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Abstract—Transformers have achieved great success in various
tasks, especially that introducing pure Transformers into video
understanding shows powerful performance. However, video
Transformer suffers from the problem of memory explosion:
it is difficult to be deployed on hardware due to the intensive
computation. To address this issue, we propose ST-shift (spatial-
temporal) operation with zero computation and zero parameter.
We are only shifting a small portion of the channels along
the temporal and spatial dimensions. Based on this operation,
we build an attention-free ShiftFormer, where ST-shift blocks
substitute the attention layers in video Transformer. ShiftFormer
is accurate and efficient: it can reduce 56.34% of memory usage
and achieve 3.41x faster training. When both using random
initialization, our model performs even better than Video Swin
Transformer for video recognition on Something-Something v2.

Index Terms—Video Classification; Transformer; Shift Oper-
ation

I. INTRODUCTION

Convolution-based backbone architectures have long dom-
inated in computer vision. As CNNs became the backbone
network for various vision tasks, these architectural advances
led to performance improvements that it extensively changed
and improved the entire domain. However, the current network
backbone for image classification is shifting from CNNs to
Transformers. This trend is originated with the proposal of
the visual Transformer (ViT) [6]. The ViT and subsequent
works [8], [14], [21] have achieved more and more competitive
performance than CNNs. The great success of ViT on image
classification is quickly expanded to many other computer
vision tasks such as object detection, semantic segmentation
and video recognition tasks.

Undeniably, the self-attention mechanism has enabled
Transformer to significantly improve its ability to capture
long-term dependencies [1], [2]. However, at the same time,
this mechanism also needs to perform additional attention
operations with temporal and spatial complexity. In particular,
the enormous computational consumption brought to the field
of video understanding is unbearable.

In addition, there is still no convincing research showing
what makes ViT perform well in vision tasks. The attention
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Fig. 1: An illustration of our ST-shift building block. We replace the attention
layer with a spatial-temporal shift operation in video Transformer.

mechanism can computes global similarity by modeling long-
range dependencies, while convolution can only locally aggre-
gates contexts in small neighborhoods, making it difficult to
model global dependencies with restricted sensory fields. Due
to these good properties, some work suggests that the attention
mechanism facilitates the powerful expressive performance of
ViTs.

However, ViT variants [18], [20] can still achieve compet-
itive performance without attention operation in the image
classification task. The paper [17] have verified that excel-
lent results is achieved by building models on MLPs only,
skipping connections, and not using self-attention layers. In
another research direction, several ViT variants introduce local
attention mechanisms. For example, Uniformer [11] integrates
the advantages of CNN and Transformer models. Swin Trans-
former [14] restricts attention to a small local region while
experimental results show that the local restriction does not
degrade the network’s performance.

Since the video Transformer generally requires more com-
putation and more parameters for training. To build a memory-
friendly model of efficient video understanding backbone
and explore the necessity of attention mechanism in video
understanding. We further reduce the attention layer to a
straightforward case: an attention-free Transformer with zero
computation and zero parameter. As shown in Fig. 1, only
the attention layer is replaced by an effortless operation that
improves the efficiency of the video model.



In this work, we revisit the shift operation and extend it
to 3D space. The standard Transformer block consists of an
attention layer and a feedforward network. We remove the
attention layer and replace it with the ST-shift block. To
facilitate information exchanged among neighboring frames
and spatial features, the operation is as follows: given an
input feature, the proposed building block will shift a small
portion of the channels along four spatial directions (left,
right, top, and down) and two temporal directions (forward,
backward). We follow the 3D window shift mechanism of the
Video Swin Transformer while keeping the non-overlapping
window-based shift calculation validly, which can increase the
perceptual wildness of the spatial and temporal dimensions of
the video. Based on this ST-shift block, we have built a Video
Transformer-like backbone network: ShiftFormer.

For a fair comparison, we all use random initialization.
Because it is not easy to pre-train with a large magnitude of
datasets, it is expensive on storage hardware, computational
resources, and experimental cycles. It performs even better
than the powerful Video Swin Transformer for video recog-
nition tasks on Something-Something v2 when both using
random initialization. The proposed model can reduce 56.34%
of memory usage and achieve 3.41x faster training compared
with Video Swin Transformer. ShiftFormer is trained on small
server GPUs while increasing the batch size, unlike the pre-
vious video Transformer, which only use large server GPUs
(NVIDIA Tesla V100 and A100). Moreover, the training time
is reduced by a factor of three, significantly saving training and
inference time. Realizing efficient action recognition models
with limited resources and data in different scenes, we have
improved the capability and efficiency of video understanding.
The contributions of this work can be concluded as follows:

o We proposed an attention-free video Transformer, which
effectively reduces memory usage and training time.

e The proposed model achieves better performance than
Video Swin Transformer when both utilizing random
initialization.

o Experiments show that attention may not be necessary
for the superiority of video Transformer in video under-
standing tasks.

II. RELATED WORK

A. Attention Vision Transformers

As research advances, Transformer has progressed in vi-
sual tasks such as image classification [10], [19], object
detection [16], and semantic segmentation [5]. It has also
led to research on Transformer-based architectures for video
recognition tasks. However, the current Transformer structure
based on video tasks suffers from the problem of memory
explosion. Most of the subsequent work of Transformer [7]
only made some modifications to the attention mechanism.
We aim to show whether attention mechanisms are necessary
for video comprehension tasks. We are conducting memory-
friendly model for video comprehension tasks.

B. MLP Variants

Recent work has tried to replace the self-attention layer
in the Transformer with a linear layer to build models that
contain only multilayer perceptrons(MLPs). For example, in-
stead of using the self-attentive mechanism, MLP-Mixer [4]
uses token-mixing MLP and channel-mixing MLP to capture
the relationship between tokens and channels, respectively.
CycleMLP [17] introduces a new tool called cycle fully
connected layer, which replaces the token-mixing MLP in
MLP-Mixer in token-mixing MLP. Our approach can also
be attributed to the network of pure MLPs. Unlike previous
methods, our approach can be used to process video data and
is more straightforward.

Our model can handle with any input size. It can be used
as a backbone network for video tasks.

C. Shift Operation

Shift operations are not new to computer vision. AS-MLP
[12] shifted tokens along vertical and horizontal directions
to get an axial receptive field. S2-MLP [22] also used the
shift operation to achieve cross-patch communications. We
believe that the capabilities of the MLP architecture have not
been fully exploited. Our work is inspired by the partial shift
operation in TSM [13] and ShiftViT [20]. To explore the field
of video understanding for self-attention, we replaced it with a
purely MLP-like architecture. The design details are different
from previous works, which are more complex in building
blocks and involve some auxiliary layers.

III. METHODS
A. Overall Architecture

The overall architecture of the proposed ShiftFormer is
shown in Fig. 2. For a fair comparison, we use the structure
of the Video Swin Transformer. The input video is denoted
as T'x H x W x 3 (T is the number of video frames). The
video is first partitioned into non-overlapping 3D tokens with
dimensions 2 x 4 x 4 x 3, and every two frames build a patch
in the time dimension. Thus, the 3D patch partitioning layer’s
output size is T/2 x H/4 x W/4, and the feature dimension
of each token is 96.

We simply replace the attention part of the Video Swin
Transformer with our ST-shift block, following the original
hierarchical structure. The model consists of four stages. In
the first stage, a linear embedding layer is applied to this raw-
valued feature to project it to an arbitrary dimension (denoted
as C). In stages 2-4, the patch merging layer connects each
set of 2 x 2 spatially adjacent patch features and performs
2-fold spatial downsampling (without downsampling in the
time dimension). The output dimension is set to 2C. The main
component of the model is the ST-shift block, replacing the
attention mechanism of a standard video Transformer based
on the spatiotemporal shift operation and keeping the other
components unchanged. The number of ST-shift blocks used in
each stage varies. Specifically, a ShiftFormer block consists of
a 3D shifted window based ST-shift block followed by a feed-
forward network. It contains two consecutive 2-layer MLP,
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(a) Architecture

(b) Two Successive ST-shift Blocks

Fig. 2: Overall architecture of our proposed ShiftFormer. (a) ShiftFormer simply replaces the attention part of the Video Swin
Transformer with our ST-shift block, following the original hierarchical structure. The model consists of four stages: In the
first stage, a linear embedding layer is applied to this raw-valued feature to project it to an arbitrary dimension (denoted as
C). In stages 2-4, the patch merging layer connects each set of 2 x 2 spatially adjacent patch features and performs 2-fold
spatial downsampling (without downsampling in the time dimension). The output dimension is set to 2C. (b) ST-shift block is
built by replacing the standard Transformer’s multi-headed attention module based on the 3D-shift operation and keeping the

other components unchanged.

Algorithm 1 pseudo code of ST-shift block (pytorch-like)
1: def ST-shift(Z, n_div):

2: # Z is the input feature

3: # 1 / n_div is the percentage of shifted channels in a single
direction

4 B, T, H W, C = Z.shape

5: g = int(C/n_div)

6: Z' = zeros_like(2)

7 # spatial shift

8 Z'sy:=2,g%0:gx 1] = Z[5,:,:,2:,g%0: gx1]

9: Z'iy 5 205gx1igx2]=Z[, 55 —2,g%1: gx2)

10: Z'syy:—=2,5,9%2: g% 3] = Z[5,:,2:,:5,g%2: g 3]

11: Z'iy25,0,g%x3:gx4] = Z[5,1,: —2,:,g%3: gx4]

12: # temporal shift

13: Z':y:=2,5,5,9%4: g5 = Z[:,2:,5,:,g%4: g x5

14: Z':y255,5,g%5:g%6] = Z[:,: =2,:,:,g%5: g *6]

15: # remaining channels

16: Z'sy iy ,9%6:] = Z[iyiy g% 6]

17: return Z’

with a GELU non-linearity. The layer normalization operation
is applied before the feed-forward network, and a residual
connection is applied after each module. For each stage, the
number of shift blocks can be various, which are denoted as
N1, N2, N3, and N4, respectively. In our implementation,
we choose the value of N7 so that the overall model shares
a similar number of blocks with the baseline Video Swin
Transformer (Swin-B) model.

B. Shift Block

The detailed architecture of our ST-shift block is depicted
in Fig. 3. The module consists of three components: ST-
shift block, layer normalization and MLP network. The shift
operation has been widely used in computer vision. In the
work of this paper, we improve on the work of the partial shift
operation of TSM. Specifically, some channels of the input

tensor shift along four spatial directions (up, down, left, and
right) and shift the channels along the temporal dimensions
(forward and backward), while the remaining channels remain
unchanged. We perform partial shift operations in the temporal
dimension, which allows contextual interactions to expand the
temporal perception and achieve effective time fusion. After
the shift operation, the redundant pixel features are truncated
and the vacant pixel parts are zero-filled.

The input video feature Z is defined as T'x H x W x C,
where T is the number of frames of the video, C' is the number
of channels, and H and W are the spatial height and width
of the frames. The formula of the operation is given below,
where the output feature Z’ is the same size as input feature.
is a ratio factor indicating the percentage of channels that will
be shifted. In this case, 7 is set to 1/24. The pseudo-code is
presented in Algorithms 1. It is notable that TS-shift without
incurring any extra computations and parameters.

o

:H,1:W,0: T,0:vC] < Z[0: H,0: W —1,0: T,C: ~vC]

:H,0: W—1,0:T,yC:2vC] « Z[0: H,1: W,0: T,vC : 2~C]
:H,0: W,0: T,29C : 39C] + Z[0: H—1,0: W,0: T,2vC : 3yC]
:H—1,0: W,0:T,3vC : 4yC] < Z[1 : H,0: W, 0 : T, 37C : 44C]
:H,0: W,1:T,4vC : 5¢C] + Z[0: H,0: W,0: T — 1,4vC : 57C]
:H,0: W,0: T—1,57C:C]+ Z[0: H,0: W,1:T,5vC : C]

o

(=) —-

NN NN NN
GGG

In this work, our ST-shift block directly moves the tensor
to replace attention without any learned parameters. It only
needs to implement memory replication, which is very efficient
and greatly reduces the memory footprint, while essentially
shortening the training time and enabling efficient video under-
standing. A ShiftFormer block consists of a 3D shifted window
based ST-shift block followed by a feed-forward network,
which contains two consecutive 2-layer MLP, with a GELU
non-linearity. A layer normalization operation is applied before
the feed-forward network, and a residual connection is used
after each module.
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Fig. 3: Our proposed ST-shift block. Specifically, some channels of the input tensor shift along four spatial directions (up, down, left, and right) and two
temporal directions (forward and backward), while the remaining channels remain unchanged. Those partial shift operations in three dimensions allow contextual
interactions to expand the spatial-temporal perception and achieve effective spatial-temporal fusion.

C. 3D Shifted Window based ST-shift

ST-shift on non-overlapping 3D windows The multiple
self-attention (W-MSA) mechanism on each non-overlapping
3D window is both practical and efficient for video recog-
nition. To save computational and memory costs, we follow
this idea. Unlike the attention operation in the Video Swin
Transformer block, we use the ST-shift block directly. We
perform the ST-shift on each non-overlapping 3D window.

3D Shifted Windows Since the ST-shift is performed on
each non-overlapping 3D window, the lack of connectivity be-
tween different windows may limit the representability of the
model. Therefore, to increase the introduction of cross-window
connectivity, we follow the 3D window shift mechanism of the
Video Swin Transformer while keeping the non-overlapping
window-based shift calculation valid, which can increase the
perceptual wildness of the spatial and temporal dimensions of
the video.

IV. EXPERIMENT
A. Setup

Datasets For temporal modeling of human action recog-
nition, we utilized the Something Something v2 (Sthv2) and
Sthv2-top50 datasets. The Sthv2 dataset requires robust tempo-
ral modeling because most activities cannot be inferred based
on spatial features alone (e.g., opening something, covering
something with something). The dataset includes 168.9K train-
ing videos and 24.7K validation videos from 174 categories.
To evaluate model performance in illegible challenging cat-
egories, we constructed the Sthv2-top50. The dataset is our
ShiftFormer in the experimental results on the Sthv2 dataset,
ranked by mean class accuracy, and the 50 classes with the
lowest accuracy are selected to construct the Sthv2-top50
dataset. The dataset includes 38.3K training videos and 4.8K
validation videos. For all methods, we followed the existing
techniques and reported the accuracy for the top-1 and top-5.

Implementation Details For Sthv2 and Sthv2-top50, we
employ AdamW optimizer to train 100 epochs with 2.5 epochs
of linear warm-up. A batch size of 32 is used. The backbone
and the head are randomly initialized without any pre-trained

parameters. Although it is appealing to pretrain the whole
model end-to-end with large-scale image datasets such as
ImageNet dataset and video datasets such as Kinetics-400
[9] and Kinetics-600 [3], we are restricted by the enormous
computation cost. Expressly, the initial learning rate of the
spine and random initialization of the head are set to 3e-5
and 3e-4, respectively. We draw a 32-frame patch from each
complete video, using a temporal stride of 2. The window
size of the temporal dimension is 16. The patch size is 4 x 4
pixels. We result in input 3D tokens of 16 x 56 x 56. We use
a weight decay of 0.05. We employ augmentation, including
label smoothing, random erasing, and RandAugment. We also
employ stochastic depth with a ratio of 0.4. During inference,
we follow by using 1 x 3 views, and for each clip, the shorter
spatial side is scaled to 224 pixels, and we take three crops
of size 224 x 224 that cover the longer spatial axis. The final
score is computed as the average score of 1 x 3 views.

B. Comparison with other methods

Tab. I compares our approach with other strong video
Transformer methods on Sthv2 and Sthv2-top50, because the
datasets focus on temporal modeling. The Sthv2 accuracy
reported in the Video Swin Transformer paper is a costly
training process on a series of datasets: ImageNet (pretrain)
— Kinetics-400 (pretrain) — Sthv2 (fine-tune). However,
this paper does not focus on this step due to the restriction
of enormous computation costs. For a fair comparison, all
methods use random initialization. The results of Sthv2-top50
are shown on the right side of Tab. I. The previous best
method achieves competitive results, where computation and
parameters are too large for deployment. While our model
is much more efficient: ShiftFormer achieves 50.25% Top-
1 accuracy with 163.73 GFLOPs, which is 17.81% higher
than Swin-B with 1.96x less computation and 1.5x fewer
parameters. Therefore Our ShiftFormer can be trained on small
server GPUs while increasing the batch size.

C. Visualization of activation graphs

We visualized the class activation map using GradCAM
[15], and the results are shown in Fig.4. The baseline method
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Fig. 4: Visualization of activation maps with CAM. Left: video, Middle: Baseline, Right: ShiftFormer. The activation map is on the center frame. These
visualizations show that the baseline method cannot focus on motion-related regions, while our ShiftFormer can locate more motion-related parts benefit from
our proposed ShiftFormer spatial-temporal modeling.

TABLE I: Comparison with other methods on Something-Something v2 and Sthv2-top50 datasets. For a fair comparison, all methods use random initialization.

FLOPs Param Memory Train-time Sthv2 Sthv2-top30
Method . Top-1 Top-5 Top-1 Top-5
(©) M) (MiB) (h)
Acc.(%) Acc.(%) | Acc.(%) Acc.(%)

Sparse Local Global 590 1214 31034 114 23.52 53.61 15.97 4438
Joint Space-Time 359.14 859 29630 104 26.18 57.39 18.89 47.52
Divided Space-Time | 403.65 1214 30320 112 27.29 60.84 20.29 49.72
Swin-B 321 88.83 16269 92 32.46 62.81 26.17 58.26
ShiftFormer (ours) | 163.73  58.92 7103 27 50.27 78.27 32.92 66.63

TABLE II: Comparison with different shifted pixels.

Dspace Deiime Top-l Acc.(%) Top-5 Acc.(%)
i 2 26.07 >8.87
) 0 27.72 61.41
1 1 30.65 64.01
) 5 32.92 66.63

35 32.92
31.23
%3‘ 30.17
;? Swin-B baseline
% 27
§ o 18.46

&

0% 20% 25% 33%
percentage of shift channels

Fig. 5: Ablation analysis on the percentage of shifted channels. We plot the
top-1 classification accuracy on Sthv2-top50. The red line indicates Video
Swin Transformer (Swin-B) baseline.

is Swin-B. In this visualization, we take 32 frames as input and
draw the activation map on the keyframes. These visualizations
show that the baseline method cannot focus on motion-related
regions, while our ShiftFormer can locate more motion-related
parts that benefit from our proposed ShiftFormer spatial-
temporal modeling. For example, our ShiftFormer focuses
more on hand motion with interactive objects, while temporal

TABLE III: Ablation on different positional shifting. ShiftFormer with space-
time positional shifting achieved the best performance.

Positional Shifting | Top-1 Acc.(%) Top-5 Acc.(%)
None 18.46 48.32
Time-only 24.83 51.29
Space-only 25.88 53.28
Space-Time 32.92 66.63

convolution may focus on the background.

D. Ablation Study

Percentage of shifted channels The scale of our shift
channels is a hyperparameter of ShiftFormer, and the scale
of the shift is set to 25% in this work. We set the scale of
the shifting channels as 20%, 25%, and 30%. The results
are shown in Fig. 5, which shows that the hyperparameters
have a more obvious effect on the model’s performance.
When the percentage of shifted channels is set to 0%, the
accuracy rate drops severely. Adjusting the ratio of shifted
channels can improve the performance. All the settings achieve
better accuracy than the Video Swin Transformer (Swin-Base)
baseline.

Shifted pixels For the number of shifted pixels, we per-
formed a thorough exploration. The number of pixels we
shift in the spatial and temporal dimensions is denoted by
Dgpace and Dyjpme. The results are shown in Tab. II, which
show that the model achieves the highest accuracy on Sthv2-
topS0 when shift two pixels in the shift operation. This is not
difficult to understand because of the increased interaction in



TABLE IV: Comparison with different number of directions.

o e Convergence speed | Top-1 Top-5
Shift directions (epoch) Ace(%)  Acc(%)

6 100 32.92 66.63

26 80 31.62 64.27

spatial-temporal location. Also, to explore the variability in
the number of pixels shift in space and time, we set different
numbers of pixels shift in spatial and temporal locations.
For example, moving one pixel in the spatial position while
moving two pixels in the temporal position. With this setting,
the accuracy of the model in Sthv2-top50 is slightly worse
than the default setting.

The importance of ST-shift To investigate the importance
of our learned spatiotemporal shifting, we also conduct ex-
periments with a few variants of ShiftFormer that use: (1) no
shifting, (2) time-only shifting, (3) space-only shifting, and
(4) space-time shifting. We report these results in Tab. IIL
We found that the variants of our model that use space-time
position shifting yield the best accuracy on Sthv2-top50. Using
space-only shifting leads to worse results on Sthv2-top50
because this dataset requires complex temporal reasoning.

The number of directions of movement The shift opera-
tion facilitates the communication of features between pixels
by moving them in different directions. Based on this, we tried
to perform shift operations in multiple directions. By default,
channels are shifted in 6 directions: top, bottom, left, right,
front, and back. We added 20 directions to the default shift
directions, including upper left, upper left front, lower right,
and lower right back. In total, 26 directions are shifted. The
experimental results on Sthv2-top50 are shown in Tab. IV. It
can be seen that after increasing the shift directions, the final
performance is not very sensitive to this parameter, and the
model convergence speed becomes significantly faster.

V. CONCLUSION

We propose an attention-free ShiftFormer to solve the
problem of memory explosion in the video Transformer. It
is a newly designed spatial-temporal shift operation that only
shifts a small portion of the channels along the temporal and
spatial dimensions. ShiftFormer is a cost-effective and efficient
method for video understanding. It can save 56.34% of mem-
ory usage and achieve 3.41x faster training while performing
even better than the powerful Video Swin Transformer for
video recognition tasks on Something Something v2 when
both using random initialization. In addition, experiments
show that attention may not be necessary for the superiority
of video Transformer in video understanding tasks.
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