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   Abstract—The  problem  of  prescribed  performance  tracking
control for unknown time-delay nonlinear systems subject to out-
put constraints is dealt with in this paper. In contrast with related
works,  only  the  most  fundamental  requirements,  i.e.,  bounded-
ness and the local Lipschitz condition, are assumed for the allow-
able time delays. Moreover, we focus on the case where the refer-
ence  is  unknown  beforehand,  which  renders  the  standard  pre-
scribed  performance  control  designs  under  output  constraints
infeasible. To conquer these challenges, a novel robust prescribed
performance  control  approach  is  put  forward  in  this  paper.
Herein,  a  reverse  tuning  function  is  skillfully  constructed  and
automatically  generates  a  performance  envelop  for  the  tracking
error.  In  addition,  a  unified  performance  analysis  framework
based on proof by contradiction and the barrier function is estab-
lished  to  reveal  the  inherent  robustness  of  the  control  system
against the time delays. It turns out that the system output tracks
the reference with a preassigned settling time and good accuracy,
without constraint violations. A comparative simulation on a two-
stage chemical reactor is carried out to illustrate the above theo-
retical findings.
    Index Terms—Nonlinear  systems, output  constraints, prescribed
performance, reference tracking, time delays.
  

I.  Introduction

I T  seems  to  be  insufficient  to  describe  the  evolutions  of
some engineering systems, if the future state of the system

is determined only by the present state and is independent of
the past [1]. Instead, some information on the past state should

be  included  in  the  mathematical  model  of  the  system.  Such
systems  are  generally  called  delay  systems [1].  Common
delay systems in engineering incorporate but are not limited to
continuous  stirred  tank  reactors,  heat  exchangers,  and  cold
rolling mills [1]–[3], as a result of transport delay. For exam-
ple,  in  a  continuous  stirred tank reactor,  the  conversion from
input to output is never complete, so a recycle stream is neces-
sary  to  recycle  the  unreacted  reagents.  In  order  to  increase
overall  conversion  and  reduce  reaction  cost,  the  unreacted
reagents  are  returned  into  the  reactor  again  by  travelling
through  a  pipe.  This  progress  needs  a  finite  amount  of  time
and thus introduces a delay into the system dynamics [1], [4].
Moreover,  the  time-delay  phenomenon  can  be  seen  in  eco-
nomic  systems,  mechanics,  population  dynamics,  etc., [1].
Therefore, in a real world, time delay is sometimes inevitable,
and  for  a  control  system,  it  significantly  challenges  the  con-
trol  development.  If  it  is  not  addressed  well,  the  control  sys-
tem will suffer from performance degradation and even insta-
bility.

At present,  there are two main methods for control designs
of  time-delay  systems.  They  are  based  on  the  Lyapunov-
Krasovskii  functionals [5]–[14] and  the  Razumikhin  func-
tions [15]–[17],  respectively.  Both  of  them work  well,  if  the
time delay meets the following assumption or condition. First,
the time delay or its bound is known [7], [8], [12], [13], [15].
Second,  the  bounding functions  of  the  time-delay nonlineari-
ties  are  in  the  parametric  form [5], [6], [16], [17] with
unknown parameters  but  known functions.  Third,  the  deriva-
tive  of  the  time  delay  should  be  less  than  1 [7]–[11], [13],
[14].  As  pointed  out  by [18],  the  above  assumptions  are
restrictive  from  both  theoretical  and  practical  perspectives.
Therefore,  the  control  development  for  time-delay  systems
without  the  requirements  mentioned  above  is  considerably
significant and appears to be open.

On the other hand, the outputs of many practical systems are
subject  to  constraints  from  operational  specifications  and/or
safety considerations [19]. For instance, the reagents of a con-
tinuous stirred tank reactor have to be maintained within cer-
tain ranges to avoid environmental pollution and security inci-
dents.  Barrier  Lyapunov  functions  (BLFs)  are  a  main  tool  to
address output constraints [19]–[24] which guarantees that the
system  output  evolves  strictly  within  the  given  constraint
boundaries throughout. Nevertheless, in terms of output track-
ing, only the boundedness of the tracking error is obtained and
the  specific  tracking  behavior  (e.g.,  the  settling  time  and  the
accuracy) can not be predetermined, in the case of unmatched
disturbances  and/or  unknown  nonlinearities [20]–[23].  The
prescribed performance control  (PPC) method [25]–[27] pro-
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vides  a  way  to  quantitatively  preassign  the  transient  and
steady-state  response  of  reference  tracking.  Intuitively,  the
combination of PPC and BLFs yields a solution to the above
problem. As substantiated by [28], however, this makes it nec-
essary for the reference to be known in advance for the prese-
lection  of  performance  functions.  Nevertheless,  this  may  not
be met in some applications. A typical example is leader-fol-
lowing of mobile vehicles, where the position of the leader is
sent  to  the  follower  in  real  time,  which is  unavailable  before
data reception [29], [30].  Other examples encompass,  but are
not  exculsive  to  robotic  interception [31], [32] and  adaptive
extremum  seeking [33], [34].  Recently,  a  practical  tracking
control approach for Euler-Lagrange systems with output con-
straints without prior knowledge of the specific reference was
proposed [28].  However,  transient  performance  was  lost.
Moreover,  it  remains  unknown  whether  or  not  this  approach
can be applied to time-delay systems.

Inspired by the above discussion, a novel PPC approach for
the time-delay output-constrained nonlinear systems is devel-
oped  in  this  paper.  To  overcome  the  challenge  caused  by
absent  prior  information  of  the  reference,  a  reverse  tuning
function is skillfully constructed. On this basis, a unified per-
formance analysis framework based on proof by contradiction
and  barrier  functions  is  established  to  reveal  the  inherent
robustness of the resulting control system. The contribution of
this  paper  and  the  superiority  of  the  proposed  approach  are
enumerated as follows.

1) The admissible time delays by our approach need only to
be  bounded  and  locally  Lipschitz  continuous,  without  the
aforesaid assumptions [5]–[17].

2) It achieves PPC under output constraints without the need
for prior knowledge of the reference, unlike [25]–[28].

3)  It  preserves  the  robustness  and  simplicity  of  the  PPC
method. For unknown time-delay nonlinear systems, the con-
troller  design  does  not  invoke  approximation [6]–[9], [11],
[35], [36] identification [5], [10], [15],  estimation [37], [38],
or filtering [39]–[41].

The rest of this paper is organized as follows. The problem
under consideration is  formulated in Section II.  A solution is
given  in  Section  III.  Its  feasibility  is  substantiated  in  Sec-
tion IV and illustrated by the simulation results in Section V.
Section VI concludes this paper.

Ri

R1 = R sup(·)
L∞

L∞

Notations: The notations used in this paper are standard that
are  summarized  as  follows.  denotes  the i-dimensional
Euclidean space, where ;  is the supremum of the
function;  denotes  the Banach space of  all  Lebesgue mea-
surable, i.e.,  is a space consisting of all bounded series.  

II.  Problem Formulation
  

A.  System Description
 

ẋi(t) = fi(xi(t), xi(t−τi),d(t))+gi(xi(t), xi(t−τi),d(t))xi+1(t)

i = 1, . . . ,n−1

ẋn(t) = fn(xn(t), xn(t−τn),d(t))+gn(xn(t), xn(t−τn),d(t))u(t)

y(t) = x1(t)

xi(t−τ j) = φi j(t), t ∈ [0, τ j], i = 1, . . . ,n, j = 1, . . . ,n.
(1)

xi(t) =
[x1(t), . . . , xi(t)]T ∈ Ri i = 1, . . . ,n xn(t)
u(t) ∈ R y(t) ∈ R

d(t) ∈ Rm

φi j(t) ∈ R
i = 1, . . . ,n j = 1, . . . ,n τi ∈ R τi ≥ 0

i = 1, . . . ,n fi(·) ∈ R gi(·) ∈ R
i = 1, . . . ,n

The  time-delay  nonlinear  systems  under  consideration  are
described  by  (1)  at  the  bottom  of  this  page,  where 

, ;  is  the  system  state;
 and  represent  the  control  input  and  the  sys-

tem  output,  respectively;  consists  of  the  bounded
external disturbances;  is the initial value of the state
variable, , ;  with  stands  for
the time delay of the state, ;  and ,

, denote the system nonlinearities, both of which are
continuous in their arguments.

Three common assumptions for the system in (1) are made
as follows.

|gi(·)| ≥ g > 0 i = 1, . . . ,n g

gi(·) ≥ g i = 1, . . . ,n

Assumption  1: Let , ,  where  is  a
constant.  Without  loss  of  generality,  it  is  assumed  that

,  [19], [26].
Assumption 2: The time delays are bounded [10], [18].

φi j(t) [0, τ j]
i = 1, . . . ,n j = 1, . . . ,n

Assumption  3: The  function  is  continuous  in ,
,  [5], [15].

Remark 1: In related works, the time delay was required to
be fixed [5], [6], [12], [35], bounded by a known constant [7],
[8], [13], [15], [36],  or  differentiable  with  the  derivative  less
than  1 [7]–[11], [13], [14].  In  this  study,  both  time-varying
and heterogeneous time delays  are  taken into  account,  which
need only to meet Assumption 2, where the upper bound is not
necessarily  known.  Moreover,  (1)  describes  a  general  family
of  time-delay  nonlinear  systems,  in  the  sense  that  the  state
variables, the time delays and the disturbances are lumped by
the  unknown  nonlinear  mappings  together  in  a  non-affine
form.  It  not  only  covers  time-delay  strict-feedback  systems
[6], [35], [36], but also include for example,
 

ẋ = x2x3 (t−τ)d+u (2)
where τ and d as  well  as  their  bounds  are  totally  unknown.
Commonly  used  tools,  e.g.,  adaptive  identification [5], [10],
[15] and neural/fuzzy approximation [6]–[9], [11], [35], [36],
cannot  be  applied  to  dealing  with  the  unknown  nonlinear
function  in  (2)  straightforward.  Nevertheless,  it  should  be
noted that Assumption 1 requires the control direction of each
subsystem to be known a priori.  

B.  Output Constraints
On  the  purpose  of  safe  operation,  the  output  constraint  on

(1) is taken into consideration, i.e.,
 

y(t) < y(t) < ȳ(t), t ≥ 0 (3)
ȳ(t) y(t)where  and  stand for the upper and lower boundaries,

respectively, which are permitted to be both time-varying and
asymmetric. The initial output is reasonably required to satisfy
 

y(0) < y(0) < ȳ(0). (4)
A relevant assumption [28] is introduced.
Assumption 4: There hold

y(t),y(t), ẏ(t), ẏ(t) ∈ L∞1) ;
0 < a < ȳ(t)− y(t) < ā t ≥ 02) , ;
āwith  being a known constant.  

C.  Control Objective
The  control  goal  for  (1)  is  twofold.  First,  keep  the  output
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r(t)
constraint  intact  the  whole  time.  On this  basis,  steer  the  sys-
tem output to track a reference, , which meets the follow-
ing assumption [28].

y(t) < r(t) < ȳ(t) t ≥ 0 ṙ(t) ∈
L∞

Assumption 5: There hold , ,  and 
.

Specifically,  the  requisite  transient  and  steady-state  track-
ing response is formulated by
 

|y(t)− r(t)| < ε, t > T (5)
εwhere  and T are nonzero constants which denote the allow-

able bounds on the accuracy and settling time, respectively.
Now, we summarize the problem treated in this paper as fol-

lows.
Problem 1: Develop a control method for the system in (1)

to  guarantee  the  output  constraint  in  (3),  the  performance
requirement  in  (5),  and  the  boundedness  of  all  the  signals
involved in the closed loop.

Problem 2: The classical PPC methods [25], [26], [42] guar-
antee the tracking error within a performance tube as follows:
 

p(t) < y(t)− r(t) < p̄ (t)

p(t) p̄ (t)
p(t) p̄ (t)

where  and  should be predetermined by the designer.
Under output constraints,  and  should satisfy
 

y(t)− r(t) < p(t) < y(t)− r(t) < p̄(t) < ȳ(t)− r(t).

p(t) p̄ (t) r(t)
r(t)

r(t)

Obviously,  the  selections  of  and  depend  on ,
which makes it necessary that  is known a priori. However,
in  some  practical  applications,  is  only  available  in  real-
time, such as a leader-following formation [29], [30],  robotic
interception  of  moving  objects [31], [32],  and  adaptive
extremum  seeking  control [33], [34].  Although  a  solution  to
this  problem  was  given [28],  it  guarantees  merely  the  pre-
scribed tracking accuracy, and thus fails to achieve fast track-
ing.  Moreover,  it  works  for  delay-free  systems and thus  may
fail in the presence of time delays.  

III.  Control Design

To  solve  Problem  1,  a  reverse  tuning  function-based  PPC
approach is developed in this section.  

A.  Constraint Transformation

φ(t)
In order to guarantee prescribed performance, a reverse tun-

ing function, , is devised and adopted to online generate a
pair of boundaries for the tracking error. It fulfills
φ(0) = 11) ;
φ(t) = φ∞ t ≥ T2) , ;
−∞ < φ̇(t) ≤ 0 0 ≤ t ≤ T3) , ;

0 < φ∞ < 1where T is  predefined  in  (5)  and  is  constant  and
determined by the designer. Through this paper, we select
 

φ(t) =

1+ (φ∞−1)sin(
π

2
× t

T
), 0 ≤ t < T

φ∞, t ≥ T.
(6)

Define
 

e1(t) = x1(t)− r(t), t ≥ 0. (7)
Based on (7), (3) is equivalent to

 

y(t)− r(t) < e1(t) < ȳ(t)− r(t), t ≥ 0. (8)

Adopt the reverse tuning function to produce
 

k̄(t) = (ȳ(t)− r(t))φ(t)

k(t) = (y(t)− r(t))φ(t). (9)

y(t)− r(t) ȳ(t)− r(t) e1(t)
Remark  3: In  the  related  constraint-handling  studies [19]–

[21],  and  are imposed on  directly. In
this  paper,  a  reverse  tuning  function  is  newly  constructed  to
adjust  the  transformed  constraint  boundaries  on  the  tracking
error. It is stressed that the original tuning function [42], [43]
is  used  to  tackle  the  initialization  problem  of  PPC  designs.
This  online automatically  generates  a  tube with a  contractive
trend.  As  long  as  the  tracking  error  evolves  inside  this  tube,
both  the  output  constraint  and  the  performance  requirement
are  fulfilled.  Therefore,  a  unified  framework  to  address  the
above  problem  is  established,  as  substantiated  by  Lemma  1
below.

Lemma 1: If there exists
 

k(t) < e1(t) < k̄(t), t ≥ 0 (10)
then (3) and (5) hold.

0 < φ (t) ≤ 1Proof: Due to , (9) is scaled by
 

y(t)− r(t) ≤ k(t) < k̄(t) ≤ ȳ(t)− r(t), t ≥ 0.

Therefore,  (8) certainly holds under (10).  Since (8) and (3)
are  equivalent,  (3)  is  established  under  the  same  condition.
Assumptions 4 and 5 show
 

0 < ȳ(t)− r(t) < ā, −ā < y(t)− r(t) < 0, t ≥ 0.

By (6) and (9), one has
 

k̄(t) < āφ∞, k(t) > −āφ∞, t ≥ T.

Obviously, (10) yields
 

|e1(t)| < āφ∞, t ≥ T. (11)
φ∞ ā ε = āφ∞Since  is freely chosen and  is known, let . Then

(11) becomes (5). ■  

B.  Controller Design

e1(t)
According  to  Lemma  1,  employ  a  barrier  function  to  con-

fine 
 

η1(t) = ln
(

k̄(t)− e1(t)
e1(t)− k(t)

)
. (12)

Following  the  recursive  design  philosophy,  (12)  yields  the
first intermediate control law:
 

α1(t) = c1η1(t) (13)
c1where  denotes  the  positive  constant  control  gain.  Proceed

with
 

ei(t) = xi(t)−αi−1(t) (14)
 

ηi(t) = tan
(
π

2
ei(t)
ki(t)

)
(15)

 

αi(t) = −ciηi(t) (16)
ci ki(t)

ei(t)
where  is the positive constant control gain and  denotes
the prescribed boundary on  which should satisfy
 

0 < k < ki(t) <∞ (17)
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∣∣∣k̇i(t)
∣∣∣ <∞ (18)

 |ei (0)| < ki (0) (19)

k ki(t)
i = 2

i = i+1 i = n

where  is constant. A typical example of  is the exponen-
tially  decaying  time  function [25].  Starting  from ,  exe-
cute (14)–(16), with  recursively, till . This yields
the final control
 

u(t) = αn(t). (20)
Remark 4: Careful inspection of (6), (9), (12)–(16) and (20)

reveals that the controller design is independent of the explicit
information about the system nonlinearities, or their bounding
functions, or the bounds of the time delay, or the disturbance
bounds, or the prior knowledge of the reference. Nonetheless,
no  adaptive  algorithms [5], [10], [15],  disturbance  observers
[37], [38],  approximation  structures [6]–[9], [11], [35], [36],
etc.,  are  employed  to  acquire  such  knowledge.  Besides,  the
control law does not involve the derivatives of the reference or
the  intermediate  control  signals.  However,  this  is  accom-
plished  without  the  aid  of  dynamic  surface  control [39] or
auxiliary  filters [40], [41].  Therefore,  the  developed  con-
troller is less demanding and strikingly simple.  

IV.  Theoretical Analysis

For ease of theoretical analysis, a pair of lemmas are given
as follows.

M > 0Lemma 2: For any , there holds
 ∣∣∣∣xi

(
t−τ j

)∣∣∣∣ <∞, 0 ≤ t < M (21)

if
 

|xi (t)| <∞, 0 ≤ t < M (22)
i, j = 1, . . . ,nwith .

Proof: Note from (1) and Assumption 3 that
 

|xi (t)| <∞, −τ j ≤ t ≤ 0 (23)
i, j = 1, . . . ,nfor . By variable substitution, (21) is equivalent to

 

|xi (t)| <∞, −τ j ≤ t < M−τ j (24)
i, j = 1, . . . ,n τ j j = 1, . . . ,nwith . For each , , two cases are dis-

cussed by comparing it with M.
τ j ≥ M −τ j ≤ t−τ j < M−τ j ≤ 0 0 ≤ t < M1) If , then  as . By

(23), (24) holds.
τ j < M [−τ j,M−τ j) [−τ j,0)

[0,M−τ j)
2)  If ,  the  interval  covers  and

.  According  to  (23)  and  (22),  respectively,  (24)
holds.

M > 0
Therefore,  (21)  as  an  equivalent  of  (24)  holds  for  any

, under (22). ■
q > 0 α̇i(t) [0,q)Lemma 3: For any ,  is bounded on , if

ei(t)
(
ki(t), k̄i(t)

)
[0,q)

1)  evolves inside  but keeps away from the
boundaries on ;

ėi(t) [0,q)2)  is bounded on ;
i = 1, . . . ,n k1(t) = k(t) k̄1(t) = k̄(t) ki(t) = −ki(t)

k̄i(t) = ki(t) i = 2, . . . ,n
with ,  where , , 
and , .

Proof: Differentiating  (13)  and  (16)  by  (12)  and  (15),
respectively, yields
 

α̇1 (t) = c1η̇1 (t) (25)
 

α̇i (t) = −ciη̇i (t) , i = 2, . . . ,n (26)
where
 

η̇1 (t) = β11(t)× (λ1(t)+ ė1(t)β12(t)) (27)
 

η̇i (t) =
π

2
× 1

ki(t)
× 1
βi(t)
×ρi(t) (28)

with
 

λ1(t) = ˙̄k(t)e1(t)− ˙̄k(t)k(t)+ k̄(t)k̇(t)− e1(t)k̇(t) (29)
 

β11(t) =
1

k̄(t)− e1(t)
× 1

e1(t)− k(t)
(30)

 

β12(t) = k(t)− k̄(t) (31)
 

βi(t) = cos2
(
π

2
ei(t)
ki(t)

)
(32)

 

ρi(t) = ėi(t)−
ei(t)k̇i(t)

ki(t)
. (33)

φ(t)Note  from  Assumptions  4  and  5  and  the  definition  of 
that
 

y(t), ȳ(t), ẏ(t), ˙̄y(t),r(t), ṙ(t),φ(t), φ̇(t) ∈ L∞.

Therefore, it follows from (9) and (31) that:
 

k̄(t),k(t), ˙̄k(t), k̇(t),β12(t) ∈ L∞.

i = 1 λ1(t)
β11(t) [0,q) η̇1 (t)
α̇1(t) [0,q)

i = 1

Under the first assumed condition for ,  in (29) and
 in (30) are bounded on . As a result,  in (27)

and  in  (25)  are  bounded  on  in  the  assumed cases
for .

i = 2, . . . ,n
[0,q)

|ρi(t)| <∞ t < q
i = 2, . . . ,n η̇i (t) α̇i(t)

[0,q)
i = 2, . . . ,n

Similarly, the first assumed condition for  implies
the reciprocal of (32) is bounded on . Recalling (17) and
(18), we have , ,  under the assumed conditions
for .  Therefore,  in  (28)  and  in  (26)  are
bounded over  under the assumed conditions of Lemma 3,

. ■
The theoretical result of this paper is presented as follows.
Theorem  1: Under  Assumptions  1–5  and  the  initial  condi-

tions in (4) and (19), the control scheme composed of (6), (9),
(12)–(16) and (20) solves Problem 1.

Proof: It starts from claiming that
 {

k(t) < e1(t) < k̄(t), t ≥ 0

|ei(t)| < ki(t), i = 2, . . . ,n, t ≥ 0
(34)

which  is  shown  by  contradiction.  It  follows  from  (4)  and
(6)–(10) that:
 

k(0) < e1(0) < k̄(0), t ≥ 0.

t = 0 xn(t)
r(t)

e1(t) k(t)
k̄(t) η1(t) α1(t)

k(t) < e1(t) < k̄(t) e2(t)

e3(t), . . . ,en(t)
ei(t) i ∈ {3, . . . ,n}

k(t) < e1(t) < k̄(t)
∣∣∣e j(t)

∣∣∣ < k j(t) j = 2, . . . , i−1

Combining it with (19), (34) is met at . Note that 
is continuous. The same holds for  by Assumption 5. Thus,

 in  (7)  does  so.  This  together  with  the  continuity  of 
and  established above ensures that  in (12) and 
in  (13)  are  continuous,  if .  Further,  in
(14) is continuous under the same condition. Follow the same
line  to  examine  one  by  one.  Then,  it  can  be
recursively confirmed that each , ,  is continu-
ous  if  and , .
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t∗ > 0
These  facts  imply  that  if  (34)  is  violated,  then  there  exists

 so that
 k(t) < e1(t) < k̄(t), t < t∗

|ei(t)| < ki(t), i = 2, . . . ,n, t < t∗
(35)

and at least one of the following equations holds
 

lim
t→t∗

e1(t) = k̄(t∗)

lim
t→t∗

e1(t) = k(t∗)

lim
t→t∗

∣∣∣e j(t)
∣∣∣ = k j(t∗), j ∈ {2, . . . ,n} .

(36)

ηi(t) i = 1, . . . ,n
Next,  we  suppose  (36)  and  enumerate  each  case  therein.

This is prefaced with a deep analysis of , .  For
brevity,  the  dependence  of  some  functions  on  time,  state  or
disturbances  may  be  omitted  in  the  sequel.  Rewrite  (14)  as
follows:
 

xi+1 = ei+1+αi, i = 1, . . . ,n. (37)
Differentiating (7) and (14), by (1) and (37), leads to

 

ė1 = f1+g1e2+g1α1− ṙ (38)
 

ėi = fi+giei+1+giαi− α̇i−1, i = 2, . . . ,n (39)
en+1 = 0where . Substituting (38) with (13) into (27) gives

 

η̇1 = β11× (ω1+ c1β12g1η1) (40)
where
 

ω1 = β12× ( f1+g1e2− ṙ)+λ1. (41)

Similarly, inserting (33) with (39) and (16) into (28) yields
 

η̇i =
π

2
× 1

ki
× 1
βi
× (ωi− cigiηi) , i = 2, . . . ,n (42)

where
 

ωi = fi+giei+1− α̇i−1−
eik̇i

ki
, i = 2, . . . ,n. (43)

e1Case  1: At  the  outset,  we  analyze  the  evolution  of  by
constructing
 

V1 =
1
2
η2

1. (44)

It is straightforward to see from (40) that
 

V̇1 = η1×β11× (ω1+ c1β12g1η1) . (45)

k̄,k, ˙̄k, k̇ ∈ L∞ λ1 t < t∗

f1 g1

Due to ,  in  (29)  is  bounded for  under
(35). Continue to analyze  and , where
 

f1 = f1(x1, x1(t−τ1),d) (46)
 

g1 = g1(x1, x1(t−τ1),d). (47)
e1 [0, t∗)

|x1| <∞ t < t∗ i = 1 j = 1
x1(t−τ1) [0, t∗) d ∈ L∞

| f1| <∞ |g1| <∞ [0, t∗) β12 ∈ L∞

ṙ ∈ L∞ i = 2
ω1 t < t∗

The  boundedness  of  and r on  implies  by  (7)  that
, .  According  to  Lemma  2  for  and ,
 is  bounded  over .  Note  that  and  (46)

and (47) are continuous with respect to their arguments. There
thus hold  and  on . Recall  and

. The above facts together with (35) for  imply the
boundedness of  in (41) for . Then, let 

sup
t∈[0,t∗)

|ω1(t)| = ω1. (48)

β11 > 0 β12 < 0
[0, t∗)

Note  from  (30),  (31)  and  (35)  that  and  on
. This together with (48) and Assumption 1 enables us to

scale (45) as follows:
 

V̇1 ≤ β11× |η1| ×
(
ω1+ c1β12g |η1|

)
, t < t∗

V̇1 < 0 |η1| > −ω1/(c1β12g) t < t∗

|η1| |η1| > −ω1/(c1β12g)
t < t∗

which  shows  as  for .  This
means by (44) that  decreases once  for

. It thus holds that
 

|η1(t)| ≤max

|η1(0)| , −ω1

c1β12g

 , t < t∗.

η1
δ1 > 0 δ1 > 0

The boundedness of  in (12) implies the existence of a pair
of constants  and  so that
 

k(t) < k(t)+δ1 ≤ e1(t) ≤ k̄(t)−δ1 < k̄(t), t < t∗. (49)

α1 t < t∗

f1 g1 e2 ṙ [0, t∗)
ė1

α̇1 [0, t∗)
e2

As a result,  in (13) is bounded for .  Further, owing
to the boundedness of , ,  and  on , the same holds
for  in (38). This together with (49) yields by Lemma 3 the
boundedness of  on ,  which enables us to analyze the
behavior of  next.

Case 2: Construct
 

V2 =
1
2
η2

2.

V2 i = 2The derivative  of  along (42)  and (43)  for  is  given
by
 

V̇2 =
π

2
× 1

k2
× 1
β2
×η2× (w2− c2g2η2) (50)

where
 

w2 = f2+g2e3− α̇1−
e2k̇2

k2
. (51)

f2 g2Unfold  and  as follows:
 

f2 = f2(x1, x1(t−τ2), x2, x2(t−τ2),d) (52)
 

g2 = g2(x1, x1(t−τ2), x2, x2(t−τ2),d). (53)
α1 [0, t∗)

i = 2 i = 2 |x2| <∞ t < t∗

|x2(t−τ2)| <∞ t < t∗

x1 [0, t∗)
|x1(t−τ2)| <∞ t < t∗

d ∈ L∞

| f2| <∞ |g2| <∞ t < t∗

α̇1 [0, t∗) w2
[0, t∗)

The  boundedness  of  on  in  conjunction  with  (35)
for  implies  by (14)  for  that , .  Invok-
ing  Lemma  2,  there  thus  holds , .  Simi-
larly,  the  boundedness  of  on ,  established  above,
implies  that , .  These  facts  together  with

 and the continuity of (52) and (53) in their arguments
guarantee  and , .  Recall  (17),  (18),  (35)
and the boundedness of  on .  Therefore,  in (51) is
bounded over . Denote
 

sup
t∈[0,t∗)

|ω2(t)| = ω2. (54)

k2 > 0 β2 > 0
t < t∗

Note  from  (17),  (32)  and  (35)  that  and  as
. With (54) and Assumption 1, (50) is scaled by

 

V̇2 ≤
π

2
× 1

k2
× 1
β2
× |η2| ×

(
ω2− c2g |η2|

)
, t < t∗.

V̇2 < 0 |η2| > ω2/(c2g) t < t∗Obviously,  if  as . Consequently,
 

ZHANG et al.: PRESCRIBED PERFORMANCE TRACKING CONTROL OF TIME-DELAY NONLINEAR SYSTEMS WITH OUTPUT CONSTRAINTS 1561 



|η2(t)| ≤max

|η2(0)| , ω2

c2g

 , t < t∗.

i = 2 |e2(t)|
k2(t) [0, t∗)

This means by (15) and (35) for  that  keeps away
from  on , i.e.,
 

|e2(t)| ≤ k2(t)−δ2 < k2(t), t < t∗ (55)
δ2 > 0 α2

[0, t∗) f2 g2 e3 α̇1
[0, t∗) ė2

α̇2 [0, t∗)

where  is  a  constant.  Moreover,  in  (16)  is  bounded
over .  Recall  the  boundedness  of , ,  and  on

 established above. Thus,  in (39) does so in the same
interval. This in company with (55) ensures by Lemma 3 that

 in (26) is bounded on .
j = 3, . . . ,n
η j j = 3, . . . ,n

δ j > 0 j = 3, . . . ,n

Case j  ( ): Follow  the  same  line  as  in  Case  2  to
analyze , ,  one  by  one.  Then,  we  can  conclude
that there exists a set of constant , , so that
 ∣∣∣e j(t)

∣∣∣ ≤ k j(t)−δ j < k j(t), j = 3, . . . ,n, t < t∗. (56)

As seen, (49), (55) and (56) contradict (36). Therefore, (36)
is false, and instead
 

k(t) < k(t)+δ1 ≤ e1(t) ≤ k̄(t)−δ1 < k̄(t), t ≥ 0 (57)

and
 

|ei(t)| ≤ ki(t)−δi < ki(t), i = 2, . . . ,n, t ≥ 0. (58)
Apparently,  (34)  is  true.  This  means that  the  controller  not

only  ensures  error  constraints  but  also  precludes  boundary
contact.  Lemma  1  further  demonstrates  that  the  output  con-
straint in (3) and the prescribed tracking performance require-
ment in (5) are guaranteed.

α1, . . . ,αn−1
x2, . . . , xn
ηi ∈ L∞ i = 1, . . . ,n

α1 αi i = 2, . . . ,n−1
xi i = 2, . . . ,n

It remains for us to verify that the rest of the signals in the
control  system are  bounded.  They  include  the  virtual  control
signals, ,  the  actual  control  input, u,  and  the  state
variables, .  Under  (57)  and (58),  one sees  from (12)
and (15)  that , .  This  guarantees  the bound-
edness  of  in  (13),  in  (16)  and u in  (20), .
Further, under (34),  in (37) is bounded, . ■

Remark  5: Different  from  the  classical  Lyapunov  stability
theory, a unified performance analysis based on proof by con-
tradiction and BLFs is carried out in this paper. It reveals the
robustness  of  the  control  system  in  the  face  of  time  delays,
model  uncertainties,  disturbances,  etc.  As  shown  in  (48),  the
integration of these unknown terms is bounded under the error
constraints. This means that a finite (virtual) control input, as
a  linear  function  of  the  barrier  function  as  shown  in  (16),  is
sufficient to counteract the effects of the unknown terms in the
dynamics  of  the  closed-loop  system.  Further,  the  bounded-
ness of the barrier function in turn implies that the error keeps
away from the prescribed boundary, such that it is confined in
the  predefined  interval.  The  above  analysis  explains  why the
additional  requirements  for  the  time  delays  alluded  to  in
Remark  1  and  the  dependence  on  commonly  used  tools  for
nonlinear  control  mentioned in Remark 4 are not  included in
this paper.

Remark 6: On the basis of the proposed approach, the regu-
lation of the overshoot of the tracking error is achievable in a
simple skillful way. Modify the first intermediate control law
and introduce a switching rule as follows: 

α1(t) =



c1 ln
(

k̄(t)− e1(t)
e1(t)+ k̄(t)

)
, if e1 (0) > 0 and t < T ∗

c1 ln
(−k(t)− e1(t)

e1(t)− k(t)

)
, if e1 (0) < 0 and t < T ∗

c1 ln
(
ε− e1(t)
e1(t)+ε

)
, otherwise

(59)
T ∗ e1(t) = 0

e1(t) t = T ∗

t = T ∗ ε |e1| |e1| < ε
t > T ∗

e1
ε

where  is the first time instant at which . Then, no
overshoot  of  occurs  before .  One  sees  from  (59)
that after ,  serves as the bound of , and thus 
holds for  which can be warranted as substantiated in the
above proof. Therefore, the overshoot of  is always less than
. It is also noted from (59) that

 

lim
t→T ∗−

α1(t) = lim
t→T ∗+

α1(t) = 0.

α1(t) T ∗This  means  that  is  continuous  at ,  which  has  no
impact  on  the  recursive  PPC design.  In  this  way,  a  complete
performance  specification  for  reference  tracking  is  realized,
like [25], [26].  

V.  Simulation Study
 

ẋ1(t) = − 1
Θ1

x1(t)−K1x1(t)+
1−R2

V1
x2(t)

+δ1(x1(t−τ1))+d1(t)

ẋ2(t) = − 1
Θ2

x2(t)−K2x2(t)+
F
V2

u(t)+
R1

V2
x2(t−τ2)

+δ2(x1(t−τ2))+d2(t).

(60)

In order to illustrate the above theoretical findings, a simula-
tion study on a two-stage chemical reactor with delayed recy-
cle streams is conducted.

x1
x2 K1 K2

R1 R2 Θ1
Θ2

V1 V2 τ1 τ2
δ1 δ2 d1 d2

x1(0) = 0.5
x2(0) = 0.5 Θ1 = Θ2 = 2 R1 = R2 = 0.5 V1 = V2 = 0.5 F =
0.5 K1 = K2 = 0.3 d1 = 0.2cos(0.65πt) d2 = 0.2sin(0.65πt)
δ1 = 0.5sin(t)x2

1(t−τ1) τ1 = 1+ sin(t) δ2 = 0.5sin(t)x3
1(t−τ2)

τ2 = 1.2+1.2cos(t)

The plant is modeled [36], [44] by (60) below, where  and
 denote  the  reaction compositions;  and  are  the  reac-

tion constants;  and  represent the recycle flow rates; 
and  stand for the reactor residence times; F is the feed rate;

 and  are  the  reactor  volumes;  and  are  the  time
delays;  and  represent the system nonlinearities;  and 
denote  the  disturbances.  In  the  simulation,  let ,

, , , , 
, , , ,

, , ,
and .

One of the control goals for (60) is to ensure the following
constraint:
 

y = −1.5 < y(t) = x1(t) < ȳ = 1.4, ∀t ≥ 0.

y(t) r(t) = sin(t)Meanwhile,  steer  to  track  with  the  follow-
ing transient and steady-state performance guarantees:
 

|y(t)− r(t)| < 0.05, ∀t > 2.5. (61)

c1 = 13 c2 = 5
According to Theorem 1, a model-free controller is obtained

with ,  and
 

φ(t) =

1−0.9833sin(
πt
5

), if t < 2.5

0.0167, otherwise

k2(t) = (18−0.15)e−t +0.15.
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Applying  the  above  controller  to  the  time-delay  nonlinear
system in (60), the simulation results are displayed in Figs. 1–
5. It is seen from Fig. 1 that the system output evolves within
the constraint band and almost tracks the reference after 2.5 s.
Certainly, it is substantiated by Fig. 2 where one can see that
the  tracking  performance  fulfills  the  predefined  specification
in  (61),  despite  the  a  priori  unknown  reference  to  the  con-
troller.  Similarly,  the  evolution  of  the  intermediate  error  is
also  inside  the  prescribed  performance  funnel,  as  shown  in
Fig. 3. Finally, Figs. 4 and 5 show that the state variable, the
intermediate control law and the control input are all bounded.
Accordingly, the simulation results illustrate the effectiveness
of our approach.
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Fig. 1.     Output tracking and output constraint.
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Fig. 2.     Error evolution and performance requirement.
 

t = 0
u > 13 000 t = 1.8 u > 4000 t = 2.3 u >
1000

To  perform  a  comparative  study,  an  adaptive  fuzzy  con-
troller [36] is  applied to (60) with the same control  objective
and  under  the  same  simulation  condition.  The  simulation
results  are  depicted  in Figs.  6 and 7. Fig.  6 shows  that  fast
accurate  reference  tracking  is  basically  realized,  however,  a
minor  performance  violation  occurs  on [7.5  s,  8  s].  Further-
more, Fig.  7 shows  three  control  peaks  near  s  with

,  s  with  and  s  with 
, respectively. However, Fig. 5 shows that the supremum

of  the  control  input  by  our  approach  is  no  more  than  25

throughout. Therefore, comparative results show the superior-
ity  of  our  approach with  its  higher  tracking performance and
lower control cost.
  

VI.  Conclusion

A novel robust prescribed performance control approach for
the  output-constrained  time-delay  lower-triangular  nonlinear
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Fig. 3.     The intermediate error and the prescribed boundaries.
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Fig. 4.     The state variable and the intermediate control law.
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Fig. 5.     The control input.
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systems  with  mismatched  disturbances  is  put  forward  in  this
paper. It is suitable for cases where the reference is not known
a  priori;  the  time  delays  satisfy  only  the  most  fundamental
requirements;  the  output  constraints  are  time-varying  and
asymmetric; the nonlinear functions are unknown. It achieves
reference tracking with the arbitrarily predefined setting time
and accuracy. On the other hand, the proposed control exhibits
a  significant  simplicity  in  the  sense  that  it  does  not  invoke
techniques for estimation, adaption, identification, approxima-
tion, filtering, etc. This is attributed to the inherent robustness
of  our  approach,  which  is  revealed  by  the  unified  perfor-
mance  analysis  framework  based  on  proof  by  contradiction
and  barrier  functions.  For  future  work,  it  is  of  interest  to
extend such a control strategy to more complex systems, e.g.,
multi-agent systems.
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Fig. 6.     The tracking error by the comparative controller [36].
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Fig. 7.     The control input by the comparative controller [36].
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