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   Abstract—Efficient  exploration  in  complex  coordination  tasks
has  been  considered  a  challenging  problem  in  multi-agent  rein-
forcement  learning  (MARL).  It  is  significantly  more  difficult  for
those  tasks  with  latent  variables  that  agents  cannot  directly
observe.  However,  most  of  the  existing  latent  variable  discovery
methods  lack  a  clear  representation  of  latent  variables  and  an
effective  evaluation  of  the  influence  of  latent  variables  on  the
agent.  In  this  paper,  we  propose  a  new MARL algorithm based
on  the  soft  actor-critic  method  for  complex  continuous  control
tasks with confounders. It is called the multi-agent soft actor-critic
with  latent  variable  (MASAC-LV)  algorithm,  which  uses  varia-
tional  inference theory to infer the compact latent  variables  rep-
resentation  space  from  a  large  amount  of  offline  experience.
Besides,  we  derive  the  counterfactual  policy  whose  input  has  no
latent  variables  and  quantify  the  difference  between  the  actual
policy and the counterfactual policy via a distance function. This
quantified  difference  is  considered  an  intrinsic  motivation  that
gives  additional  rewards  based on how much the  latent  variable
affects  each  agent.  The  proposed  algorithm  is  evaluated  on  two
collaboration  tasks  with  confounders,  and  the  experimental
results demonstrate the effectiveness of MASAC-LV compared to
other baseline algorithms.
    Index Terms—Latent  variable  model, maximum  entropy, multi-
agent reinforcement learning (MARL), multi-agent system.
  

I.  Introduction

R EINFORCEMENT learning (RL) has been recognized as
an  effective  method  in  solving  control  and  navigation

problems [1]–[6]. Therefore, RL algorithms are extended from
single-agent  systems  to  multi-agent  systems  to  solve  some
cooperative  and  competitive  tasks [7]–[10].  In  a  multi-agent
system, the non-stationarity [11], [12] during the learning pro-
cess  and  the  challenge  in  effectively  exploring  the  environ-
ment [13]–[15] are  considered  two  great  challenges.  The
method  based  on  the  independent  Q-function [16] enables
each agent to solve the optimal policy under local observation
independently,  regardless  of  the  policies  and  observations  of
other  agents.  This  makes  it  impossible  to  share  information
between  agents,  and  it  is  difficult  to  ensure  optimal  overall
performance. Hence, the paradigm of centralized training with
decentralized  execution  (CTDE)  is  proposed  as  a  general
approach to learning optimal joint policies and stabilizing the
training [17].  Besides,  some methods based on value decom-
position [18]–[20] and  maximum  entropy [21], [22] are
believed  to  be  helpful  for  the  agent  to  explore  the  complex
environment. The methods mentioned above are all under the
observable  system,  and  the  generation  mechanism  of  the
reward function is deterministic. Even if the system’s state is
locally observable,  the global  state  can be extracted from the
historical  sequence  using  recurrent  neural  network  technol-
ogy.  However,  for  some  scenarios  with  latent  variables  that
cannot  be  directly  observed by the  agent,  e.g.,  the  tasks  with
latent probability distributions and a non-deterministic reward
function  generation  mechanism,  it  is  more  difficult  for  the
agent  to  explore the joint  optimal  action space.  For  example,
the  predator-prey  task  with  confounding  factor  is  shown  in
Fig.  1.  In  a  traditional  predator-prey  task,  the  predators  are
rewarded if  any of them collide with the prey.  However,  this
is unrealistic because the behavior of only one predator collid-
ing with prey cannot be called capture behavior. On the other
hand, this behavior will alert the prey and affect the behavior
of  multiple  predators  to  capture  the  prey.  In  this  paper,  the
predators collaboratively obtain a positive reward k when they
collide  with  one  prey  at  the  same  time.  If  only  one  or  two
predators collide with prey at the same time, the predator gets
a  different  negative  reward h and l,  respectively.  This  non-
monotonic reward makes it more difficult to explore the envi-
ronment and complete the task.

The  traditional  RL  algorithms  based  on  the  Markov  deci-
sion process (MDP) have difficulty solving such tasks because
they  assume  that  the  generation  mechanism  of  the  reward
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function  is  deterministic,  so  it  is  necessary  to  improve  the
MDP-based algorithm for the tasks with latent variables.

A  direct  improvement  is  one  where  the  agent  utilizes  a
latent variables discovery model to represent the space of the
latent  variables in the task.  The predicted latent  variables are
used to expand each agent’s observation range and generate a
policy that can solve complex tasks with confounding factors.
Therefore, the existing latent variable models based on varia-
tional  inference [23] and  causal  inference [24] are  used  to
learn statistical latent variable representations. Those methods
try to learn the probability distribution of latent variables in a
large number of  offline experiences,  and then infer  the latent
cause  in  a  separate  state,  to  improve  the  efficiency  of  the
agent’s exploration of the environment. However, most of the
above methods focus on the single-agent domain, and they do
not  evaluate  the  specific  impact  of  latent  variables  on  the
agent’s policy. In addition, some methods are based on coun-
terfactual  inference  to  obtain  internal  rewards,  which  can
improve  the  efficiency  of  agents  in  exploring  complex  envi-
ronments,  but  it  is  also  difficult  to  solve  complex  tasks  with
confounding factors [25], [26].

In a multi-agent  system, the interaction between the agents
and  the  environment  is  more  complex,  and  the  latent  vari-
ables in the environment have different effects on each agent.
Therefore, it is more difficult to infer the latent variable space
of the task and measure the impact of latent variables on each
agent  in  a  multi-agent  system.  In  this  paper,  the  aim  is  to
improve  the  efficiency  of  agents  exploring  complex  tasks  by
discovering the latent variable space of the task and quantify-
ing  the  impact  of  latent  variables  on  each  agent’s  policy.
Specifically,  we  propose  a  new  multi-agent  reinforcement
learning  (MARL)  algorithm  for  those  tasks  with  continuous
action  and  state  spaces  based  on  the  soft  actor-critic  frame-
work.  Further,  the  amortized  variational  inference  method  is
adopted to learn the latent variables discovery model for each
agent,  which  is  trained  by  maximizing  the  evidence  lower
bound  (ELBO)  with  a  large  number  of  offline  experiences
[27].  The  latent  variable  model  assigns  an  inference  network
for each agent to produce a posterior distribution, which com-
bines historical information and the current state to predict the

latent variables at each time step. Then, we augment the input
of  the  agent’s  policy  with  the  predicted  latent  variables  to
obtain an actual adjusted policy that can represent any condi-
tional  distribution  over  actions.  The  evaluation  of  the  value
function is based not only on the observations and actions of
all agents but also on the sampled latent variables.

To measure the influence of the predicted latent variables on
each  agent’s  policy,  the  Monte  Carlo  method  is  applied  to
derive the counterfactual policy, which is a probability distri-
bution with no latent variables as input. Then, a distance func-
tion  is  used  to  measure  the  difference  between  the  actual
adjusted  policy  and  the  counterfactual  policy.  We  make  this
difference  as  an  intrinsic  reward  to  motivate  the  agent  to
explore the environment. The intrinsic rewards provide a more
coherent exploration of each agent’s policy and measure latent
variables’ differential impact on each agent. The main contri-
butions of this paper are summarized as follows.

1)  To  discover  latent  variables  in  complex  tasks  with  con-
founders,  a  new  algorithm  called  the  multi-agent  soft  actor-
critic  with  latent  variables  (MASAC-LV)  using  the  CTDE
framework  is  proposed.  The  inference  network  in  the  latent
variable  model  fits  a  posterior  distribution  to  construct  the
latent variable space for the task at hand. The predicted latent
variables broaden the observation space of the agent’s policy
and  improve  the  agent’s  exploration  efficiency  for  complex
tasks.

2)  Considering  that  the  interaction  between  agents  and  the
environment  is  more  complex  in  multi-agent  systems,  the
Monte Carlo statistical  method is  applied to derive the coun-
terfactual policies without latent variables as input.  Then, the
difference  between  the  actual  policy  and  the  counterfactual
policy  is  measured  to  represent  the  different  effects  of  the
latent variables on each agent.

The following contents are organized as follows. Section II
mainly  includes  the  related works  on MARL and latent  vari-
ables  model.  The  research  background  and  problem  descrip-
tion  are  introduced  in  Section  III.  In  Section  IV,  the  details
about  the  proposed  algorithm  are  provided.  The  simulation
results  of  the  proposed  algorithm and  the  baselines  are  com-
pared in Section V. Finally, we summarize this paper in Sec-
tion VI.  

II.  Related Work

Maximum  entropy  reinforcement  learning  has  shown  a
strong  exploratory  ability  in  dealing  with  single-agent  tasks,
as  it  optimizes  the  policy  to  maximize  the  expected  reward
and the entropy of policy [28]. Haarnoja et al. [29] combines
the maximum entropy with the actor-critic framework and off-
policy  method  to  propose  the  soft  actor-critic  (SAC)  algo-
rithm. They found that the SAC is a more stable and scalable
algorithm,  and it  exceeded the  final  performance  of  the  clas-
sic actor-critic algorithm and deep deterministic policy gradi-
ent  (DDPG)  in  experiments [30].  The  success  of  these  algo-
rithms has also sparked more interest in MARL. For example,
independent  Q-learning  (IQL)  directly  extends  deep  Q-learn-
ing  to  multi-agent  systems,  where  each agent  learns  an  inde-
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Fig. 1.     Schematic  diagram  of  the  predator-prey  environment,  where  these
predators  get  a  positive  reward  when they  collide  with  the  prey  at  the  same
time. The solid black arrows represent the influence of the received observa-
tions on the policy, and the dashed arrows represent the influence of invisible
latent variables on the policy.
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pendent  Q-function  according  to  the  information  it  receives
[31].  Considering  that  the  IQL may lead  to  non-stability  and
local  optimal  solutions,  the  CTDE framework  is  proposed  to
stabilize  the  training  of  each  agent [32].  Multi-agent  deep
deterministic policy gradient (MADDPG) learns a centralized
critic  for  each  agent  whose  input  includes  the  observations
and actions of all agents, while the input of each agent’s pol-
icy  network  is  only  its  observation [33].  For  instance,  Hua
et  al. [34] originated MADDPG by introducing a  hand-shak-
ing  strategy  to  ascertain  different  learning  agents  achieving
energy management  collaboratively.  In  addition,  QMIX [35],
COMA [36] and AWRMIX [37] algorithms are based on the
CTDE  framework  to  solve  the  credit  assignment.  The  maxi-
mum entropy method still  plays an important  role in MARL,
Ryu et  al. [38] combine  the  multi-agent  soft  actor-critic
scheme  with  a  hierarchical  graph  attention  network  to  facili-
tate the transfer of learned policies to new tasks.

For tasks with latent information unobservable by the agent,
some existing model-free works in the single-agent field learn
the latent  variables  discovery model  to  solve the latent-space
partially  observable  Markov decision process  (POMDP).  Lee
et al. [23] proposed a stochastic latent actor-critic algorithm to
learn  latent  representation  from  lots  of  high-dimensional
images, which is proven to be sampling efficient and acceler-
ates the learning process. Haarnoja et al. [39] learned a hierar-
chical reinforcement learning framework for solving complex
sparse-reward  tasks,  where  each  layer  is  augmented  with
latent random variables sampled from the trained prior distri-
bution. There are also some model-based reinforcement learn-
ing methods to expand the observation space of  the agent  by
learning  the  latent-space  dynamics  system  models [40]–[43].
Besides,  causal  inference  is  introduced  as  a  very  useful
method to solve the MDP with confounded observational data,
where its main concept is to infer the representation of latent
variables by building a causal structural model [44]–[47]. For
example,  Madumal et  al. [48] learned  the  causal  models  to
derive  causal  explanations  of  the  behavior  of  model-free  RL
agents and encoded causal  relationships between variables of
interest.  Sontakke et  al. [24] proposed  a  hierarchical  manner
to  infer  the  causal  factor  in  the  dynamic  of  the  environment
and introduce the causal  curiosity as  a  novel  intrinsic  reward
to motivate the exploration of the agent.

However,  in  a  multi-agent  system,  the  interaction  between
agents  is  more  complex,  and  the  latent  variables  in  the  task
have different effects on each agent [49]–[51]. Therefore, it is
more difficult to discover the latent variable space in MARL.
For  challenging  social  dilemma  environments,  Jaques et  al.
[25] reward those agents whose actions have causal effects on
other  agents  to  enhance  coordination  between  all  agents,
where  the  causal  influence  is  assessed  using  counterfactual
reasoning.  Zheng et  al. [26] introduced  a  novel  Episodic
MARL  algorithm  with  curiosity-driven  exploration,  where
they  make  prediction  errors  of  individual  Q-values  as  intrin-
sic  rewards  for  coordinated  exploration.  Those  methods  are
reward-shaping  methods  by  rewarding  agents  to  motivate  all
agents to explore the environment and cooperate.  

III.  MARL and Statistical Variational Inference
  

A.  Decentralized Partially Observable Markov Decision Process

⟨I,S,O,A,R,P,γ⟩ I = {1, . . . ,N}
S

Oi ∈ O = {O1, . . . ,ON}
Ai ∈ A = {A1, . . . ,AN}

R : S×A×
S 7→ R γ ∈ [0,1)
st ∈ S ai

t
oi

t at

rt+1
P : S×A×S 7→ [0,1]∑

tE(st ,at)∼ρ[γ
tr(st, at)] at

ρ(st)
π(at |ot)

π(ai
t |oi

t)

Qπ(st,a1
t ,. . . ,a

N
t )

E[G]

A fully  cooperative  multi-agent  task  can  be  described  as  a
decentralized  partially  observable  Markov  decision  process
(Dec-POMDP).  Correspondingly,  the  Dec-POMDP  can  be
formulated  as  a  tuple .  is  the
set  of  agents.  is  the  true  state  space  of  the  environment.

 is  the observation space of  agent i,  and
 is  the  action  space  of  agent i.  The

multi-agent team shares the same reward function 
.  is  the  discount  factor.  At  each  certain  step

,  the  agent i chooses  the  action  based  on  its  local
observation . Then, the joint action  at time t is applied to
the  environment,  which  leads  to  a  state  transition  and  an
immediate  reward  according  to  the  transition  function

. Solving the Dec-POMDP problem can
be  understood  as  the  optimization  of  maximizing  the  dis-
counted  reward ,  where  is  the  joint
action of all agents and ρ denotes the state marginals  of
the trajectory distribution induced by the joint policy .
We consider the framework of CTDE, therefore, the stochas-
tic policy  of agent i can only condition on its indepen-
dent  history  observation  and  action  information.  All  agents
learning the centralized action-value function 
to evaluate the discounted reward .  

B.  Maximum Entropy Multi-Agent Reinforcement Learning

π(ai
t |oi

t)

H(π(ai
t |oi

t)

Standard  reinforcement  learning  aims  to  learn  the  policy
 to maximize the expected cumulative reward. On this

basis,  maximum entropy reinforcement  learning  considers  an
additional  maximum  entropy  objective,  so  that  each  agent’s
stochastic  policy  tends  to  maximize  the  expected  entropy

.  Thus,  the  multi-agent  team  attempts  to  find  an
optimal policy to maximize the following objective:
 

π∗ = argmax
π

T∑
t=0

E(st ,at)∼ρ[γ
t(r(st, at)+αH(π(at |ot))] (1)

π∗

H(π(at |ot))
H(π(at |ot)) = − logπ(at |ot)

where  is  the  optimal  joint  policy, T is  the  number  of
timesteps, and α is the temperature parameter representing the
relative  importance  of  the  entropy  term  to  the  reward.

 is  the  entropy  of  the  joint  policy  and  can  be
expressed  as .  To  obtain  the  opti-
mal  joint  policy  in  (1),  the  soft  actor-critic  algorithm derives
soft policy iteration to alternate between policy evaluation and
policy improvement under the maximum entropy framework.
Correspondingly,  the Q-function is called the soft  Q-function
and  is  optimized  to  minimize  the  following  soft  Bellman
residual:
 

JQ(θi) =
1
2

(Qi
π(st,a1

t , . . . ,a
N
t )− (rt

+γ E
at+1∼π

[Q̄i
π(st+1,a1

t+1, . . . ,a
N
t+1)

−α logπ(ai
t+1|o

i
t+1)]))2 (2)

θi

Q̄π(st+1,a1
t+1, . . . ,a

N
t+1)

where  are the parameters of the soft Q-function of agent i,
and  is  the  target  soft  Q-function  of
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ϕiagent i. The policy parameter  of agent i is updated accord-
ing to the gradient of the soft Q-function, and the correspond-
ing policy loss of agent i is expressed as
 

Jπ(ϕi) = E
at∼π

[α logπ(ai
t |oi

t)−Qi
π(st,a1

t , . . . ,a
N
t )]. (3)

  

C.  Statistical Variational Inference in POMDP

s z
s

p(s) =
r

p(s|z)p(z)dz

To learn augmented representation for the tasks with latent
variables, we consider training a latent variable model to infer
the  latent  variables  in  the  task.  Specifically,  the  statistical
amortized  variational  inference  method  is  employed  to  learn
the  probability  distribution  of  latent  variables.  The  trained
latent  variables  model  can  decouple  entangled  state  informa-
tion  into task-relevant representations  and is optimized by
maximizing the probability of observed state  under the equa-
tion .  In  statistical  variational  inference,
this objective is often transformed into the ELBO for the log-
likelihood [27]
 

log p(s) ≥ Ez∼q[log p(s|z)−DKL(q(z|s)∥p(z)]

= ELBO(q) (4)
q(z|s)

p(s|z)
DKL(q(z|s)∥p(z)

p(z)

where  is the recognition model and also is called a prob-
abilistic encoder,  is the probabilistic decoder, therefore,

 denotes  the  Kullback-Leibler  (KL)  diver-
gence between the two distributions and  is the prior dis-
tribution  of  latent  variables.  Correspondingly,  the  loss  func-
tion  of  the  entire  stochastic  latent  variable  model  can  be
expressed as
 

Llatent(ψ) = Ez∼q[log pψ(s|z)−DKL(qψ(z|s)∥pψ(z)] (5)

q(z|s) p(s|z)
where ψ are  the  parameters  of  all  distributions.  The  encoder

 and the decoder  are directly optimized according
to the stochastic gradient form loss function.  

IV.  Modeling and Learning Probabilistic
Latent Variable Space

z
π(ai

t |oi
t,z

i
t)

q(z|s)

In a multi-agent system, the connections between agents and
the interaction between agents and the environment are more
complex, so it is more difficult to discover latent variables in a
multi-agent  system  with  confounding  variables.  To  learn  the
knowledge  that  is  beneficial  to  completing  the  current  task
under  the  statistical  latent  variable ,  based  on  which  we
adjust the policy of each agent to  so that the actions
of each agent adapt to the complex tasks. We learn the latent
variable discovery model from a large amount of offline expe-
rience  and  then  infer  the  latent  variable  value  at  the  current
time-step  through the  posterior  distribution .  In  the  fol-
lowing section, the specific structure of the latent variable dis-
covery  model  will  be  described,  and  the  corresponding
MASAC-LV algorithm will be given.  

A.  Latent Variable Inference Model

π(ai
t |oi

t,z
i
t)

To  effectively  learn  the  improved  stochastic  policy
 in  a  complex  MARL  task  with  confounders,  the

learned latent variable model must tease out the salient infor-
mation about the task into a disentangled latent representation.
Under  the  influence  of  latent  variables,  the  Markov  decision
chain  of  each  agent  can  be  represented  by Fig.  2.  It  can  be

zi

zi

known that the latent variable  of each agent is contained in
the  global  state s of  the  environment,  and  the  undiscovered
latent variable  will affect the policy of each agent and ulti-
mately affect the reward function. Therefore, our purpose is to
discover  latent  variable  space  in  multi-agent  tasks  with  con-
founders and adjust the stochastic policy of each agent.
 
 

. . . . . .

zt − 1
i zt + 1

izt
i

st − 1 st + 1st

rt + 1 rt + 2rt

at − 1
i at + 1

iat
i

 

ai zi

zi

Fig. 2.     The Markov chain of each agent, including the global state s of the
environment, the action  of each agent, latent variable  and reward r in the
environment, where the red dashed arrows represent the influence of the latent
variable  on the policy of each agent.
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t−1, st)
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In  this  paper,  the  amortized  variational  inference  approach
in Section IV is adopted to infer the latent variable  of each
agent.  To  maximize  ELBO  in  (4),  it  needs  to  build  function
approximators  to  evaluate  the  prior  distribution ,  poste-
rior distribution , and the data generator . This pos-
terior  distribution  is  considered  an  encoder,  while  the  data
generator  is  considered  a  decoder.  We  consider  a  task  as  a
multi-agent MDP, which consists of a series of actions, states,
a  bounded  reward  function,  a  transition  function,  etc.  For  a
model-free reinforcement learning problem, the transition and
reward  functions  can  be  reconstructed  from  a  sequence  of
unordered transitions. It follows that a collection of those tran-
sitions is sufficient to infer the space of the latent variables for
the  tasks  with  confounders.  The  latent  variables  contained  in
the state information of the environment are different for each
agent, so it needs to learn a different latent variable model for
each  agent.  At  the  same  time,  we  augment  the  input  of  the
prior and posterior distribution of each agent as 
and  based  on  the  time sequence  information
in a fully observed MDP. In a multi-agent system, the global
state of the environment is difficult to obtain, but the observa-
tions of all agents almost contain the overall state information
in the environment. Therefore, the global state s in the above
probability distribution is replaced with the observations  of
all  agents,  and  the  corresponding  posterior  distributions
becomes .

qψ(zi
t |zi

t−1,

ai
t−1, ot) pψ(zi

t |zi
t−1,a

i
t−1)

Those distributions are considered as the multivariate diago-
nal  Gaussian,  and  we  train  the  inference  network 

 and  the  generative  network  parame-
terized  by ψ to  estimate  the  posterior  and  prior  distributions,
respectively. When designing the architecture of the inference
network, we would like it to be expressive enough to capture
the  task-relevant  information,  without  modeling  irrelevant
dependencies. The architecture of the designed inference net-
work is shown in Fig. 3, and a parameter-sharing trick is used,
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where  all  agents  share  an  inference  network.  The  inference
network  takes  as  input  the  action  and
latent  variable  of  each agent,  as  well  as  the  observations

 of  all  agents.  It  outputs  the multidimensional  mean  and
variance ,  forming  a  multivariate  diagonal  Gaussian  as  in
(6) to predict the distribution of the latent variable.
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i
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t,σ
i
t). (6)

 
 

Fully connect (ReLU)

Fully connect (ReLU)

Fully connect (ReLU)

ui
t (Linear) σi

t (Softplus)

zt − 1
i at − 1 ot

i

(ui
t, σi

t)

ψ

 

N(µi
t ,σ

i
t)

Fig. 3.     The architecture of the inference network for each agent, which con-
sists of three layers of fully connected neural networks.  is a multi-
variate diagonal Gaussian.
 

pψ(zi
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ELBO

If  more  historical  sequence  information  is  considered,  the
fully  connected  layer  in  the  inference  network  can  also  be
replaced by a  long short-term memory (LSTM) layer.  As for
the  architecture  of  the  generative  model ,  the
difference between it and the inference model is that its input
has no observations  of all agent. The KL divergence term in
ELBO  can  also  be  understood  as  an  information  bottleneck
constraining  the  relationship  between  the  latent  variable  and
other  information.  The  first  term  of  ELBO  is  considered  as

,  where  is  the  latent  variables  for  all  agents.
 is  estimated  by  a  multi-layer  perception  (MLP),  in

which the hidden layer uses the ReLU activation function, and
the last layer uses the linear and Softplus activation functions
to output the mean and variance respectively. According to the

 in (4), the parameters ψ of the latent variable model are
optimized with the following objective:
 

Llatent(ψ) = Ez∼qψ [log pψ(ot |zt)

−DKL(qψ(zi
t |zi

t−1,a
i
t−1, ot))∥pψ(zi

t |zi
t−1,a

i
t−1)]. (7)

ot

ot

The  difference  between  the  above  equation  and  (4)  is  that
when calculating  the  KL divergence  term,  the  latent  variable
contained in the two distributions is the latent variable of each
agent,  not  the  latent  variable  of  all  agents.  Because  the
decoder must decode the latent variables of all  agents to out-
put the distribution about , the latent variables of each agent
can be inferred from the observations  of all agents.
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Next,  the  ELBO  will  be  derived  in  multi-agent  reinforce-
ment  learning.  To  make  the  following  expression  more  con-
cise,  we define  and 

.  For  the  convenience  of  subsequent  deriva-
tion,  we  temporarily  use  to  replace .
Firstly, for a general problem,  is the observed variable from

ci
t zi

t
ot ci

t

the  environment,  is  other  information  of  agent i,  is  the
latent variable encoded from  and ,  the posterior distribu-
tion is computed by the following Bayesian model:
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(8)
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where  is  the  prior  distribution  of  latent  variable,
 is  the  likelihood  function,  and 
,  called  evidence.  Since  includes  non-inte-

grable multiple integrals, this results in no analytical solution
to  the  posterior  distribution .  The  variational  infer-
ence method assumes that this posterior distribution 
is  approximated  by  a  variational  distribution ,  thus  con-
structing the following optimization problem:
 

q∗(zi
t) = argmin L(q(zi

t), p(zi
t |ci

t, ot)) (9)

q∗(zi
t)

p(zi
t |ci

t, ot)

where L represents  the  distance  function,  which  is  usually
considered  as  the  KL  divergence;  this  distribution  is
easier to solve than the posterior distribution .

q(zi
t) ∈ Q

q(zi
t) q∗(zi

t)

Theorem 1: For the optimization problem in (9),  the poste-
rior distribution ,  can directly optimize the ELBO of

 to solve the optimal , which means
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DKLProof: For (9), we expand the  term as
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The  integral  of  the  above  formula  about  to  is  the

expectation  about .  We  express  the  above  formula  with
the following expectation form:
 

DKL(q(zi
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t)]−Eq[log p(zi
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t, ot)
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t)

Since  is  independent  of  the  expected  object
, the expected symbol can be removed directly, so we get

 

DKL(q(zi
t)∥p(zi

t |ci
t, ot)) = Eq[logq(zi

t)]

−Eq[log p(ci
t, ot,zi

t)]+ log p(ci
t, ot). (13)

The first two terms of the above formula are called ELBO.
In  the  actual  calculation,  ELBO can  be  expressed  in  the  fol-
lowing form for calculation: 
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Through the derivation of the above formula, ELBO is con-
sistent  with  the  description  in  (4).  Moreover,  in
(13)  includes  the  statistical  information  about  the  observed
variables, so it is a constant. Our initial goal was to minimize

, which can now be transformed to maxi-
mize the ELBO, which results in
 

q∗(zi
t) = arg min
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t)∈Q

DKL(q(zi
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= arg max
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■  

B.  Intrinsic Reward Motivate Agent Exploration
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Considering  the  fact  that  latent  variables  have  different
effects on each agent’s policy, we derive the following intrin-
sic  reward  to  motivate  the  agents  strongly  influenced  by
latent  variables  to  explore.  Firstly,  our  actual  policy  is

, where  is sampled from the posterior distribution
.  We  want  to  determine  the  counterfactual  policy

 whose input has no latent variables , and then com-
pare  the  gap  between  the  actual  policy  and  the
counterfactual , to determine how much the latent vari-
able  affects  each  agent.  Therefore,  it  needs  to  infer  from the
statistical  actual  policy  to .  The  latent  vari-
able  can  be  understood  as  a  cause  of ,  and  deduce
the  following  total  probability  formula  about  the  latent  vari-
able :
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This generating process is intractable to compute due to the
marginalization  of  the  latent  variables .  It  instead  uses  the
Monte  Carlo  method  to  estimate  the  above  integral.  Firstly,
we  sample n independent  and  identically  distributed  random
latent  values  from  the  distribution ,  where

.  Further,  these  random  latent  variables  are
used to calculate the n independent action values .
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Lemma  1: Given  the  posterior  distribution  and
the actual policy , sample n independent and identi-
cally  distributed  random  latent  value  from ,
and the expectation  of these random action val-
ues exist, then the following equation holds [52]: 
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By apply  the  Lemma 1,  we can approximate  (16)  by the n
calculated action values 
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Therefore, the action value output by the counterfactual pol-

icy  can  also  be  approximated  by  the  following  pro-
cess:
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Next, the gap between the actual action value and the coun-
terfactual  action  value  needs  to  be  measured,  and  it  can  be
defined  as .  Considering  our  statistical
policy,  the  KL  divergence  is  used  to  compute 
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Further,  this  KL divergence  is  taken  as  an  intrinsic  reward
for each agent
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In this paper, it just needs to take n to be a large integer, so
that the estimation of the intrinsic reward is more accurate by
sampling  a  large  number  of  latent  variable  samples.  After
some tests, we take the sampling size n as 200. However, what
needs  to  be  emphasized  is  that  the  latent  variable  sampling
size n will  only  affect  the  trade-off  between  the  amount  of
computation  and  accuracy  during  the  training  process,  and  it
will not affect the final convergence of our latent variable dis-
covery  algorithm.  Besides,  to  avoid  deriving  an  excessively
large intrinsic reward that would harm the learning process of
each  agent,  we  truncate  it  after  deriving  the  intrinsic  reward.
That  is,  if  the derived  value is  greater  than ,  then 
takes .  This  has  different  values  according  to  the
environmental rewards in different tasks.  There is no need to
train  a  neural  network  to  fit  the  counterfactual  policy,  thus
reducing the amount of computation.  

C.  Statistical Latent Actor and Critic

zi
t

π(ai
t |oi

t,z
i
t)

zi
t

By modeling the latent variable model above, it can take full
advantage  of  posterior  sampling  to  effectively  explore  the
tasks  with  confounders.  Our  MASAC-LV  method  directly
infers the posterior  distribution over the latent  variable  via
the  ELBO,  which  reconstructs  the  MDP  and  optimizes  the
stochastic policy and value functions of each agent. The poste-
rior  distribution  provides  an  extended  exploration  by  the
adjusted  policy  conditioned  on  historical  experi-
ence. It means that each agent can act to test hypotheses based
on  the  sampled  latent  variable ,  even  if  the  action  is  not
immediately informative of the task. Based on the multi-agent
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actor-critic  framework,  the  whole  proposed  architecture  is
shown in Fig. 4.

o a z
θic

re ri
int

The MASAC-LV algorithm consists  of  the  following three
components:  1)  Critic  networks;  2)  Actor  networks;  and  3)
Latent  variable model.  The critic  network is  used to evaluate
the centralized Q-value function, and its inputs include obser-
vations , actions , and latent  of all agents. The critic net-
work is also approximated by an MLP with parameters , the
critic network’s hidden layer employs the rectified linear unit
(ReLU)  activation  function,  while  the  final  layer  utilizes  the
linear activation function to output the Q-value. When updat-
ing the parameters of critic networks, the environment reward

 and intrinsic reward  are used to compute the target cen-
tralized  Q-value  function.  Therefore,  the  loss  function  of  the
critic network is changed to the following equation:
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where  are used to control the proportion of envi-
ronment  reward  and  intrinsic  reward ,  respectively.  In
the following experimental results part, we set  to 1 and then
selected different  values in different environments through
advanced testing. In addition, we also perform ablation experi-
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ments on the  value to show the impact of different  val-
ues on the performance of the algorithm. The actor network of
agent i outputs  the action based on the received observations

 and  the  inferred  latent  variable .  To  meet  the  require-
ments  of  from  random  sampling,  the  reparameterization
trick  is  applied  to  sample  from  the  posterior  distribution

;  these  networks  can  still  be  trained  through back-
propagation.  The  actor  network  is  defined  as ,
where  is approximated by a MLP with parameters . The
hidden layer within the actor network employs the ReLU acti-
vation function, while the output layer utilizes both the linear
activation  function  and  the  Softplus  activation  function  to
respectively  generate  the  policy’s  mean  and  variance.  The
adjusted policy parameters are still optimized according to the
gradient from the soft Q-function, and the loss function of the
actor network is expressed as
 

Jπ(ϕi
a) = E
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The  purpose  of  the  latent  variable  model  is  to  obtain  the
inference network through training and learning, and then out-
put the posterior distribution . The latent variable 
sampled in the posterior distribution adds more exploration to
the policy network. We use the collected experience to update
the  posterior  distribution  and  continue  to  make  inferences
about  the  latent  variables  of  the  current  state  based  on  the
historical  sequence  information  of  the  episodes.  We  update
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Fig. 4.     The framework of our MASAC-LV algorithm, where  is the intrinsic reward in Section IV-B, and the latent variable model is shown in Section IV-
A. The inference network outputs the posterior distribution  from which the latent variables  of each agent are sampled. The intrinsic reward mod-
ule derives the intrinsic rewards for each agent.
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batch

the actor and critic networks with off-policy data  sam-
pled  uniformly  from the  entire  replay  buffer .  It  should  be
noted that  the off-policy data used to train the latent variable
model is different from the off-policy data used to update the
actors and critics.  In addition,  unlike the global  state s in  the
Markov chain in Fig. 2, we use the joint observation informa-
tion  of all agents in the algorithm framework of Fig. 4. This
is  because  it  is  difficult  for  the  multi-agent  system  to  obtain
the global state information in the environment in a real task.
The  multi-agent  system  can  only  form  a  joint  observation
space based on the information observed by each agent for the
inference of the latent variable space. Specifically, to improve
the accuracy and timeliness of  the inferred latent  variables 
in  the  current  state,  we  uniformly  sample  mini-batch 
from the most recent data collected in the last 1000 steps. The
pseudocode of our MASAC-LV algorithm is shown in Algo-
rithm 1.

Algorithm 1 MASAC-LV

Na

Nac
batch

Nl
batch

1: Input: Agent number , max trajectory length T, episode num-
ber M, mini-batch size  of actor and critic, mini-batch size

 of latent variable model.
D2: Initialize: Replay  buffer ,  the  parameters  of  latent  variable

model’s  networks,  actor  networks,  critic  networks,  and  target
networks.

episode = 13: for  to M do
N4: 　Initialize a random process  for action exploration.
o5:　 Receive initial observation  for all agents.

t = 16: 　for  to T do
zi

t ∼ qψ(zi
t |ci, ot)7: 　　  For each agent, sample latent 

ai
t = πϕi

a
(oi

t ,z
i
t)8: 　　  Select action .

at = (ai
t , . . . ,a

N
t ) re

ot+1

9:   　　Execute  actions ,  then  get  the  reward  in
environment, and observations  of all agents.

rint = (r1
int, . . . ,r

N
int)10: 　　Compute intrinsic reward .

ot , zt , at ,re, rint, ot+1} D11:　　 Store  into .
Nac

batch Nl
batch12:　　 Sample a random mini-batch of  and  samples.

i = 1 Na13: 　　for agent  to  do

Nac
batch

14: 　　　Update critic by minimizing (22) with the sampled data
.

Nac
batch

15: 　　　Update  actor  according  to  the  gradient  (23)  with  the
sampled data .

16: 　　end for

Nl
batch

17:　　 Update the networks of the latent variable module by min-
imizing (7) with the sampled data .

18: 　　Update target networks.
19: 　end for
20: end for

  

V.  Experiment Results

In  this  section,  the  MASAC-LV  algorithm  is  evaluated  on
two  partially  observable  tasks  with  confounders,  which
include  simplified  particle  predator-prey  and  box-pushing
environments.  The specific  details  of  the  simulation  environ-
ment  will  be  covered  in  subsequent  subsections.  We  extend
the SAC algorithm to the multi-agent field and make it a base-
line,  called  the  multi-agent  SAC  (MASAC)  algorithm.
Besides,  MADDPG,  multi-agent  proximal  policy  optimiza-

20.04

tion  (MAPPO),  and independent  SAC (ISAC) algorithms are
also  used  as  baselines.  We  also  use  the  social  causal  reward
method in [46] as a baseline, named the basic social influence
(BSI) algorithm. We run 8 trials for each algorithm, where the
hyperparameters  and  basic  settings  of  all  algorithms  remain
the same. Our simulations run on the Ubuntu  operating
system with an Intel Core i7-7700k CPU@4.20 GHz.  

A.  Predator-Prey With Confounders
Firstly, the predator-prey task in Fig. 1 is transformed into a

structured vector space, and the reward function of the preda-
tor-prey task is designed as
 

rbase =


h, ncount = 1

l, ncount = 2

k, ncount = 3

(24)

ncount

w = [h, l,k]T

where  is  the  number  of  predators  colliding  with  one
prey at  the same time. The reward function is  expressed as a
vector .  Further,  we  design  the  basis  vectors
according to the reward function as the following formula:
 

rp =


[1,0,0]T , vncount = 1

[0,1,0]T , ncount = 2

[0,0,1]T , ncount = 3.

(25)

r = wT rp

p(h) p(l) p(k)

Therefore,  the  structured  space  of  the  reward  function  for
the predator-prey task is , and w controls the specific
form of the reward function. Considering the above predator-
prey task with the structured reward function, only when three
predators  collide  with  one  prey  at  the  same  time,  can  the
predators  receive  a  positive  reward,  otherwise,  the  reward  is
negative.  This  positive  and  negative  reward  tends  to  confuse
the predators, who do not know what is the correct behavior to
engage  in  capturing  prey.  This  phenomenon  can  be  under-
stood  as  the  predators  being  affected  by  confounding  factors
in  the  environment.  Besides  that,  considering  the  uncertainty
in the real environment, for more difficult predator-prey tasks
with confounders, h, l, and k are not even constant values but
obey  some  probability  distribution , ,  and .  This
means  that  the  generation  mechanism of  the  reward  function
is uncertain,  and these uncertain probability distributions fur-
ther increase the confounding factors in the task.

−d

We  redesigned  two  simplified  particle  predator-prey  tasks
with different difficulties.  As shown in Fig. 5(a),  both preda-
tor  and  prey  can  observe  the  position  and  velocity  informa-
tion  of  all  predator  and prey,  and the  prey  moves  faster  than
the  predator.  The  reward  function  considers  the  number  of
predators colliding with prey at the same time in (24),  where
all  predators  receive  an  additional  reward  based  on  the
sum of the distance between each prey to its nearest predator.
The prey is considered to be captured only when three preda-
tors collide with prey at the same time. All the prey are trained
by the ISAC policy to escape the predators, and all the preda-
tors are trained by the MASAC-LV policy and other baselines.
The  relevant  training  hyperparameters  are  shown  in Table  I.
For  each  algorithm,  we  run  8  experiments  with  the  same
hyperparameters  but  different  initialized  network  parameters.
After  training  our  MASAC-LV  algorithm  and  other  baseline
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algorithms,  we  choose  the  model  of  each  algorithm that  per-
forms best  to validate the performance of our proposed algo-
rithm. Specifically, we test the average number of times 
that the prey is captured and the average number of times 
that  only  one  predator  collides  with  the  prey  over 1000
episodes.  Prey  is  captured  only  when  three  predators  collide
with  the  prey  at  the  same  time.  For  the  derived  intrinsic
reward  in the method part,  is set to 1 to limit its maxi-
mum value.  

1)  Scenario 1
In this scenario, we set a fixed non-monotonic reward func-

tion, which means that the h, l, and k in (24) remains constant,
and the designed reward function is as follows:
 

rbase =


−1.0, ncount = 1

−0.2, ncount = 2

+7.0, ncount = 3.

(26)

Ncapt

The corresponding experimental results of all algorithms are
shown  in Fig.  6.  From Fig.  6(a),  it  can  be  noticed  that  the

 value  of  our  proposed  MASAC-LV  algorithm  is  the
largest,  indicating  that  predators  trained  by  our  MASAC-LV

Ncoll

Ncapt
Ncoll

−d

algorithm are the best at capturing prey. In addition, the statis-
tical  policies  MASAC-LV, MASAC, and BSI are  better  than
the deterministic  policy MADDPG, which means the statisti-
cal  policies  have  advantages  when  dealing  with  tasks  with
confounders.  The  predators  trained  with  the  ISAC  algorithm
have  difficulty  cooperating  to  capture  prey. Fig.  7(b)  shows
that  our  MASAC-LV  algorithm  has  the  largest  average 
value  within  one  episode.  This  is  because  the  MASAC-LV
algorithm results in each predator trying to capture the prey to
obtain  the  maximum  reward;  Thus,  the  predator  will  collide
with  the  prey  more  frequently.  Furthermore,  the  number  of
times, , that the predators trained by the ISAC algorithm
capture the prey is close to 0,  but the number of times, ,
where only one predator collides with the prey is close to 10.
This can be explained by the fact that each predator still occa-
sionally  collides  with  the  prey  due  to  the  existence  of  the
based reward .
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Fig. 6.     The experimental results of Scenario 1 in the predator-prey environ-
ment: (a) The average number of times  that prey is captured per episode;
and (b) The average number of times  that only one predator collides with
the prey.
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Fig. 7.     The experimental results of Scenario 2 in the predator-prey environ-
ment: (a) The average number of times  that prey is captured per episode;
and (b) The average number of times  that only one predator collides with
the prey.
   

2)  Scenario 2

[h1,h2,h3] [l1, l2, l3] [k1,k2,k3]

Compared  with  the  fixed  non-monotonic  reward  value  in
Scenario  1,  we  further  adjusted  the  difficulty  of  the  task  by
taking  into  account  the  uncertainties  in  reality  and  then
changed h, l,  and k in  (24)  to  randomly  sampled  values.
Specifically, we set h, l, and k to randomly sample from vec-
tors ,  and ,  respectively,  and  the
corresponding reward function is designed as
 

rbase =


Sample from [−0.9,−1.1,−1.3], ncount = 1

Sample from [−0.2,−0.3,−0.4], ncount = 2

Sample from [+6.0,+7.0,+8.0], ncount = 3.

(27)

 

TABLE I
Parameter Settings for Predator-Prey Environment

　　　　　　Parameter Value
　Episode number (M) 15 000

　Max trajectory length 120

　Discount factor (γ) 0.95

　Learning rate (actor) 0.001

　Learning rate (critic) 0.001

　Learning rate (latent) 0.005

　Soft update factor (τ) 0.001

Nac
batch　Batch size (actor, critic, ) 1 024

Nl
batch　Batch size (latent, ) 512

　Replay buffer size 300 000

　Hidden layer units (actor) (64, 64)

　Hidden layer units (critic) (180, 180)
qψ　Hidden layer units (the posterior distribution, ) (150, 150)

 

Predator 1
Predator 3

Prey

Predator 2

(a)

Agent 2

Agent 1
Box

Real target
Obstacle

Fake target 1

Fake target 2 Fake target 3

(b)
 
Fig. 5.     Two tasks with confounders: (a) Predator-prey; (b) Box-pushing. As
shown in Fig.  1,  the black solid arrows and the red dashed arrows represent
the influence of the observed variables and the latent variables of the task on
the policy of each agent, respectively.
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In this scenario with more confounders, the performance of
our  MASAC-LV  algorithm  and  all  baselines  are  shown  in
Fig. 7.

Pr

Ncapt Pr

Pr = Nbase
capt /N

LV
capt NLV

capt Nbase
capt

Pr

Pr = NLV
capt/N

LV
capt

Besides,  to  more  intuitively  reflect  the  performance  gap
between our algorithm and the baseline algorithms in Scenar-
ios 1 and 2, we also compare the relative percentages  of the
baseline  algorithms  with  our  MASAC-LV  algorithm  on  the

 value  in  the  two  scenarios.  can  be  calculated  by
, where  and  are the average num-

bers  of  times  that  the  predators  trained by our  algorithm and
the  predators  trained  by  the  baseline  algorithms  capture  the
prey in each episode, respectively. The relative percentages 
of  each  baseline  algorithm  with  the  MASAC-LV  algorithm
are shown in Table II. Obviously, the MASAC-LV algorithm
has a  value of 100.00% compared to itself.

Ncapt Ncoll

Pr

Comparing the experimental  data in Figs.  6 and 7,  we find
that the  and  value of MASAC-LV algorithm is the
largest. From Table II, it can be seen that the performance of
the MADDPG and MAPPO algorithms does not change much
in the two scenarios, and they are already quite different from
our algorithm in performance. ISAC algorithm is almost com-
pletely  useless  in  this  predator-prey  environment  with  con-
founders.  The  relative  percentages  value  of  the  MASAC
algorithm drops from 54.67% to  36.05% in Table II,  and the
value  of  the  BSI  Algorithm  drops  from  67.67% to  41.26%.
This worsening performance means that the MASAC and BSI
algorithms  have  difficulty  coping  with  the  tasks  with  more
confounders  due  to  random  sampling  of  non-monotonic
reward  values,  and  the  social  causal  reward  in  the  BSI  algo-
rithm cannot solve complex problems with latent variable dis-
tribution.  Our  MASAC-LV  algorithm  still  outperforms  in
these two scenarios with different difficulty confounders.

From  the  data  in Table  II,  it  can  be  seen  that  the  perfor-
mance  gap  between  our  MASAC-LV  algorithm  and  other
algorithms  in  Scenario  2  is  notably  greater  than  that  in  Sce-
nario 1. That’s because the random non-monotonic rewards in
Scenario  2  greatly  increase  the  confounding  factors  in  the
predator-prey  task,  making  the  gap  between  the  performance
of other baseline algorithms and our algorithm larger.

Therefore,  it  can be concluded that  the  proposed MASAC-
LV algorithm outperforms the MASAC, BSI, MAPPO, MAD-
DPG,  and  ISAC  algorithms  under  the  same  task  setting  and
algorithm parameter setting. Our algorithm has a notable per-
formance  improvement  based  on  the  MASAC  algorithm  for
those tasks with latent variables.  

B.  Cooperative Box-Pushing
In  a  cooperative  box-pushing  environment,  two  agents

cooperate to push the box to the target position. As shown in

+1

ptar = [p1, p2,

p3, p4] p1 p2 p3 p4

ptar

Fig. 5(b), the box can only move if two agents exert force on
it  at  the  same time,  we also  design  different  target  positions,
including  one  real  target  position  and  three  fake  target  posi-
tions.  The  two  agents  can  only  get  the  maximum  reward  by
pushing the box to the real target point and get different penal-
ties for pushing the box to the fake target point. This is equiv-
alent  to  increasing the confounding variables  and also makes
the task more challenging.  In addition,  the agent  will  also be
penalized by −1 when it collides with an obstacle. The contin-
uous  observation  space  of  the  agent  includes  information
about the positions of all entities and the velocity of the agent
and the box. To guide the agent to move towards the box, the
agents can get a  reward by touching the box. The real tar-
get  point  is  extracted  from  the  original  four  target  points
according  to  a  certain  probability  distribution 

, where the sum of , , ,  and  is 1, correspond-
ing to the four original target points respectively. This method
of  setting  the  target  points  according  to  a  certain  probability
distribution  increases  the non-stationarity  of  the environ-
ment.  Only  by  discovering  the  latent  variables  behind  the
unstable  task  can  the  agent  improve  the  probability  of  push-
ing the box to the target point. Like the vectorized rewards in
Section  III,  we  also  design  the  base  reward  for  pushing  the
box to the target point as follows:
 

rbase =


h, to fake target 1

l, to fake target 2

k, to fake target 3

g, to real target

(28)

+20
[−1.5,−2,−2.5]

w = [h, l,k,g]T

where g is  the  maximum  reward ,  and h, l and k are  all
randomly sampled  from the  vector .  The  base
reward is expressed as a vector as , and the cor-
responding basis vectors can be written as
 

rp =



[1,0,0,0]T , to fake target 1

[0,1,0,0]T , to fake target 2

[0,0,1,0]T , to fake target 3

[0,0,0,1]T , to real target.

(29)

r = wT rp

ri
int rmax

Then, the structured reward space of the box-pushing task is
.  The  above  reasonable  processing  greatly  increases

the confounding factor in the box-pushing task. The agent can
only push the box to the real target point to get the maximum
reward  by  continuously  exploring  and  discovering  the  latent
variables  of  the  task.  Since  the  maximum  reward  value  that
can be  obtained in  the  box-pushing environment  is  relatively
large, for the derived intrinsic reward , we set  to be 2
to  limit  its  maximum  value.  We  train  the  MASAC-LV  and

 

TABLE II 
Pr

Pr = NLV
capt/N

LV
capt

The Relative Percentages  of Each Baseline Algorithm With MASAC-LV Algorithm in the
Predator-Prey Environment, Among Them, Item MASAC-LV Indicates the Percentage

 Value of the MASAC Algorithm Compared With Itself

Scenario MASAC-LV MASAC BSI MADDPG MAPPO ISAC

Scenario 1 100.00% 54.67% 67.58% 20.82% 23.31% 1.03%

Scenario 2 100.00% 36.05% 41.26% 22.82% 26.13% 0.89%
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other baseline algorithms in this task, and the relevant hyper-
parameters are shown in Table III.
 
 

TABLE III
Parameter Settings for Box-Pushing Environment

　　　　　　　Parameter Value
　Episode number (M) 10 000

　Max trajectory length 100

　Discount factor (γ) 0.95

　Learning rate (actor) 0.001

　Learning rate (critic) 0.001

　Learning rate (latent) 0.005

　Soft update factor (τ) 0.001

Nac
batch　Batch size (actor, critic, ) 1024

Nl
batch　Batch size (latent, ) 512

　Replay buffer size 200 000

　Hidden layer units (actor) (90, 90)

　Hidden layer units (critic) (180, 180)
qψ　Hidden layer units (the posterior distribution, ) (160, 160)

 

pt
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tar = [1.0,0,0,0]
p2

tar = [0.1,0.7,0.1,0.1] p3
tar = [0.05,0.3,0.6,0.05] p4

tar =

[0.2,0.2,0.2,0.4]
pt

p1
tar = [1.0,0,0,0]

p2
tar = [0.1,0.7,0.1,0.1]

Four different  are designed to verify the performance of
our  MASAC-LV  algorithm,  including ,

,  and 
. The maximum probability values of the four

groups of  are from large to small and correspond to differ-
ent  original  target  points  respectively.  For  example,  when

, this indicates that the real target point must
be at the original target point 1. When ,
this  indicates  that  the  real  target  point  has  a  70% probability
of being at the original target point 2. After training all algo-
rithms, it shows the reward curves of all algorithms in Fig. 8.
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Fig. 8.     Learning  curves  of  MASAC-LV  and  other  baselines  for  the  box-
pushing scenario:  (a) ;  (b) ;  (c) 

; and (d) .
 

p1
tar = [1.0,0,0,0]When , we compare the MASAC-LV algo-

rithm with other baselines in Fig. 8(a). It is found that the per-

p2
tar [0.1,0.7,0.1,0.1]
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formance  of  our  algorithm  is  only  slightly  better  than  the
MASAC,  BSI,  MADDPG,  and  MAPPO  algorithms.  This  is
because  the  tasks  in  this  set  of  experiments  are  deterministic
and  there  are  no  confounders,  resulting  in  little  difference
between  the  four  traditional  MDP-based  algorithms.  More-
over, the agent trained by the ISAC algorithm can still get cer-
tain  rewards.  When  is  set  to ,  it  can  be
found that  the advantages of  our  algorithm begin to manifest
in Fig. 8(b), and the performance of other baselines is notably
lower than that  of  our algorithm. It  can also be seen that  our
algorithm  learns  faster  and  can  converge  to  the  maximum
value at about the eighth thousandth episode. Further, we con-
tinue to increase the uncertainty of the latent variables of the
boxing-pushing  task  by  setting  the  and .  Therefore,
this task is full of confounding factors, which will lead to con-
fusion in the process of the agent pushing the box to the real
target  point.  As  shown in Figs.  8(c)  and 8(d),  it  can  be  seen
that  the  performance  of  other  baselines  is  greatly  degraded,
but  our  algorithm is  greatly better  than other  traditional  rein-
forcement learning algorithms in both learning speed and final
performance, especially when .

Tsuc

Tstep

Tsuc Tstep

p3
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ptar
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It  has  been  verified  that  our  algorithm  outperforms  other
baselines  in  overall  performance  by  analyzing  the  learning
curves during the training of  all  algorithms.  Next,  we further
analyze the success rate  of each algorithm in pushing the
box  to  the  real  target  point  and  the  average  number  of  steps

 required to push the box to the real target point. Specifi-
cally,  we  select  the  model  with  the  best  performance  among
the models trained by each algorithm, and then test it for 1000
episodes  to  evaluate  the  and .  The  statistical  data  is
shown in Tables IV and V. It  can be seen that  our algorithm
has  the  highest  success  rate  in  all  four  scenarios,  especially
when ,  and ,
the  success  rate  of  our  algorithm  is  much  higher  than  other
baselines (as shown in Table IV). In addition, the success rate
of  our  algorithm  in  the  four  scenarios  is  close  to  the  maxi-
mum  probability  value  in  the  probability  distribution ,
indicating  that  our  algorithm  has  learned  the  distribution  of
the latent variables behind the task with confounders. Finally,
as shown in Table V, it can be seen that the average number of
steps  of  our  MASAC-LV  algorithm  is  the  smallest,
which means that the agents trained by the MASAC-LV algo-
rithm can push the box to the real target point more quickly.

In  conclusion,  it  has  been  verified  the  superiority  of  our
algorithm in solving the box-pushing task full of confounders
through the above four sets of experiments. The MASAC-LV
algorithm plays an important role in discovering the space of
the latent variables behind the task.  

C.  Ablation

λ1 λ2

λ1

λ2

In the loss function of the critic network in (22), we set the
hyperparameters  and  to  weight  the  environmental
reward  and  intrinsic  reward  respectively.  In  this  part,  we  set
the parameter  to 1 and explore the influence of the size of
the  intrinsic  reward  on  the  performance  of  our  algorithm  in
different  scenarios  by  setting  different  values  of .  Specifi-
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λ2

λ2 = 0

p3
tar = [0.05,0.3,0.6,0.05]

cally,  we set  to  be  0.0,  0.1,  0.4,  0.7,  and 1.0  respectively,
where  means no intrinsic reward is added in the train-
ing  process.  We  choose  the  random  non-monotonic  reward
setting of Scenario 2 in the predator-prey environment and the
parameter setting of  with more con-
founder in the box-pushing environment. The ablation results
in the two environments are shown in Fig. 9.
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Fig. 9.     Ablation  data  on  hyperparameter :  (a)  The  average  number  of
times  that  prey  is  captured  per  episode  in  Scenario  2  of  the  predator-
prey  environment;  and  (b)  Training  curves  at  set-
ting in the box-pushing environment.
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From Fig. 9(a), it can be seen that when , the value
of  is the largest, but when , the value of  is
also  very  large,  indicating  that  the  best  value  of  may  be
between 0.4 and 0.7. From the results of  and ,
it  can be known that the results obtained by setting the value
of  too  large  or  too  small  are  not  ideal.  From  the  perfor-
mance curves of different  value settings in Fig. 9(b), it can
be seen that the performance of the algorithm is the best when

 and . When  takes a larger value of 0.7 and
1.0,  the  performance  of  the  algorithm  is  worse.  The  above
analysis shows that when  in the box-
pushing environment, a smaller value of  can result in good
performance.

λ2 = 0In  addition,  when ,  our  proposed  algorithm does  not
perform very well  in  the  above two environments,  indicating
that the performance of the algorithm will be greatly reduced

λ2 = 0if  the  intrinsic  reward  is  removed.  When ,  we  further
compared  the  data  graphs  in Fig.  9 under  different  scenarios
with the algorithm performance of MASAC in Figs. 7(a) and
8(c)  and  found  that  the  performance  of  our  algorithm is  still
better than MASAC. This shows that even without the derived
intrinsic  reward,  our  inferred  latent  variable  space  can  still
improve the performance of the algorithm in those tasks with
confounders. Comprehensively analyzing the above results, it
can  be  concluded  that  the  inference  of  latent  variable  space
and the derivation of  intrinsic  rewards are indispensable,  and
they both play a positive role in the performance of the entire
MASAC-LV algorithm framework.  

VI.  Conclusion

In this paper, the multi-agent soft actor-critic with the latent
variable  (MASAC-LV)  algorithm is  proposed  under  the  cen-
tralized  training  with  decentralized  execution  framework  to
discover  the  latent  variable  space  in  MARL  tasks  with  con-
founders.  The  posterior  distribution  approximated  by  the
inference  network  can  effectively  predict  the  latent  variables
in  the  environment  at  the  current  time  step.  The  predicted
latent  variables  are  augmented  into  the  observation  space  of
the statistical policy and used directly for the evaluation of the
value  function.  Further,  to  measure  the  different  effects  of
latent variables on each agent in the complex MARL task with
confounders, we derive the difference between the actual pol-
icy  and  the  counterfactual  policy  and  make  it  an  intrinsic
reward. The intrinsic reward can provide targeted exploration
according to the different states of each agent in the environ-
ment.  The  MASAC-LV  algorithm  is  evaluated  in  complex
predator-prey  and  box-pushing  tasks.  We  increase  the  diffi-
culty  of  these  two tasks  by adding probabilistic  confounders,
where the experimental results have shown that our proposed
algorithm is superior to other baseline algorithms in terms of
convergence and final performance. Our ablation experiments
demonstrate  that  both  our  inferred  latent  variable  space  and
derived intrinsic rewards can play a positive role in the over-
all algorithmic framework.

 

TABLE IV 
TsucThe Success Rate  of Agents Cooperating to Push the Box to the Real Target Point

pt MASAC-LV MASAC BSI MADDPG MAPPO ISAC

p1
t 100.00% 99.80% 99.90% 99.60% 99.40% 74.80%

p2
t 71.20% 64.30% 65.40% 60.30% 61.50% 0.74%

p3
t 60.20% 43.20% 45.80% 0.17% 37.50% 0.00%

p4
t 38.90% 9.20% 12.30% 0.02% 0.01% 0.00%

 

TABLE V 
TstepAverage Number of Steps  Required for the Agents to Cooperate to Push the Box to the Real Target Point,

Where — Means That the Box is not Pushed to the Real Target Point Once

pt MASAC-LV MASAC BSI MADDPG MAPPO ISAC

p1
t 41.60 47.88 47.15 53.30 49.77 65.59

p2
t 49.64 58.08 56.45 66.90 62.91 69.46

p3
t 51.01 59.26 62.23 88.06 78.75 —

p4
t 67.05 75.63 75.34 93.50 95.00 —
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