Second, GANs-based methods need extra training to pre-
pare translated images before training the adaptive detector, which is time-
consuming.

To address the above limitations, we propose a novel Frequency-based Image
Translation method to mitigate the input-level domain gap without extra time-
consuming training. Inspired by digital signal processing theories [17], we exploit
the frequency information to translate the image style and maintain semantic
consistency. Intuitively, the low-frequency component largely captures domain-
specific information, such as colours and illuminations [26], while the high-
frequency component mainly obtains domain-invariant information, such as
edges and shapes, which are important details of objects [19], as shown in Fig. 1.
Motivated by this, we present the Frequency-based Image Translation (FIT)
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Fig. 2. Overview of the proposed framework. (a) illustrates Frequency-based Image
Translation (FIT) module, where green arrows represent the flow of source data and
orange arrows represent the flow of target data. The overall pipeline is illustrated in
(b). The source Xs and target Xt images are fed into FIT to obtain target-like images
Xs→t, and Xs→t and Xt are as the inputs for the object detector. We align the local
and global feature by a local domain classifier Dl and a global domain classifier Dg.
F1 and F2 denote the different level feature extractors. The context vectors v1,2 are
extracted by the domain classifiers and concatenated with features of regions before
the final fully connected layer. (Color figure online)

module, which decomposes the image into multiple frequency components, keeps
domain-invariant frequency components unchanged and swaps domain-specific
ones. Moreover, a novel module called Frequency Mask is designed to identify
whether the frequency component is domain-specific in FIT. Then, hierarchical
adversarial feature learning is utilized to further boost the performance. The
entire network can be optimized in an end-to-end manner under the supervision
of a joint loss function. The contributions of this work can be summarized as
follows:

– A novel Frequency-based Image Translation (FIT) method is presented for
DAOD, which leverages frequency information to mitigate the domain shift
at the input level. To further boost the adaptation performance, we introduce
hierarchical adversarial learning to align distributions at the feature level.

– Different from traditional GANs-based methods, the entire network can be
trained in an end-to-end manner without extra time-consuming training, since
the proposed frequency-based image translation is embedded as a module in
the detection network.

– We conduct extensive experiments on three challenging DAOD benchmarks
and our FIT achieves favorable performance under various domain-shift sce-
narios, demonstrating the effectiveness of the proposed method.
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2 Proposed Method

2.1 Overview

Problem Definition. The domain adaptation [8] task typically considers two
domains: the source domain S and target domain T . Specifically, we have
access to a labelled source dataset Ds = {(xs

i , y
s
i )}ns

i=1 and a target dataset
Dt =

{
xt

j

}nt

j=1
with no ground-truth annotations. Here, xs

i denotes ith source
image, ys

i denotes the corresponding label and ns denotes the number of source
images. Similarly, xt

j denotes jth target image and nt denotes the number of tar-
get images. The source and target domains with different data distributions share
the same label space, and the goal of domain adaptive object detection is to train
an detector with Ds and Dt, which performs well on the target dataset Dt. Fol-
lowing the mainstream domain adaptive object detection methods [4,6,7,20,22–
24], the proposed method is based on the Faster RCNN [1] framework.

Overall Framework. The overall framework of the proposed method is shown
in Fig. 2. We first transform source images Xs to target-like images Xs→t via
frequency-based image translation (FIT), as shown in Fig. 2(a). The key idea
is to decompose the image into multiple frequency components and then feed
them to the Frequency Mask to identify domain-specific frequency components.
Then we replace the domain-specific components of the source image with the
corresponding ones of the target image and get the target-like image Xs→t via
the Inverse Fourier Transform. Afterwards, we put target-like images Xs→t and
target images Xt into object detector and align the local and global feature by
hierarchical adversarial learning, as shown in Fig. 2(b). Through this framework,
the domain gap at both input and feature level can be mitigated. The details of
the proposed method are given in the following sections.

2.2 Frequency-Based Image Translation

In order to mitigate the domain gap at the input level, a novel frequency-based
image translation is presented to obtain translated images without changing
their semantic structures. The framework of frequency-based image translation
is shown in Fig. 2(a).

First, Fourier transform F(·) is performed on the image x of size H × W :

F(x)(a, b) =
H−1∑

h=0

W−1∑

w=0

x(h,w)e−i2π·(ha
H +wb

W ), (1)

for a = 0, . . . , H − 1, b = 0, . . . , W − 1.
Then, we decompose the frequency space representation F(x) of the image

into N components
{
x1, x2, . . . , xN

}
of equal bandwidth via band-pass filter

B(·; ·):
xfs = B(F(x);N) =

{
x1, x2, . . . , xN−1, xN

}
, (2)
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Fig. 3. Structure of Frequency Mask.

xn =

{
F(x)(i, j), if n−1

N < d ((i, j), (ci, cj)) < n
N

0, otherwise
, (3)

where ci and cj denote the image centroid, d(·, ·) denotes the Euclidean distance,
and N is the number of components. In our experiments, we set N = 64.

To identify which frequency component is domain-specific, we design a mod-
ule called Frequency Mask and its structure is shown in Fig. 3. Motivated by
the Squeeze-and-Excitation Networks [15], which model the interdependencies
between the channels and recalibrate the channel-wise feature responses adap-
tively, we design similar structure and add Gumbel-Softmax [18] to make the
value close to one-hot vector. ‘1’ means the frequency component is domain-
specific, while ‘0’ denotes it is domain-invariant. By Frequency Mask, we find
the domain-specific components DS(xfs

s ):

DS(xfs
s ) = M

(
xfs

s

) · xfs
s , (4)

where M(xfs
s ) represents the output of Gumbel-Softmax in Fig. 3. Then, we

replace the domain-specific components of the source image with the correspond-
ing ones of the target image:

x̂fs
s→t = xfs

s − DS(xfs
s ) + DS(xfs

t ), (5)

After replacing components, we combine all frequency components and per-
form Inverse Fourier transform F−1(·). Finally, we obtain the target-like image:

xs→t = F−1
(∑

x̂fs
s→t

)
. (6)

In order to keep the consistency of semantic information, we regulate the
reconstruction loss:

Lrec(X) =
∥
∥
∥H(X) − H(X̂)

∥
∥
∥
1
, (7)

where X and X̂ represent the original and translated image. H(·) represents the
band-pass filter that extracts the middle and high-frequency components, which
largely capture the semantic information.

2.3 Hierarchical Adversarial Feature Learning

After the frequency-based image translation, we put target-like and target images
into the object detector and further mitigate the feature-level domain gap by the
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domain classifier and gradient reversal layer (GRL) [8]. Since different domains
could have distinct scene layouts, fully matching the entire distributions of source
and target images at the global image-level may fail [4,20]. Therefore, we adopt
different strategies on the local and global features.

The global feature alignment module consists of a global domain classifier
Dg and a GRL. The GRL connects the global domain classifier and the back-
bone, which reverses the gradients that flow through the backbone, as shown
in Fig. 2(b). It means that the global domain classifier Dg aims to distinguish
which domain the global feature comes from, whereas the backbone attempts to
confuse the classifier. Here, the source images are given the domain label d = 0
and the label is 1 for the target images. The loss of the global feature alignment
module is calculated as follows,

Lglbs = − 1
ns

ns∑

i=1

Dg (F2(F1 (xs
i )))

γ · log (1 − Dg (F2(F1 (xs
i )))) , (8)

Lglbt = − 1
nt

nt∑

i=1

(
1 − Dg

(
F2

(
F1

(
xt

i

))))γ · log
(
Dg

(
F2

(
F1

(
xt

i

))))
, (9)

Lglb =
1
2

(Lglbs + Lglbt) , (10)

where ns and nt represent the number of source and target images, xs and xt

are the target-like and target images, and F1 and F2 denotes the first seven
convolutional layers of the backbone VGG16 and the rest convolutional layers.
The detailed structure of global domain classifier Dg is shown in Fig. 4(a).

Similar with the adversarial training in global alignment, the local domain
classifier Dl and shallow layers of the backbone are connected by the GRL. The
loss function of local alignment can be written as:

Llocs =
1

nsHW

ns∑

i=1

W∑

w=1

H∑

h=1

Dl (F1 (xs
i ))

2
wh , (11)

Lloct =
1

ntHW

nt∑

i=1

W∑

w=1

H∑

h=1

(
1 − Dl

(
F1

(
xt

i

))
wh

)2
, (12)

Lloc =
1
2

(Llocs + Lloct) , (13)

where Dl (F1 (xi))wh represents the output of the local domain classifier Dl in
each location. The detailed structure of local domain classifier Dl is shown in
Fig. 4(b).

To achieve better adaptation, we regularize the domain discriminator. Pre-
vious work has shown that it is effective for stabilizing the adversarial training
by regularizing the domain classifier with the segmentation loss in domain adap-
tive segmentation [27]. Similar with this approach, we regularize the domain
discriminator with the detection loss. Formally, we extract the different levels of
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Fig. 4. Structure of Domain Classifiers.

context vectors v1 and v2 from the middle layers of the domain classifiers Dl snd
Dg respectively. Each context vector has 128 dimensions. Then, we concatenate
the vectors to obtain the aggregated context vector and all region-wise features
are concatenated with the aggregated context to train the domain classifiers
to minimize the detection loss and domain classification loss, as illustrated in
Fig. 2(b).

2.4 Overall Objective

We denote the loss of Faster RCNN [1] as Ldet and the overall loss function
Ltotal can be summarized as:

Ltotal = Ldet + Lrec + λ(Lglb + Lloc), (14)

where λ is the hyper-parameter to balance the detection, reconstruction loss and
hierarchical alignment losses.

3 Experiments

3.1 Datasets

We extensively evaluate our approach on three challenging domain adaptive
object detection tasks with distinct domain shifts, including adaptation under
different weather (Cityscapes [11] → Foggy Cityscapes [12]), adaptation from the
synthetic to the real scene (Sim10K [13] → Cityscapes) and adaptation under
different cameras (KITTI [14] → Cityscapes). Cityscapes [11] is a dataset of
urban street scenes with 8 categories captured with on-board cameras, which
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Table 1. Results (%) on the adaptation from Cityscapes to Foggy Cityscapes. ‘No DA’
indicates the model is only trained with the source images and directly tested on the
target images without any domain adaptation. The best results are in bold, and the
second best results are underlined.

Methods person rider car truck bus train moto bicycle mAP

No DA 23.3 27.9 32.8 11.4 23.5 9.3 12.2 25.2 20.7

DA [6]CVPR’2018 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

DivMatch [9]CVPR’2019 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

SWDA [4]CVPR’2019 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3

HTCN [5]CVPR’2020 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8

CDN [7]ECCV’2020 35.8 45.7 50.9 30.1 42.5 29.8 30.8 36.5 36.6

ATF [20]ECCV’2020 34.6 47.0 50.0 23.7 43.3 38.7 33.4 38.8 38.7

Progressive [16]WACV’2020 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9

VDD [22]ICCV’2021 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0

CDTD [21]IJCV’2021 31.6 44.0 44.8 30.4 41.8 40.7 33.6 36.2 37.9

RPA [23]CVPR’2021 33.4 44.3 50.1 29.9 44.8 39.1 29.9 36.3 38.5

DDF [24]TMM’2022 37.2 46.3 51.9 24.7 43.9 34.2 33.5 40.8 39.1

FIT-DA (Ours) 36.6 45.8 52.2 32.2 48.1 34.6 34.7 37.2 40.2

has 2975 training images and 500 validating images. Foggy Cityscapes [12] is the
synthetic foggy version of Cityscapes. Sim10K [13] is a virtual dataset including
10000 images generated by the Grand Theft Auto gaming engine. KITTI [14]
is an autonomous driving dataset that has 7481 images, which is captured by a
standard station wagon with two high-resolution video cameras. In the test, we
use mean average precision (mAP) metrics for evaluation.

3.2 Implementation Details

Our detector is original Faster R-CNN [1] without extra modules. We adopt
VGG-16 [28] pre-trained on ImageNet [29] as our backbone. In our experiments,
the shorter side of the image is resized to 600. Each batch is composed of one
source image and one target image. The networks are trained with a learning
rate of 0.001 for 50K iterations, then with a learning rate of 0.0001 for 20K more
iterations. We use a momentum of 0.9 and a weight decay of 0.0005. N is 64 in
Eq. (2). For Sim10K → Cityscapes, we set λ = 0.1 in Eq. (14). For the rest two
tasks, we set λ = 1. Our method is implemented with PyTorch.

3.3 Comparison Experiments

Adaptation Under Different Weather. Table 1 shows the performance of
our method on Cityscapes → Foggy Cityscapes. We can see that our method
alleviates the domain gap across different weather conditions and outperforms
all competitors in Table 1. Compared with GANs-based methods: DivMatch [9],
Progressive [16] and CDTD [21], our method improves the result by +5.6%,
+3.3% and +2.3% in mAP, which demonstrates the advantage of the proposed
Frequency-based Image Translation for domain adaptive object detection.
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Table 2. Sim10K to Cityscape.

Methods mAP

Source Only 34.2
DA [6]CV PR′2018 39.0
SWDA [4]CV PR′2019 40.1
HTCN [5]CV PR′2020 42.5
ATF [20]ECCV ′2020 42.8
CDTD [21]IJCV ′2021 42.6
RPA [23]CV PR′2021 45.7
DDF [24]TMM ′2022 44.3
FIT-DA (Ours) 48.6

Table 3. KITTI to Cityscapes.

Methods mAP

Source Only 32.2
DA [6]CV PR′2018 38.5
SWDA [4]CV PR′2019 43.1
CDN [7]ECCV ′2020 44.9
ATF [20]ECCV ′2020 42.1
Progressive [16]WACV ′2020 43.9
DDF [24]TMM ′2022 46.0
FIT-DA (Ours) 46.3

Table 4. Ablation analysis of our method. LA is local feature alignment and GA
is global feature alignment. CTV represents the context vector and FIT denotes the
frequency-based image translation.

Methods LA GA CTV FIT C → F S → C
Source only 20.7 34.2

FIT-DA � 31.8 40.5
FIT-DA � � � 38.5 46.4
FIT-DA � � � 35.7 42.2
FIT-DA � � � 37.4 44.3
FIT-DA � � � 34.5 40.3
FIT-DA (Ours) � � � � 40.2 48.6

Adaptation from the Synthetic to Real Scene. We evaluate the detection
performance on car on Sim10K to Cityscapes benchmark. As we can see the
results in Table 2, our method has a significant performance boost over other
methods, further indicating the effectiveness of our method.

Adaptation Under Different Cameras. There exists a domain gap between
datasets captured through different cameras due to the diversity of hardware
devices. We conduct the cross-camera adaptation from KITTI to Cityscapes. The
results are presented in Table 3, and our method has competitive performance
among all the comparison methods.

3.4 Ablation Study

Effectiveness of Each Component. We conduct the ablation experiments
on Cityscapes → Foggy Cityscapes (C → F) and Sim10K → Cityscapes (S →
C) to validate the effectiveness of each module in our framework. The results in
Table 4 show that all the modules contribute to the performance improvement
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Fig. 5. Detection performances on the three benchmarks with different values of N .

Table 5. Performances with different choices of domain-specific frequency components.

Settings Choice C → F S → C

Non-learnable FC[1] 38.3 44.2
FC[1, 2] 37.3 45.9
FC[1, 2, 3] 36.1 41.8
FC[1, 2, 3, 4] 33.9 40.0

Learnable Frequency mask 40.2 48.6

(especially FIT module), which indicates the effectiveness of each component in
our method.

Method of Choosing Domain-Specific Frequency Components. In FIT
framework, Frequency Mask is the core module, which choose the domain-specific
frequency component in a learnable way. We compare the adaptation perfor-
mance of using Frequency Mask with using fixed low-frequency components to
determine domain-specific components in Table 5. The results suggest the Fre-
quency Mask captures the domain-specific information better. Although low-
frequency components largely captures domain-specific information, the distri-
butions of domain-specific components are not completely consistent for images
from different domains, making it difficult to capture these components pre-
ciously just using fixed low-frequency components.

Value of N in Eq. 2. N is the number of frequency components after Fourier
decomposing. Figure 5 shows the influence on adaptation performance with dif-
ferent N . As N is related to the division of frequency bands, which is critical
for finding domain-specific frequency components, it affects the quality of trans-
lated images. In our experiments, N = 64 is the best choice considering the
performance on the three benchmarks.
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C → F C → F S → C S → C

Fig. 6. Example results on Cityscapes to Foggy Cityscapes (C → F) and Sim10K to
Cityscapes (S → C). The fist row is the results of SWDA and the second row is the
results of our FIT-DA. The class and score predictions are at the top left corner of the
bounding box. Zoom in to visualize the details.

3.5 Visualization

Figure 6 illustrates some examples of detection results on Cityscapes to Foggy
Cityscapes and Sim10K to Cityscapes. Obviously, our method produces more
accurate bounding box predictions and has a stronger ability to detect obscured
instances.

4 Conclusion

In this paper, a novel Frequency-based Image Translation (FIT) method for
DAOD is presented to reduce domain shift at the input level. Compared to
other image translation methods for DAOD, it is embedded in the detection net-
work and does not need extra time-consuming training. Additionally, we intro-
duce hierarchical adversarial feature learning to further mitigate the domain
gap at the feature level. Meanwhile, a joint loss function is designed to opti-
mize the entire network in an end-to-end manner. Extensive experiments on
three challenging DAOD benchmarks validate the effectiveness of our method.
In the future, we will utilize the frequency information in the feature space to
investigate the feature augmentation for DAOD.
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