

Discovering Latent Variables for the Tasks
With Confounders in Multi-Agent

Reinforcement Learning
Kun Jiang , Wenzhang Liu , Yuanda Wang , Lu Dong , Member, IEEE, and

Changyin Sun , Senior Member, IEEE

 Abstract—Efficient exploration in complex coordination tasks
has been considered a challenging problem in multi-agent rein-
forcement learning (MARL). It is significantly more difficult for
those tasks with latent variables that agents cannot directly
observe. However, most of the existing latent variable discovery
methods lack a clear representation of latent variables and an
effective evaluation of the influence of latent variables on the
agent. In this paper, we propose a new MARL algorithm based
on the soft actor-critic method for complex continuous control
tasks with confounders. It is called the multi-agent soft actor-critic
with latent variable (MASAC-LV) algorithm, which uses varia-
tional inference theory to infer the compact latent variables rep-
resentation space from a large amount of offline experience.
Besides, we derive the counterfactual policy whose input has no
latent variables and quantify the difference between the actual
policy and the counterfactual policy via a distance function. This
quantified difference is considered an intrinsic motivation that
gives additional rewards based on how much the latent variable
affects each agent. The proposed algorithm is evaluated on two
collaboration tasks with confounders, and the experimental
results demonstrate the effectiveness of MASAC-LV compared to
other baseline algorithms.
 Index Terms—Latent variable model, maximum entropy, multi-
agent reinforcement learning (MARL), multi-agent system.

I. Introduction

R EINFORCEMENT learning (RL) has been recognized as
an effective method in solving control and navigation

problems [1]–[6]. Therefore, RL algorithms are extended from
single-agent systems to multi-agent systems to solve some
cooperative and competitive tasks [7]–[10]. In a multi-agent
system, the non-stationarity [11], [12] during the learning pro-
cess and the challenge in effectively exploring the environ-
ment [13]–[15] are considered two great challenges. The
method based on the independent Q-function [16] enables
each agent to solve the optimal policy under local observation
independently, regardless of the policies and observations of
other agents. This makes it impossible to share information
between agents, and it is difficult to ensure optimal overall
performance. Hence, the paradigm of centralized training with
decentralized execution (CTDE) is proposed as a general
approach to learning optimal joint policies and stabilizing the
training [17]. Besides, some methods based on value decom-
position [18]–[20] and maximum entropy [21], [22] are
believed to be helpful for the agent to explore the complex
environment. The methods mentioned above are all under the
observable system, and the generation mechanism of the
reward function is deterministic. Even if the system’s state is
locally observable, the global state can be extracted from the
historical sequence using recurrent neural network technol-
ogy. However, for some scenarios with latent variables that
cannot be directly observed by the agent, e.g., the tasks with
latent probability distributions and a non-deterministic reward
function generation mechanism, it is more difficult for the
agent to explore the joint optimal action space. For example,
the predator-prey task with confounding factor is shown in
Fig. 1. In a traditional predator-prey task, the predators are
rewarded if any of them collide with the prey. However, this
is unrealistic because the behavior of only one predator collid-
ing with prey cannot be called capture behavior. On the other
hand, this behavior will alert the prey and affect the behavior
of multiple predators to capture the prey. In this paper, the
predators collaboratively obtain a positive reward k when they
collide with one prey at the same time. If only one or two
predators collide with prey at the same time, the predator gets
a different negative reward h and l, respectively. This non-
monotonic reward makes it more difficult to explore the envi-
ronment and complete the task.

The traditional RL algorithms based on the Markov deci-
sion process (MDP) have difficulty solving such tasks because
they assume that the generation mechanism of the reward

Manuscript received April 11, 2023; revised June 23, 2023, December 23,

2023, January 23, 2024; accepted January 28, 2024. This work was supported
in part by the National Natural Science Foundation of China (62136008,
62236002, 61921004, 62173251, 62103104), the “Zhishan” Scholars
Programs of Southeast University, and the Fundamental Research Funds for
the Central Universities (2242023K30034). Recommended by Associate
Editor Nian Zhang. (Corresponding author: Changyin Sun.)

Citation: K. Jiang, W. Liu, Y. Wang, L. Dong, and C. Sun, “Discovering
latent variables for the tasks with confounders in multi-agent reinforcement
learning,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp. 1591–1604, Jul.
2024.

K. Jiang and Y. Wang are with the School of Automation, Southeast
University, Nanjing 210096, China (e-mail: kjiang@seu.edu.cn; wangyd@seu.
edu.cn).

W. Liu is with the School of Artificial Intelligence, Anhui University,
Hefei 230601, China (e-mail: wzliu@ahu.edu.cn).

L. Dong is with the School of Cyber Science and Engineering, Southeast
University, Nanjing 211189, China (e-mail: ldong90@seu.edu.cn).

C. Sun is with the School of Automation, Southeast University, Nanjing
210096, and also with the Engineering Research Center of Autonomous
Unmanned System Technology, Ministry of Education, Hefei 230601, China
(e-mail: cysun@seu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2024.124281

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024 1591

http://orcid.org/0000-0001-5507-4654
http://orcid.org/0000-0002-2021-7106
http://orcid.org/0000-0001-8002-8131
http://orcid.org/0000-0001-6737-1381
http://orcid.org/0000-0001-9269-334X
mailto:kjiang@seu.edu.cn
mailto:kjiang@seu.edu.cn
mailto:kjiang@seu.edu.cn
mailto:ldong90@seu.edu.cn
mailto:cysun@seu.edu.cn
http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2024.124281

function is deterministic, so it is necessary to improve the
MDP-based algorithm for the tasks with latent variables.

A direct improvement is one where the agent utilizes a
latent variables discovery model to represent the space of the
latent variables in the task. The predicted latent variables are
used to expand each agent’s observation range and generate a
policy that can solve complex tasks with confounding factors.
Therefore, the existing latent variable models based on varia-
tional inference [23] and causal inference [24] are used to
learn statistical latent variable representations. Those methods
try to learn the probability distribution of latent variables in a
large number of offline experiences, and then infer the latent
cause in a separate state, to improve the efficiency of the
agent’s exploration of the environment. However, most of the
above methods focus on the single-agent domain, and they do
not evaluate the specific impact of latent variables on the
agent’s policy. In addition, some methods are based on coun-
terfactual inference to obtain internal rewards, which can
improve the efficiency of agents in exploring complex envi-
ronments, but it is also difficult to solve complex tasks with
confounding factors [25], [26].

In a multi-agent system, the interaction between the agents
and the environment is more complex, and the latent vari-
ables in the environment have different effects on each agent.
Therefore, it is more difficult to infer the latent variable space
of the task and measure the impact of latent variables on each
agent in a multi-agent system. In this paper, the aim is to
improve the efficiency of agents exploring complex tasks by
discovering the latent variable space of the task and quantify-
ing the impact of latent variables on each agent’s policy.
Specifically, we propose a new multi-agent reinforcement
learning (MARL) algorithm for those tasks with continuous
action and state spaces based on the soft actor-critic frame-
work. Further, the amortized variational inference method is
adopted to learn the latent variables discovery model for each
agent, which is trained by maximizing the evidence lower
bound (ELBO) with a large number of offline experiences
[27]. The latent variable model assigns an inference network
for each agent to produce a posterior distribution, which com-
bines historical information and the current state to predict the

latent variables at each time step. Then, we augment the input
of the agent’s policy with the predicted latent variables to
obtain an actual adjusted policy that can represent any condi-
tional distribution over actions. The evaluation of the value
function is based not only on the observations and actions of
all agents but also on the sampled latent variables.

To measure the influence of the predicted latent variables on
each agent’s policy, the Monte Carlo method is applied to
derive the counterfactual policy, which is a probability distri-
bution with no latent variables as input. Then, a distance func-
tion is used to measure the difference between the actual
adjusted policy and the counterfactual policy. We make this
difference as an intrinsic reward to motivate the agent to
explore the environment. The intrinsic rewards provide a more
coherent exploration of each agent’s policy and measure latent
variables’ differential impact on each agent. The main contri-
butions of this paper are summarized as follows.

1) To discover latent variables in complex tasks with con-
founders, a new algorithm called the multi-agent soft actor-
critic with latent variables (MASAC-LV) using the CTDE
framework is proposed. The inference network in the latent
variable model fits a posterior distribution to construct the
latent variable space for the task at hand. The predicted latent
variables broaden the observation space of the agent’s policy
and improve the agent’s exploration efficiency for complex
tasks.

2) Considering that the interaction between agents and the
environment is more complex in multi-agent systems, the
Monte Carlo statistical method is applied to derive the coun-
terfactual policies without latent variables as input. Then, the
difference between the actual policy and the counterfactual
policy is measured to represent the different effects of the
latent variables on each agent.

The following contents are organized as follows. Section II
mainly includes the related works on MARL and latent vari-
ables model. The research background and problem descrip-
tion are introduced in Section III. In Section IV, the details
about the proposed algorithm are provided. The simulation
results of the proposed algorithm and the baselines are com-
pared in Section V. Finally, we summarize this paper in Sec-
tion VI.

II. Related Work

Maximum entropy reinforcement learning has shown a
strong exploratory ability in dealing with single-agent tasks,
as it optimizes the policy to maximize the expected reward
and the entropy of policy [28]. Haarnoja et al. [29] combines
the maximum entropy with the actor-critic framework and off-
policy method to propose the soft actor-critic (SAC) algo-
rithm. They found that the SAC is a more stable and scalable
algorithm, and it exceeded the final performance of the clas-
sic actor-critic algorithm and deep deterministic policy gradi-
ent (DDPG) in experiments [30]. The success of these algo-
rithms has also sparked more interest in MARL. For example,
independent Q-learning (IQL) directly extends deep Q-learn-
ing to multi-agent systems, where each agent learns an inde-

Prey

Observation

Latent

Predator

Fig. 1. Schematic diagram of the predator-prey environment, where these
predators get a positive reward when they collide with the prey at the same
time. The solid black arrows represent the influence of the received observa-
tions on the policy, and the dashed arrows represent the influence of invisible
latent variables on the policy.

 1592 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

pendent Q-function according to the information it receives
[31]. Considering that the IQL may lead to non-stability and
local optimal solutions, the CTDE framework is proposed to
stabilize the training of each agent [32]. Multi-agent deep
deterministic policy gradient (MADDPG) learns a centralized
critic for each agent whose input includes the observations
and actions of all agents, while the input of each agent’s pol-
icy network is only its observation [33]. For instance, Hua
et al. [34] originated MADDPG by introducing a hand-shak-
ing strategy to ascertain different learning agents achieving
energy management collaboratively. In addition, QMIX [35],
COMA [36] and AWRMIX [37] algorithms are based on the
CTDE framework to solve the credit assignment. The maxi-
mum entropy method still plays an important role in MARL,
Ryu et al. [38] combine the multi-agent soft actor-critic
scheme with a hierarchical graph attention network to facili-
tate the transfer of learned policies to new tasks.

For tasks with latent information unobservable by the agent,
some existing model-free works in the single-agent field learn
the latent variables discovery model to solve the latent-space
partially observable Markov decision process (POMDP). Lee
et al. [23] proposed a stochastic latent actor-critic algorithm to
learn latent representation from lots of high-dimensional
images, which is proven to be sampling efficient and acceler-
ates the learning process. Haarnoja et al. [39] learned a hierar-
chical reinforcement learning framework for solving complex
sparse-reward tasks, where each layer is augmented with
latent random variables sampled from the trained prior distri-
bution. There are also some model-based reinforcement learn-
ing methods to expand the observation space of the agent by
learning the latent-space dynamics system models [40]–[43].
Besides, causal inference is introduced as a very useful
method to solve the MDP with confounded observational data,
where its main concept is to infer the representation of latent
variables by building a causal structural model [44]–[47]. For
example, Madumal et al. [48] learned the causal models to
derive causal explanations of the behavior of model-free RL
agents and encoded causal relationships between variables of
interest. Sontakke et al. [24] proposed a hierarchical manner
to infer the causal factor in the dynamic of the environment
and introduce the causal curiosity as a novel intrinsic reward
to motivate the exploration of the agent.

However, in a multi-agent system, the interaction between
agents is more complex, and the latent variables in the task
have different effects on each agent [49]–[51]. Therefore, it is
more difficult to discover the latent variable space in MARL.
For challenging social dilemma environments, Jaques et al.
[25] reward those agents whose actions have causal effects on
other agents to enhance coordination between all agents,
where the causal influence is assessed using counterfactual
reasoning. Zheng et al. [26] introduced a novel Episodic
MARL algorithm with curiosity-driven exploration, where
they make prediction errors of individual Q-values as intrin-
sic rewards for coordinated exploration. Those methods are
reward-shaping methods by rewarding agents to motivate all
agents to explore the environment and cooperate.

III. MARL and Statistical Variational Inference

A. Decentralized Partially Observable Markov Decision Process

⟨I,S,O,A,R,P,γ⟩ I = {1, . . . ,N}
S

Oi ∈ O = {O1, . . . ,ON}
Ai ∈ A = {A1, . . . ,AN}

R : S×A×
S 7→ R γ ∈ [0,1)
st ∈ S ai

t
oi

t at

rt+1
P : S×A×S 7→ [0,1]∑

tE(st ,at)∼ρ[γ
tr(st, at)] at

ρ(st)
π(at |ot)

π(ai
t |oi

t)

Qπ(st,a1
t ,. . . ,a

N
t)

E[G]

A fully cooperative multi-agent task can be described as a
decentralized partially observable Markov decision process
(Dec-POMDP). Correspondingly, the Dec-POMDP can be
formulated as a tuple . is the
set of agents. is the true state space of the environment.

 is the observation space of agent i, and
 is the action space of agent i. The

multi-agent team shares the same reward function
. is the discount factor. At each certain step

, the agent i chooses the action based on its local
observation . Then, the joint action at time t is applied to
the environment, which leads to a state transition and an
immediate reward according to the transition function

. Solving the Dec-POMDP problem can
be understood as the optimization of maximizing the dis-
counted reward , where is the joint
action of all agents and ρ denotes the state marginals of
the trajectory distribution induced by the joint policy .
We consider the framework of CTDE, therefore, the stochas-
tic policy of agent i can only condition on its indepen-
dent history observation and action information. All agents
learning the centralized action-value function
to evaluate the discounted reward .

B. Maximum Entropy Multi-Agent Reinforcement Learning

π(ai
t |oi

t)

H(π(ai
t |oi

t)

Standard reinforcement learning aims to learn the policy
 to maximize the expected cumulative reward. On this

basis, maximum entropy reinforcement learning considers an
additional maximum entropy objective, so that each agent’s
stochastic policy tends to maximize the expected entropy

. Thus, the multi-agent team attempts to find an
optimal policy to maximize the following objective:

π∗ = argmax
π

T∑
t=0

E(st ,at)∼ρ[γ
t(r(st, at)+αH(π(at |ot))] (1)

π∗

H(π(at |ot))
H(π(at |ot)) = − logπ(at |ot)

where is the optimal joint policy, T is the number of
timesteps, and α is the temperature parameter representing the
relative importance of the entropy term to the reward.

 is the entropy of the joint policy and can be
expressed as . To obtain the opti-
mal joint policy in (1), the soft actor-critic algorithm derives
soft policy iteration to alternate between policy evaluation and
policy improvement under the maximum entropy framework.
Correspondingly, the Q-function is called the soft Q-function
and is optimized to minimize the following soft Bellman
residual:

JQ(θi) =
1
2

(Qi
π(st,a1

t , . . . ,a
N
t)− (rt

+γ E
at+1∼π

[Q̄i
π(st+1,a1

t+1, . . . ,a
N
t+1)

−α logπ(ai
t+1|o

i
t+1)]))2 (2)

θi

Q̄π(st+1,a1
t+1, . . . ,a

N
t+1)

where are the parameters of the soft Q-function of agent i,
and is the target soft Q-function of

JIANG et al.: DISCOVERING LATENT VARIABLES FOR THE TASKS WITH CONFOUNDERS IN MARL 1593

ϕiagent i. The policy parameter of agent i is updated accord-
ing to the gradient of the soft Q-function, and the correspond-
ing policy loss of agent i is expressed as

Jπ(ϕi) = E
at∼π

[α logπ(ai
t |oi

t)−Qi
π(st,a1

t , . . . ,a
N
t)]. (3)

C. Statistical Variational Inference in POMDP

s z
s

p(s) =
r

p(s|z)p(z)dz

To learn augmented representation for the tasks with latent
variables, we consider training a latent variable model to infer
the latent variables in the task. Specifically, the statistical
amortized variational inference method is employed to learn
the probability distribution of latent variables. The trained
latent variables model can decouple entangled state informa-
tion into task-relevant representations and is optimized by
maximizing the probability of observed state under the equa-
tion . In statistical variational inference,
this objective is often transformed into the ELBO for the log-
likelihood [27]

log p(s) ≥ Ez∼q[log p(s|z)−DKL(q(z|s)∥p(z)]

= ELBO(q) (4)
q(z|s)

p(s|z)
DKL(q(z|s)∥p(z)

p(z)

where is the recognition model and also is called a prob-
abilistic encoder, is the probabilistic decoder, therefore,

 denotes the Kullback-Leibler (KL) diver-
gence between the two distributions and is the prior dis-
tribution of latent variables. Correspondingly, the loss func-
tion of the entire stochastic latent variable model can be
expressed as

Llatent(ψ) = Ez∼q[log pψ(s|z)−DKL(qψ(z|s)∥pψ(z)] (5)

q(z|s) p(s|z)
where ψ are the parameters of all distributions. The encoder

 and the decoder are directly optimized according
to the stochastic gradient form loss function.

IV. Modeling and Learning Probabilistic
Latent Variable Space

z
π(ai

t |oi
t,z

i
t)

q(z|s)

In a multi-agent system, the connections between agents and
the interaction between agents and the environment are more
complex, so it is more difficult to discover latent variables in a
multi-agent system with confounding variables. To learn the
knowledge that is beneficial to completing the current task
under the statistical latent variable , based on which we
adjust the policy of each agent to so that the actions
of each agent adapt to the complex tasks. We learn the latent
variable discovery model from a large amount of offline expe-
rience and then infer the latent variable value at the current
time-step through the posterior distribution . In the fol-
lowing section, the specific structure of the latent variable dis-
covery model will be described, and the corresponding
MASAC-LV algorithm will be given.

A. Latent Variable Inference Model

π(ai
t |oi

t,z
i
t)

To effectively learn the improved stochastic policy
 in a complex MARL task with confounders, the

learned latent variable model must tease out the salient infor-
mation about the task into a disentangled latent representation.
Under the influence of latent variables, the Markov decision
chain of each agent can be represented by Fig. 2. It can be

zi

zi

known that the latent variable of each agent is contained in
the global state s of the environment, and the undiscovered
latent variable will affect the policy of each agent and ulti-
mately affect the reward function. Therefore, our purpose is to
discover latent variable space in multi-agent tasks with con-
founders and adjust the stochastic policy of each agent.

.

zt − 1
i zt + 1

izt
i

st − 1 st + 1st

rt + 1 rt + 2rt

at − 1
i at + 1

iat
i

ai zi

zi

Fig. 2. The Markov chain of each agent, including the global state s of the
environment, the action of each agent, latent variable and reward r in the
environment, where the red dashed arrows represent the influence of the latent
variable on the policy of each agent.

zi
t

p(z)
q(z|s) p(s|z)

p(zi
t |zi

t−1,a
i
t−1)

q(zi
t |zi

t−1,a
i
t−1, st)

ot

q(zi
t |zi

t−1,a
i
t−1, ot)

In this paper, the amortized variational inference approach
in Section IV is adopted to infer the latent variable of each
agent. To maximize ELBO in (4), it needs to build function
approximators to evaluate the prior distribution , poste-
rior distribution , and the data generator . This pos-
terior distribution is considered an encoder, while the data
generator is considered a decoder. We consider a task as a
multi-agent MDP, which consists of a series of actions, states,
a bounded reward function, a transition function, etc. For a
model-free reinforcement learning problem, the transition and
reward functions can be reconstructed from a sequence of
unordered transitions. It follows that a collection of those tran-
sitions is sufficient to infer the space of the latent variables for
the tasks with confounders. The latent variables contained in
the state information of the environment are different for each
agent, so it needs to learn a different latent variable model for
each agent. At the same time, we augment the input of the
prior and posterior distribution of each agent as
and based on the time sequence information
in a fully observed MDP. In a multi-agent system, the global
state of the environment is difficult to obtain, but the observa-
tions of all agents almost contain the overall state information
in the environment. Therefore, the global state s in the above
probability distribution is replaced with the observations of
all agents, and the corresponding posterior distributions
becomes .

qψ(zi
t |zi

t−1,

ai
t−1, ot) pψ(zi

t |zi
t−1,a

i
t−1)

Those distributions are considered as the multivariate diago-
nal Gaussian, and we train the inference network

 and the generative network parame-
terized by ψ to estimate the posterior and prior distributions,
respectively. When designing the architecture of the inference
network, we would like it to be expressive enough to capture
the task-relevant information, without modeling irrelevant
dependencies. The architecture of the designed inference net-
work is shown in Fig. 3, and a parameter-sharing trick is used,

 1594 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

qψ(zi
t |zi

t−1,a
i
t−1, ot) ai

t−1
zi

t−1
ot µi

t
σi

t

where all agents share an inference network. The inference
network takes as input the action and
latent variable of each agent, as well as the observations

 of all agents. It outputs the multidimensional mean and
variance , forming a multivariate diagonal Gaussian as in
(6) to predict the distribution of the latent variable.

qi
ψ(zi

t |zi
t−1,a

i
t−1, ot) =N(µi

t,σ
i
t). (6)

Fully connect (ReLU)

Fully connect (ReLU)

Fully connect (ReLU)

ui
t (Linear) σi

t (Softplus)

zt − 1
i at − 1 ot

i

(ui
t, σi

t)

ψ

N(µi
t ,σ

i
t)

Fig. 3. The architecture of the inference network for each agent, which con-
sists of three layers of fully connected neural networks. is a multi-
variate diagonal Gaussian.

pψ(zi
t |zi

t−1,a
i
t−1)

ot

pψ(ot |zt) zt

pψ(ot |zt)

ELBO

If more historical sequence information is considered, the
fully connected layer in the inference network can also be
replaced by a long short-term memory (LSTM) layer. As for
the architecture of the generative model , the
difference between it and the inference model is that its input
has no observations of all agent. The KL divergence term in
ELBO can also be understood as an information bottleneck
constraining the relationship between the latent variable and
other information. The first term of ELBO is considered as

, where is the latent variables for all agents.
 is estimated by a multi-layer perception (MLP), in

which the hidden layer uses the ReLU activation function, and
the last layer uses the linear and Softplus activation functions
to output the mean and variance respectively. According to the

 in (4), the parameters ψ of the latent variable model are
optimized with the following objective:

Llatent(ψ) = Ez∼qψ [log pψ(ot |zt)

−DKL(qψ(zi
t |zi

t−1,a
i
t−1, ot))∥pψ(zi

t |zi
t−1,a

i
t−1)]. (7)

ot

ot

The difference between the above equation and (4) is that
when calculating the KL divergence term, the latent variable
contained in the two distributions is the latent variable of each
agent, not the latent variable of all agents. Because the
decoder must decode the latent variables of all agents to out-
put the distribution about , the latent variables of each agent
can be inferred from the observations of all agents.

qψ(zi
t |zi

t−1,a
i
t−1, ot) = qψ(zi

t |ci
t, ot) pψ(zi

t |zi
t−1,

ai
t−1) = pψ(zi

t |ci
t)

p(zi
t |ci

t, ot) qψ(zi
t |ci

t, ot)
ot

Next, the ELBO will be derived in multi-agent reinforce-
ment learning. To make the following expression more con-
cise, we define and

. For the convenience of subsequent deriva-
tion, we temporarily use to replace .
Firstly, for a general problem, is the observed variable from

ci
t zi

t
ot ci

t

the environment, is other information of agent i, is the
latent variable encoded from and , the posterior distribu-
tion is computed by the following Bayesian model:

p(zi
t |ci

t, ot) =
p(zi

t)p(ci
t, ot |zi

t)

p(ci
t, ot)

(8)

p(zi
t)

p(ci
t, ot |zi

t) p(ci
t, ot) =

r
p(zi

t)×
p(ci

t, ot |zi
t) p(ci

t, ot)

p(zi
t |ci

t, ot)
p(zi

t |ci
t, ot)

q(zi
t)

where is the prior distribution of latent variable,
 is the likelihood function, and
, called evidence. Since includes non-inte-

grable multiple integrals, this results in no analytical solution
to the posterior distribution . The variational infer-
ence method assumes that this posterior distribution
is approximated by a variational distribution , thus con-
structing the following optimization problem:

q∗(zi
t) = argmin L(q(zi

t), p(zi
t |ci

t, ot)) (9)

q∗(zi
t)

p(zi
t |ci

t, ot)

where L represents the distance function, which is usually
considered as the KL divergence; this distribution is
easier to solve than the posterior distribution .

q(zi
t) ∈ Q

q(zi
t) q∗(zi

t)

Theorem 1: For the optimization problem in (9), the poste-
rior distribution , can directly optimize the ELBO of

 to solve the optimal , which means

q∗(zi
t) = arg min

q(zi
t)∈Q

DKL(q(zi
t)∥p(zi

t |ci
t, ot))

= arg max
q(zi

t)∈Q
ELBO(q)

= arg max
q(zi

t)∈Q
Eq[log p(ci

t, ot |zi
t)]

−DKL(q(zi
t)∥p(zi

t |ci
t, ot)). (10)

DKLProof: For (9), we expand the term as

DKL(q(zi
t)∥p(zi

t |ci
t, ot)) = −

w
zi
t
q(zi

t) log[
p(zi

t |ci
t, ot)

q(zi
t)

]dzi
t

=
w

zi
t
q(zi

t) logq(zi
t)dzi

t −
w

zi
t
q(zi

t) log p(zi
t |ci

t, ot)dzi
t. (11)

q(zi
t) zi

t
q(zi

t)
The integral of the above formula about to is the

expectation about . We express the above formula with
the following expectation form:

DKL(q(zi
t)∥p(zi

t |ci
t, ot)) = Eq[logq(zi

t)]−Eq[log p(zi
t |ci

t, ot)]

= Eq[logq(zi
t)]−Eq[log[

p(ci
t, ot,zi

t)

p(ci
t, ot)

]]

= Eq[logq(zi
t)]−Eq[log p(ci

t, ot,zi
t)]

+Eq[log p(ci
t, ot)]. (12)

log p(ci
t, ot)

q(zi
t)

Since is independent of the expected object
, the expected symbol can be removed directly, so we get

DKL(q(zi
t)∥p(zi

t |ci
t, ot)) = Eq[logq(zi

t)]

−Eq[log p(ci
t, ot,zi

t)]+ log p(ci
t, ot). (13)

The first two terms of the above formula are called ELBO.
In the actual calculation, ELBO can be expressed in the fol-
lowing form for calculation:

JIANG et al.: DISCOVERING LATENT VARIABLES FOR THE TASKS WITH CONFOUNDERS IN MARL 1595

ELBO(q) = Eq[log p(ci
t, ot,zi

t)]−Eq[logq(zi
t)]

= Eq[log p(ci
t, ot |zi

t)p(zi
t)]−Eq[logq(zi

t)]

= Eq[log p(ci
t, ot |zi

t)]+Eq[log p(zi
t)]

−Eq[logq(zi
t)]

= Eq[log p(ci
t, ot |zi

t)]+Eq
[log p(zi

t)

logq(zi
t)

]
= Eq[log p(ci

t, ot |zi
t)]+

w
zi
t
q(zi

t)
log p(zi

t)

logq(zi
t)

dzi
t

= Eq[log p(ci
t, ot |zi

t)]−DKL(q(zi
t)∥p(zi

t)). (14)

log p(ci
t, ot)

DKL(q(zi
t)∥p(zi

t |ci
t, ot))

Through the derivation of the above formula, ELBO is con-
sistent with the description in (4). Moreover, in
(13) includes the statistical information about the observed
variables, so it is a constant. Our initial goal was to minimize

, which can now be transformed to maxi-
mize the ELBO, which results in

q∗(zi
t) = arg min

q(zi
t)∈Q

DKL(q(zi
t)∥p(zi

t |ci
t, ot))

= arg max
q(zi

t)∈Q
ELBO(q). (15)

■

B. Intrinsic Reward Motivate Agent Exploration

ri
int

π(ai
t |oi

t,z
i
t) zi

t
qψ(zi

t |ci, ot)
π(ai

t |oi
t) zi

t
π(ai

t |oi
t,z

i
t)

π(ai
t |oi

t)

π(ai
t |oi

t,z
i
t) π(ai

t |oi
t)

zi
t π(ai

t |oi
t)

zi
t

Considering the fact that latent variables have different
effects on each agent’s policy, we derive the following intrin-
sic reward to motivate the agents strongly influenced by
latent variables to explore. Firstly, our actual policy is

, where is sampled from the posterior distribution
. We want to determine the counterfactual policy

 whose input has no latent variables , and then com-
pare the gap between the actual policy and the
counterfactual , to determine how much the latent vari-
able affects each agent. Therefore, it needs to infer from the
statistical actual policy to . The latent vari-
able can be understood as a cause of , and deduce
the following total probability formula about the latent vari-
able :

π(ai
t |oi

t) =
w

z
π(ai

t |oi
t,z

i
t)qψ(zi

t |ci, ot)dzi
t. (16)

zi
t

z j
sam qψ(zi

t |ci, ot)
j = 1, . . . ,n z j

sam

π(ai
t |oi

t,z
j
sam)

This generating process is intractable to compute due to the
marginalization of the latent variables . It instead uses the
Monte Carlo method to estimate the above integral. Firstly,
we sample n independent and identically distributed random
latent values from the distribution , where

. Further, these random latent variables are
used to calculate the n independent action values .

qψ(zi
t |ci, ot)

π(ai
t |oi

t,z
i
t)

z j
sam qψ(zi

t |ci, ot)
E[π(ai

t |oi
t,z

i
t)]

Lemma 1: Given the posterior distribution and
the actual policy , sample n independent and identi-
cally distributed random latent value from ,
and the expectation of these random action val-
ues exist, then the following equation holds [52]:

lim
n→∞

1
n

n∑
j=1

π(ai
t |oi

t,z
j
sam) = E[π(ai

t |oi
t,z

i
t)]. (17)

π(ai
t |oi

t,z
j
t)

By apply the Lemma 1, we can approximate (16) by the n
calculated action values

1
n

n∑
j=1

π(ai
t |oi

t,z
j
sam) ≈

w
z
π(ai

t |oi
t,z

i
t)qψ(zi

t |ci, ot)dzi
t. (18)

π(ai
t |oi

t)
Therefore, the action value output by the counterfactual pol-

icy can also be approximated by the following pro-
cess:

π(ai
t |oi

t) =
w

z
π(ai

t |oi
t,z

i
t)qψ(zi

t |ci, ot)dzi
t

≈ 1
n

n∑
j=1

π(ai
t |oi

t,z
j
sam). (19)

L(π(ai
t |oi

t,z
i
t),π(a

i
t |oi

t))
L(π(ai

t |oi
t,z

i
t),

π(ai
t |oi

t))

Next, the gap between the actual action value and the coun-
terfactual action value needs to be measured, and it can be
defined as . Considering our statistical
policy, the KL divergence is used to compute

L(π(ai
t |oi

t,z
i
t),π(a

i
t |oi

t)) = DKL(π(ai
t |oi

t,z
i
t)∥π(ai

t |oi
t)). (20)

Further, this KL divergence is taken as an intrinsic reward
for each agent

ri
int = L(π(ai

t |oi
t,z

i
t),π(a

i
t |oi

t))

= DKL(π(ai
t |oi

t,z
i
t)∥π(ai

t |oi
t)). (21)

ri
int rmax ri

int
rmax rmax

In this paper, it just needs to take n to be a large integer, so
that the estimation of the intrinsic reward is more accurate by
sampling a large number of latent variable samples. After
some tests, we take the sampling size n as 200. However, what
needs to be emphasized is that the latent variable sampling
size n will only affect the trade-off between the amount of
computation and accuracy during the training process, and it
will not affect the final convergence of our latent variable dis-
covery algorithm. Besides, to avoid deriving an excessively
large intrinsic reward that would harm the learning process of
each agent, we truncate it after deriving the intrinsic reward.
That is, if the derived value is greater than , then
takes . This has different values according to the
environmental rewards in different tasks. There is no need to
train a neural network to fit the counterfactual policy, thus
reducing the amount of computation.

C. Statistical Latent Actor and Critic

zi
t

π(ai
t |oi

t,z
i
t)

zi
t

By modeling the latent variable model above, it can take full
advantage of posterior sampling to effectively explore the
tasks with confounders. Our MASAC-LV method directly
infers the posterior distribution over the latent variable via
the ELBO, which reconstructs the MDP and optimizes the
stochastic policy and value functions of each agent. The poste-
rior distribution provides an extended exploration by the
adjusted policy conditioned on historical experi-
ence. It means that each agent can act to test hypotheses based
on the sampled latent variable , even if the action is not
immediately informative of the task. Based on the multi-agent

 1596 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

actor-critic framework, the whole proposed architecture is
shown in Fig. 4.

o a z
θic

re ri
int

The MASAC-LV algorithm consists of the following three
components: 1) Critic networks; 2) Actor networks; and 3)
Latent variable model. The critic network is used to evaluate
the centralized Q-value function, and its inputs include obser-
vations , actions , and latent of all agents. The critic net-
work is also approximated by an MLP with parameters , the
critic network’s hidden layer employs the rectified linear unit
(ReLU) activation function, while the final layer utilizes the
linear activation function to output the Q-value. When updat-
ing the parameters of critic networks, the environment reward

 and intrinsic reward are used to compute the target cen-
tralized Q-value function. Therefore, the loss function of the
critic network is changed to the following equation:

JQ(θic) =
1
2

(Qi
π(ot, zt,a1

t , . . . ,a
N
t)− (λ1re+λ2ri

int

+γ E
at+1∼π

[Q̄i
π(ot+1, zt+1,a1

t+1, . . . ,a
N
t+1)

−α logπ(ai
t+1|o

i
t+1,z

i
t+1)]))2 (22)

λ1,λ2 ∈ (0,1)
re ri

int
λ1

λ2

where are used to control the proportion of envi-
ronment reward and intrinsic reward , respectively. In
the following experimental results part, we set to 1 and then
selected different values in different environments through
advanced testing. In addition, we also perform ablation experi-

λ2 λ2

oi
t zi

t
zi

t
zi

t
qψ(zi

t |ci, ot)
at = πϕi

a
(oi

t,z
i
t)

πϕi
a

ϕi
a

ments on the value to show the impact of different val-
ues on the performance of the algorithm. The actor network of
agent i outputs the action based on the received observations

 and the inferred latent variable . To meet the require-
ments of from random sampling, the reparameterization
trick is applied to sample from the posterior distribution

; these networks can still be trained through back-
propagation. The actor network is defined as ,
where is approximated by a MLP with parameters . The
hidden layer within the actor network employs the ReLU acti-
vation function, while the output layer utilizes both the linear
activation function and the Softplus activation function to
respectively generate the policy’s mean and variance. The
adjusted policy parameters are still optimized according to the
gradient from the soft Q-function, and the loss function of the
actor network is expressed as

Jπ(ϕi
a) = E

at∼π
[α logπ(ai

t |oi
t,z

i
t)−Qi

π(ot, zt,a1
t , . . . ,a

N
t)]. (23)

qψ(zi
t |ci, ot) zi

t

zi
t

The purpose of the latent variable model is to obtain the
inference network through training and learning, and then out-
put the posterior distribution . The latent variable
sampled in the posterior distribution adds more exploration to
the policy network. We use the collected experience to update
the posterior distribution and continue to make inferences
about the latent variables of the current state based on the
historical sequence information of the episodes. We update

Actor 1

MLP

Environment

Gaussian

Critic N

MLP

Linear

…

Observation

…

Actor N

MLP

Gaussian

Critic 1

MLP

Linear

Sample latent

Intrinsic
reward module

Encoder Decoder

Latent variable module

ot

π(a1 | o1, z1)

qψ(zi
t|ci, ot)

(ci, ot) ot

pψ(ot|zt)

π(aN | oN, zN)

zt zt

re re

atQt
1 otatQt

N

ut
1 σt

1 ut
N σt

N

at

at − 1 zt − 1

1

ot
1

zt
1

zt
i

zt
1 zt

2 zt
3 zt

4 zt
N

ot
1 ot

2 ot
3 ot

4 ot
N

zt
N

at
N

ot
N

at
1 at

N

rint
1 rint

N

ri

int

qψ(zi
t |ci

t , ot) zi
t

Fig. 4. The framework of our MASAC-LV algorithm, where is the intrinsic reward in Section IV-B, and the latent variable model is shown in Section IV-
A. The inference network outputs the posterior distribution from which the latent variables of each agent are sampled. The intrinsic reward mod-
ule derives the intrinsic rewards for each agent.

JIANG et al.: DISCOVERING LATENT VARIABLES FOR THE TASKS WITH CONFOUNDERS IN MARL 1597

Nac
batch

D

o

zi
t

Nl
batch

the actor and critic networks with off-policy data sam-
pled uniformly from the entire replay buffer . It should be
noted that the off-policy data used to train the latent variable
model is different from the off-policy data used to update the
actors and critics. In addition, unlike the global state s in the
Markov chain in Fig. 2, we use the joint observation informa-
tion of all agents in the algorithm framework of Fig. 4. This
is because it is difficult for the multi-agent system to obtain
the global state information in the environment in a real task.
The multi-agent system can only form a joint observation
space based on the information observed by each agent for the
inference of the latent variable space. Specifically, to improve
the accuracy and timeliness of the inferred latent variables
in the current state, we uniformly sample mini-batch
from the most recent data collected in the last 1000 steps. The
pseudocode of our MASAC-LV algorithm is shown in Algo-
rithm 1.

Algorithm 1 MASAC-LV

Na

Nac
batch

Nl
batch

1: Input: Agent number , max trajectory length T, episode num-
ber M, mini-batch size of actor and critic, mini-batch size

 of latent variable model.
D2: Initialize: Replay buffer , the parameters of latent variable

model’s networks, actor networks, critic networks, and target
networks.

episode = 13: for to M do
N4: 　Initialize a random process for action exploration.
o5:　 Receive initial observation for all agents.

t = 16: 　for to T do
zi

t ∼ qψ(zi
t |ci, ot)7: 　　 For each agent, sample latent

ai
t = πϕi

a
(oi

t ,z
i
t)8: 　　 Select action .

at = (ai
t , . . . ,a

N
t) re

ot+1

9: 　　Execute actions , then get the reward in
environment, and observations of all agents.

rint = (r1
int, . . . ,r

N
int)10: 　　Compute intrinsic reward .

ot , zt , at ,re, rint, ot+1} D11:　　 Store into .
Nac

batch Nl
batch12:　　 Sample a random mini-batch of and samples.

i = 1 Na13: 　　for agent to do

Nac
batch

14: 　　　Update critic by minimizing (22) with the sampled data
.

Nac
batch

15: 　　　Update actor according to the gradient (23) with the
sampled data .

16: 　　end for

Nl
batch

17:　　 Update the networks of the latent variable module by min-
imizing (7) with the sampled data .

18: 　　Update target networks.
19: 　end for
20: end for

V. Experiment Results

In this section, the MASAC-LV algorithm is evaluated on
two partially observable tasks with confounders, which
include simplified particle predator-prey and box-pushing
environments. The specific details of the simulation environ-
ment will be covered in subsequent subsections. We extend
the SAC algorithm to the multi-agent field and make it a base-
line, called the multi-agent SAC (MASAC) algorithm.
Besides, MADDPG, multi-agent proximal policy optimiza-

20.04

tion (MAPPO), and independent SAC (ISAC) algorithms are
also used as baselines. We also use the social causal reward
method in [46] as a baseline, named the basic social influence
(BSI) algorithm. We run 8 trials for each algorithm, where the
hyperparameters and basic settings of all algorithms remain
the same. Our simulations run on the Ubuntu operating
system with an Intel Core i7-7700k CPU@4.20 GHz.

A. Predator-Prey With Confounders
Firstly, the predator-prey task in Fig. 1 is transformed into a

structured vector space, and the reward function of the preda-
tor-prey task is designed as

rbase =


h, ncount = 1

l, ncount = 2

k, ncount = 3

(24)

ncount

w = [h, l,k]T

where is the number of predators colliding with one
prey at the same time. The reward function is expressed as a
vector . Further, we design the basis vectors
according to the reward function as the following formula:

rp =


[1,0,0]T , vncount = 1

[0,1,0]T , ncount = 2

[0,0,1]T , ncount = 3.

(25)

r = wT rp

p(h) p(l) p(k)

Therefore, the structured space of the reward function for
the predator-prey task is , and w controls the specific
form of the reward function. Considering the above predator-
prey task with the structured reward function, only when three
predators collide with one prey at the same time, can the
predators receive a positive reward, otherwise, the reward is
negative. This positive and negative reward tends to confuse
the predators, who do not know what is the correct behavior to
engage in capturing prey. This phenomenon can be under-
stood as the predators being affected by confounding factors
in the environment. Besides that, considering the uncertainty
in the real environment, for more difficult predator-prey tasks
with confounders, h, l, and k are not even constant values but
obey some probability distribution , , and . This
means that the generation mechanism of the reward function
is uncertain, and these uncertain probability distributions fur-
ther increase the confounding factors in the task.

−d

We redesigned two simplified particle predator-prey tasks
with different difficulties. As shown in Fig. 5(a), both preda-
tor and prey can observe the position and velocity informa-
tion of all predator and prey, and the prey moves faster than
the predator. The reward function considers the number of
predators colliding with prey at the same time in (24), where
all predators receive an additional reward based on the
sum of the distance between each prey to its nearest predator.
The prey is considered to be captured only when three preda-
tors collide with prey at the same time. All the prey are trained
by the ISAC policy to escape the predators, and all the preda-
tors are trained by the MASAC-LV policy and other baselines.
The relevant training hyperparameters are shown in Table I.
For each algorithm, we run 8 experiments with the same
hyperparameters but different initialized network parameters.
After training our MASAC-LV algorithm and other baseline

 1598 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

Ncapt
Ncoll

ri
int rmax

algorithms, we choose the model of each algorithm that per-
forms best to validate the performance of our proposed algo-
rithm. Specifically, we test the average number of times
that the prey is captured and the average number of times
that only one predator collides with the prey over 1000
episodes. Prey is captured only when three predators collide
with the prey at the same time. For the derived intrinsic
reward in the method part, is set to 1 to limit its maxi-
mum value.

1) Scenario 1
In this scenario, we set a fixed non-monotonic reward func-

tion, which means that the h, l, and k in (24) remains constant,
and the designed reward function is as follows:

rbase =


−1.0, ncount = 1

−0.2, ncount = 2

+7.0, ncount = 3.

(26)

Ncapt

The corresponding experimental results of all algorithms are
shown in Fig. 6. From Fig. 6(a), it can be noticed that the

 value of our proposed MASAC-LV algorithm is the
largest, indicating that predators trained by our MASAC-LV

Ncoll

Ncapt
Ncoll

−d

algorithm are the best at capturing prey. In addition, the statis-
tical policies MASAC-LV, MASAC, and BSI are better than
the deterministic policy MADDPG, which means the statisti-
cal policies have advantages when dealing with tasks with
confounders. The predators trained with the ISAC algorithm
have difficulty cooperating to capture prey. Fig. 7(b) shows
that our MASAC-LV algorithm has the largest average
value within one episode. This is because the MASAC-LV
algorithm results in each predator trying to capture the prey to
obtain the maximum reward; Thus, the predator will collide
with the prey more frequently. Furthermore, the number of
times, , that the predators trained by the ISAC algorithm
capture the prey is close to 0, but the number of times, ,
where only one predator collides with the prey is close to 10.
This can be explained by the fact that each predator still occa-
sionally collides with the prey due to the existence of the
based reward .

MASAC-LV
MASAC BSI

MADDPG
MAPPO

ISAC

MASAC-LV
MASAC BSI

MADDPG
MAPPO

ISAC
0

4

8

12

16

(a)

5
10
15
20
25
30
35

(b)

N
C

ap
t

N
C

ol
l

Ncapt

Ncoll

Fig. 6. The experimental results of Scenario 1 in the predator-prey environ-
ment: (a) The average number of times that prey is captured per episode;
and (b) The average number of times that only one predator collides with
the prey.

0
4
8

12
16
20
24

N
C

ap
t

(a)

5
10
15
20
25
30
35

N
C

ol
l

(b)MASAC-LV
MASAC BSI

MADDPG
MAPPO

ISAC

MASAC-LV
MASAC BSI

MADDPG
MAPPO

ISAC

Ncapt

Ncoll

Fig. 7. The experimental results of Scenario 2 in the predator-prey environ-
ment: (a) The average number of times that prey is captured per episode;
and (b) The average number of times that only one predator collides with
the prey.

2) Scenario 2

[h1,h2,h3] [l1, l2, l3] [k1,k2,k3]

Compared with the fixed non-monotonic reward value in
Scenario 1, we further adjusted the difficulty of the task by
taking into account the uncertainties in reality and then
changed h, l, and k in (24) to randomly sampled values.
Specifically, we set h, l, and k to randomly sample from vec-
tors , and , respectively, and the
corresponding reward function is designed as

rbase =


Sample from [−0.9,−1.1,−1.3], ncount = 1

Sample from [−0.2,−0.3,−0.4], ncount = 2

Sample from [+6.0,+7.0,+8.0], ncount = 3.

(27)

TABLE I
Parameter Settings for Predator-Prey Environment

　　　　　　Parameter Value
　Episode number (M) 15 000

　Max trajectory length 120

　Discount factor (γ) 0.95

　Learning rate (actor) 0.001

　Learning rate (critic) 0.001

　Learning rate (latent) 0.005

　Soft update factor (τ) 0.001

Nac
batch　Batch size (actor, critic,) 1 024

Nl
batch　Batch size (latent,) 512

　Replay buffer size 300 000

　Hidden layer units (actor) (64, 64)

　Hidden layer units (critic) (180, 180)
qψ　Hidden layer units (the posterior distribution,) (150, 150)

Predator 1
Predator 3

Prey

Predator 2

(a)

Agent 2

Agent 1
Box

Real target
Obstacle

Fake target 1

Fake target 2 Fake target 3

(b)

Fig. 5. Two tasks with confounders: (a) Predator-prey; (b) Box-pushing. As
shown in Fig. 1, the black solid arrows and the red dashed arrows represent
the influence of the observed variables and the latent variables of the task on
the policy of each agent, respectively.

JIANG et al.: DISCOVERING LATENT VARIABLES FOR THE TASKS WITH CONFOUNDERS IN MARL 1599

In this scenario with more confounders, the performance of
our MASAC-LV algorithm and all baselines are shown in
Fig. 7.

Pr

Ncapt Pr

Pr = Nbase
capt /N

LV
capt NLV

capt Nbase
capt

Pr

Pr = NLV
capt/N

LV
capt

Besides, to more intuitively reflect the performance gap
between our algorithm and the baseline algorithms in Scenar-
ios 1 and 2, we also compare the relative percentages of the
baseline algorithms with our MASAC-LV algorithm on the

 value in the two scenarios. can be calculated by
, where and are the average num-

bers of times that the predators trained by our algorithm and
the predators trained by the baseline algorithms capture the
prey in each episode, respectively. The relative percentages
of each baseline algorithm with the MASAC-LV algorithm
are shown in Table II. Obviously, the MASAC-LV algorithm
has a value of 100.00% compared to itself.

Ncapt Ncoll

Pr

Comparing the experimental data in Figs. 6 and 7, we find
that the and value of MASAC-LV algorithm is the
largest. From Table II, it can be seen that the performance of
the MADDPG and MAPPO algorithms does not change much
in the two scenarios, and they are already quite different from
our algorithm in performance. ISAC algorithm is almost com-
pletely useless in this predator-prey environment with con-
founders. The relative percentages value of the MASAC
algorithm drops from 54.67% to 36.05% in Table II, and the
value of the BSI Algorithm drops from 67.67% to 41.26%.
This worsening performance means that the MASAC and BSI
algorithms have difficulty coping with the tasks with more
confounders due to random sampling of non-monotonic
reward values, and the social causal reward in the BSI algo-
rithm cannot solve complex problems with latent variable dis-
tribution. Our MASAC-LV algorithm still outperforms in
these two scenarios with different difficulty confounders.

From the data in Table II, it can be seen that the perfor-
mance gap between our MASAC-LV algorithm and other
algorithms in Scenario 2 is notably greater than that in Sce-
nario 1. That’s because the random non-monotonic rewards in
Scenario 2 greatly increase the confounding factors in the
predator-prey task, making the gap between the performance
of other baseline algorithms and our algorithm larger.

Therefore, it can be concluded that the proposed MASAC-
LV algorithm outperforms the MASAC, BSI, MAPPO, MAD-
DPG, and ISAC algorithms under the same task setting and
algorithm parameter setting. Our algorithm has a notable per-
formance improvement based on the MASAC algorithm for
those tasks with latent variables.

B. Cooperative Box-Pushing
In a cooperative box-pushing environment, two agents

cooperate to push the box to the target position. As shown in

+1

ptar = [p1, p2,

p3, p4] p1 p2 p3 p4

ptar

Fig. 5(b), the box can only move if two agents exert force on
it at the same time, we also design different target positions,
including one real target position and three fake target posi-
tions. The two agents can only get the maximum reward by
pushing the box to the real target point and get different penal-
ties for pushing the box to the fake target point. This is equiv-
alent to increasing the confounding variables and also makes
the task more challenging. In addition, the agent will also be
penalized by −1 when it collides with an obstacle. The contin-
uous observation space of the agent includes information
about the positions of all entities and the velocity of the agent
and the box. To guide the agent to move towards the box, the
agents can get a reward by touching the box. The real tar-
get point is extracted from the original four target points
according to a certain probability distribution

, where the sum of , , , and is 1, correspond-
ing to the four original target points respectively. This method
of setting the target points according to a certain probability
distribution increases the non-stationarity of the environ-
ment. Only by discovering the latent variables behind the
unstable task can the agent improve the probability of push-
ing the box to the target point. Like the vectorized rewards in
Section III, we also design the base reward for pushing the
box to the target point as follows:

rbase =


h, to fake target 1

l, to fake target 2

k, to fake target 3

g, to real target

(28)

+20
[−1.5,−2,−2.5]

w = [h, l,k,g]T

where g is the maximum reward , and h, l and k are all
randomly sampled from the vector . The base
reward is expressed as a vector as , and the cor-
responding basis vectors can be written as

rp =



[1,0,0,0]T , to fake target 1

[0,1,0,0]T , to fake target 2

[0,0,1,0]T , to fake target 3

[0,0,0,1]T , to real target.

(29)

r = wT rp

ri
int rmax

Then, the structured reward space of the box-pushing task is
. The above reasonable processing greatly increases

the confounding factor in the box-pushing task. The agent can
only push the box to the real target point to get the maximum
reward by continuously exploring and discovering the latent
variables of the task. Since the maximum reward value that
can be obtained in the box-pushing environment is relatively
large, for the derived intrinsic reward , we set to be 2
to limit its maximum value. We train the MASAC-LV and

TABLE II
Pr

Pr = NLV
capt/N

LV
capt

The Relative Percentages of Each Baseline Algorithm With MASAC-LV Algorithm in the
Predator-Prey Environment, Among Them, Item MASAC-LV Indicates the Percentage

 Value of the MASAC Algorithm Compared With Itself

Scenario MASAC-LV MASAC BSI MADDPG MAPPO ISAC

Scenario 1 100.00% 54.67% 67.58% 20.82% 23.31% 1.03%

Scenario 2 100.00% 36.05% 41.26% 22.82% 26.13% 0.89%

 1600 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

other baseline algorithms in this task, and the relevant hyper-
parameters are shown in Table III.

TABLE III
Parameter Settings for Box-Pushing Environment

　　　　　　　Parameter Value
　Episode number (M) 10 000

　Max trajectory length 100

　Discount factor (γ) 0.95

　Learning rate (actor) 0.001

　Learning rate (critic) 0.001

　Learning rate (latent) 0.005

　Soft update factor (τ) 0.001

Nac
batch　Batch size (actor, critic,) 1024

Nl
batch　Batch size (latent,) 512

　Replay buffer size 200 000

　Hidden layer units (actor) (90, 90)

　Hidden layer units (critic) (180, 180)
qψ　Hidden layer units (the posterior distribution,) (160, 160)

pt
p1

tar = [1.0,0,0,0]
p2

tar = [0.1,0.7,0.1,0.1] p3
tar = [0.05,0.3,0.6,0.05] p4

tar =

[0.2,0.2,0.2,0.4]
pt

p1
tar = [1.0,0,0,0]

p2
tar = [0.1,0.7,0.1,0.1]

Four different are designed to verify the performance of
our MASAC-LV algorithm, including ,

, and
. The maximum probability values of the four

groups of are from large to small and correspond to differ-
ent original target points respectively. For example, when

, this indicates that the real target point must
be at the original target point 1. When ,
this indicates that the real target point has a 70% probability
of being at the original target point 2. After training all algo-
rithms, it shows the reward curves of all algorithms in Fig. 8.

0.0 0.2 0.4 0.6 0.8 1.0
Episode (×104) Episode (×104)

0

200

400

600

800

M
ea

n
ep

is
od

e
re

w
ar

d

MASAC-LV
MASAC
BSI
MADDPG
MAPPO
ISAC

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Episode (×104) Episode (×104)

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

M
ea

n
ep

is
od

e
re

w
ar

d

MASAC-LV
MASAC
BSI
MADDPG
MAPPO
ISAC

(b)

0
100
200
300
400
500

M
ea

n
ep

is
od

e
re

w
ar

d

MASAC-LV
MASAC
BSI
MADDPG
MAPPO
ISAC

(c)

0

100

200

300

M
ea

n
ep

is
od

e
re

w
ar

d

MASAC-LV
MASAC
BSI
MADDPG
MAPPO
ISAC

(d)

p1
tar = [1.0,0,0,0] p2

tar = [0.1,0.7,0.1,0.1] p3
tar =

[0.05,0.3,0.6,0.05] p4
tar = [0.2,0.2,0.2,0.4]

Fig. 8. Learning curves of MASAC-LV and other baselines for the box-
pushing scenario: (a) ; (b) ; (c)

; and (d) .

p1
tar = [1.0,0,0,0]When , we compare the MASAC-LV algo-

rithm with other baselines in Fig. 8(a). It is found that the per-

p2
tar [0.1,0.7,0.1,0.1]

p3
tar p4

tar

p4
tar = [0.2,0.2,0.2,0.4]

formance of our algorithm is only slightly better than the
MASAC, BSI, MADDPG, and MAPPO algorithms. This is
because the tasks in this set of experiments are deterministic
and there are no confounders, resulting in little difference
between the four traditional MDP-based algorithms. More-
over, the agent trained by the ISAC algorithm can still get cer-
tain rewards. When is set to , it can be
found that the advantages of our algorithm begin to manifest
in Fig. 8(b), and the performance of other baselines is notably
lower than that of our algorithm. It can also be seen that our
algorithm learns faster and can converge to the maximum
value at about the eighth thousandth episode. Further, we con-
tinue to increase the uncertainty of the latent variables of the
boxing-pushing task by setting the and . Therefore,
this task is full of confounding factors, which will lead to con-
fusion in the process of the agent pushing the box to the real
target point. As shown in Figs. 8(c) and 8(d), it can be seen
that the performance of other baselines is greatly degraded,
but our algorithm is greatly better than other traditional rein-
forcement learning algorithms in both learning speed and final
performance, especially when .

Tsuc

Tstep

Tsuc Tstep

p3
tar = [0.05,0.3,0.6,0.05] p4

tar = [0.2,0.2,0.2,0.4]

ptar

Tstep

It has been verified that our algorithm outperforms other
baselines in overall performance by analyzing the learning
curves during the training of all algorithms. Next, we further
analyze the success rate of each algorithm in pushing the
box to the real target point and the average number of steps

 required to push the box to the real target point. Specifi-
cally, we select the model with the best performance among
the models trained by each algorithm, and then test it for 1000
episodes to evaluate the and . The statistical data is
shown in Tables IV and V. It can be seen that our algorithm
has the highest success rate in all four scenarios, especially
when , and ,
the success rate of our algorithm is much higher than other
baselines (as shown in Table IV). In addition, the success rate
of our algorithm in the four scenarios is close to the maxi-
mum probability value in the probability distribution ,
indicating that our algorithm has learned the distribution of
the latent variables behind the task with confounders. Finally,
as shown in Table V, it can be seen that the average number of
steps of our MASAC-LV algorithm is the smallest,
which means that the agents trained by the MASAC-LV algo-
rithm can push the box to the real target point more quickly.

In conclusion, it has been verified the superiority of our
algorithm in solving the box-pushing task full of confounders
through the above four sets of experiments. The MASAC-LV
algorithm plays an important role in discovering the space of
the latent variables behind the task.

C. Ablation

λ1 λ2

λ1

λ2

In the loss function of the critic network in (22), we set the
hyperparameters and to weight the environmental
reward and intrinsic reward respectively. In this part, we set
the parameter to 1 and explore the influence of the size of
the intrinsic reward on the performance of our algorithm in
different scenarios by setting different values of . Specifi-

JIANG et al.: DISCOVERING LATENT VARIABLES FOR THE TASKS WITH CONFOUNDERS IN MARL 1601

λ2

λ2 = 0

p3
tar = [0.05,0.3,0.6,0.05]

cally, we set to be 0.0, 0.1, 0.4, 0.7, and 1.0 respectively,
where means no intrinsic reward is added in the train-
ing process. We choose the random non-monotonic reward
setting of Scenario 2 in the predator-prey environment and the
parameter setting of with more con-
founder in the box-pushing environment. The ablation results
in the two environments are shown in Fig. 9.

Episode (×104)
(a) (b)

0
4
8

12
16
20
24

N
ca

pt

0.0 0.2 0.4 0.6 0.8 1.0
λ 2 =

 0.0
λ 2 =

 0.1
λ 2 =

 0.4
λ 2 =

 0.7
λ 2 =

 1.0
0

100
200
300
400
500

M
ea

n
ep

is
od

e
re

w
ar

d

λ2 = 1.0
λ2 = 0.7
λ2 = 0.4
λ2 = 0.1
λ2 = 0.0

λ2

Ncapt

p3
tar = [0.05,0.3,0.6,0.05]

Fig. 9. Ablation data on hyperparameter : (a) The average number of
times that prey is captured per episode in Scenario 2 of the predator-
prey environment; and (b) Training curves at set-
ting in the box-pushing environment.

λ2 = 0.4
Ncapt λ2 = 0.7 Ncapt

λ2

λ2 = 0.1 λ2 = 1.0

λ2
λ2

λ2 = 0.1 λ2 = 0.4 λ2

p3
tar = [0.05,0.3,0.6,0.05]

λ2

From Fig. 9(a), it can be seen that when , the value
of is the largest, but when , the value of is
also very large, indicating that the best value of may be
between 0.4 and 0.7. From the results of and ,
it can be known that the results obtained by setting the value
of too large or too small are not ideal. From the perfor-
mance curves of different value settings in Fig. 9(b), it can
be seen that the performance of the algorithm is the best when

 and . When takes a larger value of 0.7 and
1.0, the performance of the algorithm is worse. The above
analysis shows that when in the box-
pushing environment, a smaller value of can result in good
performance.

λ2 = 0In addition, when , our proposed algorithm does not
perform very well in the above two environments, indicating
that the performance of the algorithm will be greatly reduced

λ2 = 0if the intrinsic reward is removed. When , we further
compared the data graphs in Fig. 9 under different scenarios
with the algorithm performance of MASAC in Figs. 7(a) and
8(c) and found that the performance of our algorithm is still
better than MASAC. This shows that even without the derived
intrinsic reward, our inferred latent variable space can still
improve the performance of the algorithm in those tasks with
confounders. Comprehensively analyzing the above results, it
can be concluded that the inference of latent variable space
and the derivation of intrinsic rewards are indispensable, and
they both play a positive role in the performance of the entire
MASAC-LV algorithm framework.

VI. Conclusion

In this paper, the multi-agent soft actor-critic with the latent
variable (MASAC-LV) algorithm is proposed under the cen-
tralized training with decentralized execution framework to
discover the latent variable space in MARL tasks with con-
founders. The posterior distribution approximated by the
inference network can effectively predict the latent variables
in the environment at the current time step. The predicted
latent variables are augmented into the observation space of
the statistical policy and used directly for the evaluation of the
value function. Further, to measure the different effects of
latent variables on each agent in the complex MARL task with
confounders, we derive the difference between the actual pol-
icy and the counterfactual policy and make it an intrinsic
reward. The intrinsic reward can provide targeted exploration
according to the different states of each agent in the environ-
ment. The MASAC-LV algorithm is evaluated in complex
predator-prey and box-pushing tasks. We increase the diffi-
culty of these two tasks by adding probabilistic confounders,
where the experimental results have shown that our proposed
algorithm is superior to other baseline algorithms in terms of
convergence and final performance. Our ablation experiments
demonstrate that both our inferred latent variable space and
derived intrinsic rewards can play a positive role in the over-
all algorithmic framework.

TABLE IV
TsucThe Success Rate of Agents Cooperating to Push the Box to the Real Target Point

pt MASAC-LV MASAC BSI MADDPG MAPPO ISAC

p1
t 100.00% 99.80% 99.90% 99.60% 99.40% 74.80%

p2
t 71.20% 64.30% 65.40% 60.30% 61.50% 0.74%

p3
t 60.20% 43.20% 45.80% 0.17% 37.50% 0.00%

p4
t 38.90% 9.20% 12.30% 0.02% 0.01% 0.00%

TABLE V
TstepAverage Number of Steps Required for the Agents to Cooperate to Push the Box to the Real Target Point,

Where — Means That the Box is not Pushed to the Real Target Point Once

pt MASAC-LV MASAC BSI MADDPG MAPPO ISAC

p1
t 41.60 47.88 47.15 53.30 49.77 65.59

p2
t 49.64 58.08 56.45 66.90 62.91 69.46

p3
t 51.01 59.26 62.23 88.06 78.75 —

p4
t 67.05 75.63 75.34 93.50 95.00 —

 1602 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

References

 K. Wang and C. Mu, “Learning-based control with decentralized
dynamic event-triggering for vehicle systems,” IEEE Trans. Industrial
Informatics, vol. 19, no. 3, pp. 2629–2639, 2023.

[1]

 C. Mu, K. Wang, and T. Qiu, “Dynamic event-triggering neural learning
control for partially unknown nonlinear systems,” IEEE Trans. Cyber.,
vol. 52, no. 4, pp. 2200–2213, 2022.

[2]

 J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: Lessons we
have learned,” Int. J. Robotics Research, vol. 40, no. 4–5, pp. 698–721,
2021.

[3]

 P. Liu, D. Tateo, H. B. Ammar, and J. Peters, “Robot reinforcement
learning on the constraint manifold,” in Proc. 5th Conf. Robot Learning,
2022, vol. 164, pp. 1357–1366.

[4]

 L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2017, pp.
31–36.

[5]

 M. G. Bellemare, S. Candido, P. S. Castro, J. Gong, M. C. Machado, S.
Moitra, S. S. Ponda, and Z. Wang, “Autonomous navigation of
stratospheric balloons using reinforcement learning,” Nature, vol. 588,
no. 7836, pp. 77–82, 2020.

[6]

 O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al., “Grandmaster level
in starcraft II using multi-agent reinforcement learning,” Nature,
vol. 575, no. 7782, pp. 350–354, 2019.

[7]

 C. Sun, W. Liu, and L. Dong, “Reinforcement learning with task
decomposition for cooperative multiagent systems,” IEEE Trans.
Neural Networks Learn. Syst., vol. 32, no. 5, pp. 2054–2065, 2021.

[8]

 H. J. Bae and P. Koumoutsakos, “Scientific multi-agent reinforcement
learning for wall-models of turbulent flows,” Nature Communications,
vol. 13, no. 1, pp. 1–9, 2022.

[9]

 W. Liu, W. Cai, K. Jiang, G. Cheng, Y. Wang, J. Wang, J. Cao, L. Xu,
C. Mu, and C. Sun, “XUANCE: A comprehensive and unified deep
reinforcement learning library,” arXiv preprint arXiv: 2312.16248,
2023.

[10]

 G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht,
“Dealing with non-stationarity in multi-agent deep reinforcement
learning,” [Online], Available: https://arxiv.org/abs/1906.04737, 2019.

[11]

 L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M.
Re, and S. Spanò, “Multi-agent reinforcement learning: A review of
challenges and applications,” Applied Sciences, vol. 11, p. 11, 2021.

[12]

 M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Chung, “Learning implicit credit
assignment for cooperative multi-agent reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 33, pp. 11853–
11864, 2020.

[13]

 W. Liu, L. Dong, J. Liu, and C. Sun, “Knowledge transfer in multi-
agent reinforcement learning with incremental number of agents,” J.
Systems Engineering and Electronics, vol. 33, no. 2, pp. 447–460, 2022.

[14]

 W. Liu, L. Dong, D. Niu, and C. Sun, “Efficient exploration for
multiagent reinforcement learning via transferable successor features,”
IEEE CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1673–1686, 2022.

[15]

 S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep
decentralized multi-task multi-agent reinforcement learning under
partial observability,” in Proc. Int. Conf. Machine Learning, 2017, pp.
2681–2690.

[16]

 C. S. de Witt, B. Peng, P. Kamienny, P. H. S. Torr, W. Böhmer, and S.
Whiteson, “Deep multi-agent reinforcement learning for decentralized
continuous cooperative control,” [Online], Available: https://arxiv.
org/abs/2003.06709, 2020.

[17]

 J. Su, S. C. Adams, and P. A. Beling, “Value-decomposition multi-agent
actor-critics,” in Proc. 35th AAAI Conf. Artificial Intelligence, 2021, pp.
11352–11360.

[18]

 J. Li, K. Kuang, B. Wang, F. Liu, L. Chen, C. Fan, F. Wu, and J. Xiao,
“Deconfounded value decomposition for multi-agent reinforcement
learning,” in Proc. Int. Conf. Machine Learning, 2022, vol. 162, pp.
12843–12856.

[19]

 R. Zohar, S. Mannor, and G. Tennenholtz, “Locality matters: A scalable
value decomposition approach for cooperative multi-agent reinforce-
ment learning,” in Proc. AAAI Conf. Artificial Intelligence, 2022, vol.
36, no. 8, pp. 9278–9285.

[20]

 T. Zhang, Y. Li, C. Wang, G. Xie, and Z. Lu, “FOP: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement

[21]

learning,” in Proc. 38th Int. Conf. Machine Learning, 2021, vol. 139,
pp. 12491–12500.
 Y. Chen, K. Wang, G. Song, and X. Jiang, “Entropy enhanced
multiagent coordination based on hierarchical graph learning for
continuous action space,” [Online], Available: https://arxiv.org/abs/
2208.10676, 2022.

[22]

 A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic latent
actor-critic: Deep reinforcement learning with a latent variable model,”
Advances in Neural Information Processing Systems, vol. 33, pp. 741–
752, 2020.

[23]

 S. A. Sontakke, A. Mehrjou, L. Itti, and B. Schölkopf, “Causal
curiosity: RL agents discovering self-supervised experiments for causal
representation learning,” in Proc. 38th Int. Conf. Machine Learning,
2021, vol. 139, pp. 9848–9858.

[24]

 N. Jaques, A. Lazaridou, E. Hughes, Ç. Gülçehre, P. A. Ortega, D.
Strouse, J. Z. Leibo, and N. de Freitas, “Social influence as intrinsic
motivation for multi-agent deep reinforcement learning,” in Proc. 36th
Int. Conf. Machine Learning, 2019, vol. 97, pp. 3040–3049.

[25]

 L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and
C. Zhang, “Episodic multi-agent reinforcement learning with curiosi-
tydriven exploration,” in Proc. Advances in Neural Information
Processing Systems, 2021, pp. 3757–3769.

[26]

 D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv: 1312.6114, 2014.

[27]

 T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” in Proc. 34th Int. Conf.
Machine Learning, 2017, vol. 70, pp. 1352–1361.

[28]

 T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Offpolicy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proc. 35th Int. Conf. Machine Learning, 2018, vol.
80, pp. 1856–1865.

[29]

 T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv: 1509.02971, 2016.

[30]

 M. Tan, “Multi-agent reinforcement learning: Independent vs.
cooperative agents,” in Proc. 10th Int. Conf. Machine Learning, 1993,
pp. 330–337.

[31]

 F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate
q-value functions for decentralized pomdps,” J. Artificial Intelligence
Research, vol. 32, pp. 289–353, 2008.

[32]

 R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multiagent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Advances in Neural Information Processing Systems,
2017, pp. 6379–6390.

[33]

 M. Hua, C. Zhang, F. Zhang, Z. Li, X. Yu, H. Xu, and Q. Zhou,
“Energy management of multi-mode plug-in hybrid electric vehicle
using multiagent deep reinforcement learning,” Applied Energy,
vol. 348, p. 121526, 2023.

[34]

 T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S.
Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. 35th Int. Conf. Machine
Learning, Jul. 2018, vol. 80, pp. 4295–4304.

[35]

 J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proc. 32th AAAI Conf.
Artificial Intelligence, 2018, pp. 2974–2982.

[36]

 K. Jiang, W. Liu, Y. Wang, L. Dong, and C. Sun, “Credit assignment in
heterogeneous multi-agent reinforcement learning for fully cooperative
tasks,” Applied Intelligence, vol. 53, no. 23, pp. 29205–29222, 2023.

[37]

 H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with hierarchical
graph attention network,” in Proc. 34th AAAI Conf. Artificial Intelli-
gence, 2020, pp. 7236–7243.

[38]

 T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine, “Latent space
policies for hierarchical reinforcement learning,” in Proc. 35th Int.
Conf. Machine Learning, 2018, vol. 80, pp. 1846–1855.

[39]

 M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller,
“Embed to control: A locally linear latent dynamics model for control
from raw images,” in Proc. Advance In Neural Information Processing
Systems, 2015, pp. 2746–2754.

[40]

 O. Rybkin, C. Zhu, A. Nagabandi, K. Daniilidis, I. Mordatch, and S.
Levine, “Model-based reinforcement learning via latent-space
collocation,” in Proc. 38th Int. Conf. Machine Learning, 2021, vol. 139,
pp. 9190–9201.

[41]

JIANG et al.: DISCOVERING LATENT VARIABLES FOR THE TASKS WITH CONFOUNDERS IN MARL 1603

http://dx.doi.org/10.1109/TII.2022.3168034
http://dx.doi.org/10.1109/TII.2022.3168034
http://dx.doi.org/10.1109/TCYB.2020.3004493
http://dx.doi.org/10.1177/0278364920987859
http://dx.doi.org/10.1038/s41586-020-2939-8
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1109/TNNLS.2020.2996209
http://dx.doi.org/10.1109/TNNLS.2020.2996209
http://dx.doi.org/10.1038/s41467-021-27699-2
https://arxiv.org/abs/1906.04737
http://dx.doi.org/10.23919/JSEE.2022.000045
http://dx.doi.org/10.23919/JSEE.2022.000045
http://dx.doi.org/10.1109/JAS.2022.105809
https://arxiv.org/abs/2003.06709
https://arxiv.org/abs/2003.06709
https://arxiv.org/abs/2208.10676
https://arxiv.org/abs/2208.10676
https://arxiv.org/abs/2208.10676
https://arxiv.org/abs/2208.10676
http://dx.doi.org/10.1613/jair.2447
http://dx.doi.org/10.1613/jair.2447
http://dx.doi.org/10.1016/j.apenergy.2023.121526

 D. Hafner, T. P. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J.
Davidson, “Learning latent dynamics for planning from pixels,” in
Proc. 36th Int. Conf. Machine Learning, 2019, vol. 97, pp. 2555–2565.

[42]

 M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine,
“Solar: Deep structured representations for model-based reinforcement
learning,” in Proc. Int. Conf. Machine Learning, 2019, pp. 7444–7453.

[43]

 M. Gasse, D. Grasset, G. Gaudron, and P.-Y. Oudeyer, “Causal
reinforcement learning using observational and interventional data,”
arXiv preprint arXiv:2106.14421, 2021.

[44]

 S. Lee and E. Bareinboim, “Structural causal bandits: Where to
intervene?” in Proc. Advance in Neural Information Processing
Systems, 2018, vol. 31, pp. 2573–2583.

[45]

 L. Wang, Z. Yang, and Z. Wang, “Provably efficient causal reinforc-
ement learning with confounded observational data,” in Proc. Advances
in Neural Information Processing Systems, 2021, pp. 21164–21175.

[46]

 M. Seitzer, B. Schölkopf, and G. Martius, “Causal influence detection
for improving efficiency in reinforcement learning,” in Proc. Advances
in Neural Information Processing Systems, 2021, pp. 22905–22918.

[47]

 P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable
reinforcement learning through a causal lens,” in Proc. 34th AAAI Conf.
Artificial Intelligence, 2020, pp. 2493–2500.

[48]

 N. Jaques, A. Lazaridou, E. Hughes, Ç. Gülçehre, P. A. Ortega, D.
Strouse, J. Z. Leibo, and N. de Freitas, “Intrinsic social motivation via
causal influence in multi-agent RL,” [Online], Available: https://arxiv.
org/abs/1810.08647, 2018.

[49]

 S. J. Grimbly, J. P. Shock, and A. Pretorius, “Causal multi-agent
reinforcement learning: Review and open problems,” [Online],
Available: https://corr.org/abs/2111.06721, 2021.

[50]

 N. Gruver, J. Song, M. J. Kochenderfer, and S. Ermon, “Multi-agent
adversarial inverse reinforcement learning with latent variables,” in
Proc. 19th Int. Conf. Autonomous Agents and Multiagent Systems,
2020, pp. 1855–1857.

[51]

 R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis.
Boston, USA: Cengage Learning, 2015.

[52]

Kun Jiang received the B.S. degree in energy and
power engineering and M.S. degree in transport engi-
neering from the School of Energy and Power Engi-
neering, Wuhan University of Technology in 2017
and 2020, respectively. He is currently a Ph.D. candi-
date in control science and engineering with the
School of Automation, Southeast University. His
current research interests include machine learning,
deep reinforcement learning, and multi-agent cooper-
ative control.

Wenzhang Liu received the B.S. degree in engineer-
ing from the College of Communication Engineering,
Jilin University in 2016, and the Ph.D. degree in con-
trol science and engineering from the School of
Automation, Southeast University in 2021. He is cur-
rently working as a Post-Doctoral Researcher with
the School of Artificial Intelligence, Anhui Univer-
sity. His current research interests include deep rein-
forcement learning, multi-agent reinforcement learn-
ing, transfer learning, and robotics.

Yuanda Wang received the B.S. degree in automa-
tion from Nanjing University of Information Science
and Technology in 2014, and the Ph.D. degree in
control science and engineering from Southeast Uni-
versity in 2020. He is currently working as a Post-
Doctoral Researcher with the School of Automation,
Southeast University. He has been a visiting Ph.D.
student with the Department of Electrical, Computer,
and Biomedical Engineering, University of Rhode
Island, USA, from 2016 to 2018. His current

research interests include deep reinforcement learning, robotics, and multia-
gent systems.

Lu Dong (Member, IEEE) received the B.S. degree
in physics and the Ph.D. degree in electrical engi-
neering from Southeast University in 2012 and 2017,
respectively. She is currently an Associate Professor
with the School of Cyber Science and Engineering,
Southeast University. Her current research interests
include adaptive dynamic programming, event trig-
gered control, and MARL.

Changyin Sun (Senior Member, IEEE) received the
B.S. degree in applied mathematics from the College
of Mathematics, Sichuan University in 1996, and the
M.S. and the Ph.D. degrees in electrical engineering
from Southeast University in 2001 and 2004, respec-
tively. He is currently a Professor with the School of
Automation, Southeast University. From 2022, he
has served as the Vice President of Anhui University,
Dean of the Future College, and Dean of the School
of Artificial Intelligence. His current research inter-

ests include neural networks, intelligent control, optimal theory.

 1604 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

https://arxiv.org/abs/1810.08647
https://arxiv.org/abs/1810.08647
https://corr.org/abs/2111.06721

	I Introduction
	II Related Work
	III MARL and Statistical Variational Inference
	A Decentralized Partially Observable Markov Decision Process
	B Maximum Entropy Multi-Agent Reinforcement Learning
	C Statistical Variational Inference in POMDP

	IV Modeling and Learning Probabilistic Latent Variable Space
	A Latent Variable Inference Model
	B Intrinsic Reward Motivate Agent Exploration
	C Statistical Latent Actor and Critic

	V Experiment Results
	A Predator-Prey With Confounders
	1) Scenario 1
	2) Scenario 2

	B Cooperative Box-Pushing
	C Ablation

	VI Conclusion
	References

