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   Abstract—In  this  paper,  the  optimal  variational  generalized
Nash equilibrium (v-GNE) seeking problem in merely monotone
games  with  linearly  coupled  cost  functions  is  investigated,  in
which  the  feasible  strategy  domain  of  each  agent  is  coupled
through  an  affine  constraint.  A  distributed  algorithm  based  on
the  hybrid  steepest  descent  method  is  first  proposed  to  seek  the
optimal v-GNE. Then, an accelerated algorithm with relaxation is
proposed  and  analyzed,  which  has  the  potential  to  further
improve the convergence speed to the optimal v-GNE. Some suf-
ficient  conditions  in  both  algorithms  are  obtained  to  ensure  the
global convergence towards the optimal v-GNE. To illustrate the
performance  of  the  algorithms,  numerical  simulation  is  con-
ducted based on a networked Nash-Cournot game with bounded
market capacities.
    Index Terms—Distributed  algorithms, equilibria  selection, general-
ized Nash equilibrium (GNE), merely monotone games.
  

I.  Introduction

G ENERALIZED  games  are  a  modeling  paradigm
employed to investigate the direct interaction among self-

interested  decision  makers,  also  known  as  agents  in  multi-
agent systems (MAS), where agents individually aim to opti-
mize  their  respective  cost  functions  according  to  the  strate-
gies employed by others. Generalized games are ubiquitous in
wide  engineering  applications,  including  lane-changing  con-
trol  for  autonomous  vehicles [1],  demand-side  response
[2]–[4],  charging  and  discharging  of  electric  vehicles [5].  A
particularly favourable and rational solution is the generalized
Nash equilibrium (GNE), in which no one can independently
modify its strategy to decrease its own cost function [6]. How-
ever,  if  the  GNE  is  non-unique,  each  agent  has  to  decide
which  GNE  has  to  follow  individually.  Sometimes  this  will
lead to be inconsistent.  The problem of non-unique GNE has
been found in autonomous driving [7], and distributed energy

resources field [8], [9].
When multiple GNEs exist, agents may have their own pref-

erence  for  different  GNEs.  For  example,  in  the  field  of
demand-side  management,  the  GNE,  redistributing  loads  to
certain off-peak hours, may violate users’ electricity consump-
tion  habits.  In  this  case,  coordination  between  agents’ strate-
gies becomes challenging [9]. The work presented in [10] and
[11] investigated  the  optimal  GNE  seeking  problem  in  the
form  of  the  minimum  norm  based  on  the  Tikhonov  method.
Further,  the  work  in [12] proposed  a  semi-decentralized
method  to  seek  the  specific  GNE  with  minimum  Euclidean
distance  to  the  reference  point  for  aggregative  games,  where
agents’ cost  functions  are  contingent  upon  their  individual
strategies  as  well  as  an aggregation value.  However,  the cur-
rent  research  lacks  a  sufficient  characterization  of  optimality
among  multiple  GNEs  (e.g.,  the  magnitude  of  norms  some-
times fails to represent the superiority of GNEs). Furthermore,
the  semi-decentralized  manner,  assuming  there  is  a  reliable
central  coordinator  that  broadcasts/receives  global  informa-
tion is unrealistic due to the heavy communication burden and
the lack of privacy protection for agents in the networked sce-
nario.  Therefore,  selecting  the  desired  GNE,  among  poten-
tially numeroues, in a distributed manner is still an open issue.

While there are few works on the distributed seeking of the
optimal  GNE,  a  recent  part  of  research  work  focuses  on  the
distributed  seeking  of  GNE  by  introducing  additional  con-
straints to guarantee the existence of a unique GNE. The dis-
tributed framework and seeking strategies designed offer valu-
able insights and inspiration to our investigation into the opti-
mal  GNE selection.  In [13],  a  distributed algorithm was pro-
posed by synthesizing the projection operator with a gradient
search method, which can converge to a neighborhood of the
NE.  The  game  on  a  directed  graph  was  studied  in [14],  in
which  an  approach  for  seeking  NE  was  presented,  achieved
through  the  interconnection  of  projected  gradient-play  with
average consensus dynamics. The work in [11] further consid-
ered  a  distributed  strategy  for  NE  over  a  time-varying  graph
via  iterative  Tikhonov  regularization  method.  Considering  a
game  with  coupled  constrains,  a  continuous-time  algorithm
based on a projection map method and variational inequalities
was proposed in [15].  Recently,  the distributed GNE seeking
based on the monotone operator theory is appealing because it
can ensure the global convergence with fixed update step size
and its proof of convergence is concise, see [16] for a general
overview. The monotone operator-based methods in [17]–[21]
aim  at  transforming  the  GNE-seeking  problem  into  a  mono-
tone  operator  zero-point  search  problem,  the  case  in  which
each agent holds an estimate of other agents and maintains an
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auxiliary  variable  used  to  ensure  consensus  of  local  estima-
tions. However, most of the above works consider a particular
strongly-monotone game, which assumes the game mapping F
(see Section II for details) is strongly-monotone to ensure the
uniqueness  of  GNE.  Furthermore,  the  aforementioned  algo-
rithms  either  fail  to  converge  or  converge  to  a  certain  GNE,
thereby falling short of fulfilling the requirement of converg-
ing to a specified optimal GNE.

Motivated by the above research results and issues, the opti-
mal GNE seeking problem in a distributed manner is investi-
gated. Contributions of this paper are summarized as follows:

1) To address the issue of seeking potential multiple GNEs
in  merely  monotone  games  with  linearly  coupled  cost  func-
tions,  a  convex  function  named  global  evaluation  function  is
formulated  to  assess  the  quality  of  GNEs.  Among the  poten-
tial numerous GNEs, the objective is to seek the optimal GNE
concerning the global evaluation function minimization.

2)  A  distributed  optimal  GNE  seeking  algorithm  is  firstly
proposed.  It  is  noteworthy  that  differently  from [16], [21],
[22],  the  proposed  algorithm  is  distributed,  and  each  agent
adjusts  its  update  step size  solely  based on its  local  informa-
tion.  Based on the operator  theory,  some convergence condi-
tions are derived for the proposed algorithm, and convergence
towards  the  optimal  GNE  with  respect  to  the  global  evalua-
tion function can be achieved.

3)  To  expedite  the  convergence  speed,  an  algorithm,  aug-
mented with relaxation acceleration scheme, is  also proposed
and analyzed. While retaining the merits of the original algo-
rithm,  it  is  shown  that,  the  iteration  steps  are  significantly
reduced in numerical simulation (see Section VI).

This paper is organized as follows. Section II gives the nec-
essary preliminaries. The formulation of the generalized game
and the distributed algorithm are provided in Section III. Sec-
tion IV presents  the  motivation behind the  algorithm and the
convergence  analysis.  Then  an  accelerated  algorithm  with
relaxation is presented in Section V, and simulation and analy-
sis based on networked Nash-Cournot game are given in Sec-
tion  VI.  Finally,  Section  VII  provides  a  conclusive  summary
of the paper.  

II.  Preliminary
  

A.  Notations
R (R≥0) ∅

0n (1n)
In ∈ Rn×n

x ∈ Rn xT ∥x∥ =
√

xT x

⟨x,y⟩Γ = ⟨Γx,y⟩ ∥x∥Γ =√
⟨Γx, x⟩ x1, . . . , xN

x1, . . . , xN [xT
1 , . . . , x

T
N]T

∥Γ∥ ∥Γ∥∞

s(Γ) I = {1, . . . ,N} (Γi)i∈I

Γ1, . . . ,ΓN ⊗

 is the set of (non-negative) real numbers, and let 
denote  the  empty  set.  is  a  vector  consisting  of  zeros
(ones), and  represents an identity matrix. For a vec-
tor ,  denotes its  transpose and .  Given a
symmetric  positive  definite  matrix  Γ,  the  Γ-induced  inner
product  is ,  the  Γ-induced  norm  is 

.  The  stacked  vector  of N vectors  is  repre-
sented  as  col( )  = .  For  a  matrix  Γ,  The
notations  and  represent the Euclidean norm and the
maximum  absolute  row  sum  of  Γ,  respectively.  The  kernel
space  and  range  space  of  Γ  is  Ker(Γ)  and  Range(Γ).  Denote
the  eigenvalue  of  Γ  as .  For ,  diag{ }
represents  the  block  diagonal  matrix  constructed  using

 as  its  diagonal  components.  denotes  the  kro-
necker product.  

B.  Operator Theory
Id Id(x) = x
Θ ⊂ Rn

Let  be the identity operator, i.e., .  For a closed
convex set , the normal cone of Θ is denoted as
 

NΘ(v) =


∅ v < Θ

{v | (u− v)T w, ∀u ∈ Θ} v ∈ bd(Θ)
0 v ∈ int(Θ)

(1)

projΘ (x) = argminy∈Θ∥x− y∥ T
dom(T ) = {x|T x , ∅}

T ran(T ) = {y|∃ x ∈ dom (T ) ,y ∈ T x}
T gra(T ) = {(x,u) |u ∈ T x} zer(T ) =
{x ∈ dom (T ) |0 ∈ T x} fix(T ) = {x ∈
dom (T ) |x ∈ T x} T ∀ (w,u) (x,y) ∈
gra(T ) (w− x)T (u− y) ≥ 0 gra(T )

T JT = (Id+T )−1

T T
(w,u)

(x,y) ∈ gra(T ) ∥u− y∥ ≤ L∥w− x∥ L = 1 T
T fix(T ) ,

∅ ∥u− z∥ < ∥w− z∥ ∀ (w,u) ∈ gra(T ) z ∈ fix(T )
(w,u) (x,y) ∈ gra(T ) T η− ∥u− y∥2 ≤ ∥w− x∥2−
1−η
η ∥w− x−u+ y∥2 ∥u− y∥2+ ∥w− x−u+ y∥2 ≤
∥w− x∥2 T

where  bd(Θ)  denotes  the  boundary  set  of  Θ,  and  int(Θ)
denotes  the  interior  of  Θ.  The  projection  of x onto  Θ  is
denoted  as .  Let  be  a  set-val-
ued  operator,  its  domain  is ,  and  the
range of  is , the graph of

 is , we denote its zero set as 
  and  the  fixed  point  set  is 

.  is  called  monotone  if , 
, we have . Futhermore, if  is

not strictly contained within the graph of any other monotone
operator,  is called maximally monotone.  is
the resolvent operator of .  is Lipschitz continuous if there
exists  a  positive  constant L such  that,  for  all  pairs  and

, ,  moreover  if ,  is
called nonexpansive.  is attracting nonexpansive, if 
 and , , .  Take any

, ,  is averaged if 
.  Moreover,  if 

 holds, then  is firmly nonexpansive.  

C.  Graph Theory
G(I,E)

I = {1,2, . . . ,N} E
G

W = [wi j] ∈ RN×N

wi,i = 0 wi j ≥ 0 W =WT

D = diag
{
(di)i∈I

}
di =

∑
j∈Iwi j

G L = D−W
L1N = 0N 1T

N L = 0T
N

0 < s2 (L) ≤ · · · ≤ sN (L) d∗ ≤ sN (L) ≤ 2d∗

d∗ =maxi∈I (di)

The  graph  represents  the  information  exchange
among  a  set  of  agents  with ,  and  denoting
the  set  of  edges.  Regarding  a  connected  undirected  graph ,
its  weighted  adjacency  matrix  is ,  where

, , and . The degree matrix is defined as
, , and the weighted Laplacian of

 is .  It  can  be  deducted  that  0  is  a  simple  eigen-
value of L, ,  and all  the remaining eigen-
values  are  positive.  Let  the  eigenvalues  of L in  ascending
order be ,  it  has  with

.  

III.  Game Formulation & Distributed Algorithm
  

A.  Game Formulation
i ∈ I

Θi ⊆ Rni

xi ∈ Rni Θ =
∏N

i=1Θi ⊆ Rn

x = col
(
(xi)i∈I

)
n =

∑N
i=1 ni

Ji(xi, x−i) : Θ→ R

x−i = col (x1, . . . , xi−1, xi+1, . . . , xN)

For a group of agents, in which agent  selects its strat-
egy  from  its  local  strategy  set .  Define  the  strategy
variable  of  agent i by ,  and  repre-
sents  the  combined  strategy  domain,  denotes
the  strategy  profile,  i.e.,  the  stacked  vector  of  all  the  agents’
strategies where . The objective of each agent is to
minimize  its  cost  function ,  where  the  cost
function depends on the strategy variables of the other agents,
denoted  as ,  as  well  as  the
local  strategy  variable.  This  paper  specifically  focuses  on  a
class of linearly coupled cost functions, which is a commonly
used form in the problem of seeking GNE [23]−[25]. 
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Ji (xi, x−i) = ℓi (xi)+
⟨ N∑

j=1, j,i

Ci jx j, xi

⟩
(2)

ℓi (xi) : Rni → R
Ci j ∈ Rni×n j

in  which  denotes  the  local  cost  function  of
agent i, and  signifies the impact of agent j’s strat-
egy  on  the  cost  function  of  agent i.  In  addition,  we  assume
strategies are coupled together via a shared affine constraints
and the overall feasible space can be written as
 

X = Θ∩ {
x ∈ Rn | Ax ≤ b

}
(3)

A = [A1,A2, . . . ,AN] b =
∑N

i=1 bi

Ai ∈ Rm×ni bi ∈ Rm Θi

in  which  and .  Specifically,
,  and  are the local information of agent i.

The  GNE  seeking  problem  is  then  formulated  that  the  agent
finds  the  optimal  response  from  the  feasible  space  after  giv-
ing the strategies of other agents, which may not be known by
any  agents.  Therefore,  this  interconnected  coupled  optimiza-
tion problem is given by
 

min
xi∈Θi

Ji (xi, x−i) s.t. Aixi ≤ b−
N∑

j=1, j,i

A jx j, ∀i ∈ I. (4)

ℓi (xi)
Θi

i ∈ I

Assumption 1: The local function  is lower semicontin-
uous and convex. The set  in (3) is nonempty, compact, and
convex. Furthermore, Θ satisfies the Slater’s constraint quali-
fication condition, for all .

Then,  the  pseudo  gradient  mapping  (game  mapping)  is
defined as
 

F(x) =


∂x1 J1 (x1, x−1)

...

∂xN JN (xN , x−N)

 . (5)

x∗ =
col((x∗i )i∈I)

Definition  1: Generalized  Nash  equilibrium  (GNE) 
 ensures  that  each  agent  satisfies  the  following

condition:
 

fi
(
x∗i , x

∗
−i

)
≤ inf

{
fi
(
y, x∗−i

)
| y ∈ Xi

(
x∗−i

)}
. (6)

Li(xi,λi, x−i) = Ji(xi, x−i)+λT
i (Ax−b) λi ∈ Rm

+ xi ∈ Θi

x∗
λ∗

0ni = ∇xi Li(x∗i ,λ
∗
i , x
∗
−i) x∗i ∈ Θi ⟨λ∗i ,Ax∗−b⟩ =

0 −Ax∗−b ≥ 0

The  local  Lagrangian  for  agent i can  be  denoted  as
 with , .

Under Assumption 1,  is the optimal solution to problem (4),
if  there  is  a  that  satisfies  the  Karush-Kuhn-Tucher  (KKT)
condition: , , 
, . Applying normal cone, KKT condition can be

rewritten as
 

0ni ∈ NΘi

(
x∗i

)
+AT

i λ
∗
i +∇xi Ji

(
x∗i , x

∗
−i

)
0m ∈ −

(
Ax∗−b

)
+NRm

+

(
λ∗i

)
.

(7)

(F (x))T (u− x) ≥ 0 ∀u ∈ X

In this paper, our primary focus lies on a specific subset of
GNE,  namely  variational  GNE  (v-GNE).  v-GNE  solves  the
variational  inequality  (VI): , .  The
KKT condition of v-GNE can be concisely written in a com-
pact form as follows:
 0n ∈ F

(
x∗

)
+ATλ∗+NΘ

(
x∗

)
0m ∈ −

(
Ax∗−b

)
+NRm

+

(
λ∗

) (8)

F (x∗)
NΘ(x∗) =

∏N
i=1 NΘi (x∗i )

in which  denotes the pesudo gradient defined in (5) and
.

x∗ λ∗

col
(
(λi)i∈I

)
= 1N ⊗λ∗

By comparing (7) with (8), when  and  satisfy the KKT
condition  (7)  and  all  multipliers  are  the  same,  i.e.,

, they also satisfy (8), hence v-GNE is a
subclass  of  GNE.  Furthermore,  the  v-GNE  set  is  nonempty,
compact  and  convex  under  Assumption  1 [26,  proposition
2.2].

Ci j ∈ Rni×n j

Ci j =CT
ji,∀i, j ∈ I

Assumption  2: The  matrices  in  (2)  satisfy
.

Remark 1: In recent literature, it is commonly assumed that
the pseudo gradient exhibits Lipschitz continuity and strongly
monotonicity,  which  can  ensure  the  uniqueness  of  v-GNE in
the game [27]. However, under Assumptions 1, only the exis-
tence  of  v-GNE  can  be  ensured,  while  the  uniqueness  is  not
enough  to  be  guaranteed,  which  results  in  the  existence  of
multiple solutions to (8).

Among the potential v-GNEs, one needs to select one with
more  ideal  characteristics  (according  to  the  strategy  variable
x).  Naturally,  a  global  evaluation  function,  denoted  as ϕ,  to
measure  the  performance  of  different  v-GNE  is  required.
Selecting  the  optimal  v-GNE according to  the  global  evalua-
tion function is called the optimal v-GNE selection problem in
this paper, which can be formulated as
 arg min

x∈Rn
ϕ(x)

s.t. ∃(x,λ) satisfying (8).
(9)

ϕ (x) =
∑

i∈Iϕi (xi)
L∇ϕ

Assumption  3: The  global  evaluation  function ϕ is  convex,
differential,  and separable  with respect  to  the variable x,  that
is, .  Additionally,  the  gradient  with  respect
to x is -Lipschitz continuous.

VI (F ,∆) Sol (F ,∆) F = col(F(x)+ATλ,

b−Ax) ∆ = Θ×Rm
+

VI (∇ϕ,S ol (F ,∆))

Sol (∇ϕ,S ol (F ,∆))

Remark 2: Problem (8) can be translated, through the defini-
tion of the normal cone, into the task of finding the solution to

,  denoted  as ,  where 
 and .  Furthermore,  problem  (9)  can  be

equivalently  reformulated  as  the  search  for  a  solution  to
 by  following  a  similar  set  of  steps.  Once

again,  making  use  of  proposition  2.2  in [26],  and  under  the
Assumption 3, it can be established that  is
a non-empty, compact and convex set, implying that the opti-
mal v-GNE set is not empty.  

B.  Distributed Optimal Equilibrium Seeking

Ji
Θi Ai
bi

G f Gλ G f

G f (I,E f ) ∈ E f

N f
i = { j| ( j, i) ∈ E f }

In  this  section,  we  introduce  the  fundamental  algorithm
developed  for  distributed  searching  of  the  optimal  v-GNE.
Specifically,  assuming  that  each  agent  possesses  only  the
knowledge of its individual cost function  and feasible space

,  and the corresponding portion of coupling constrains ( ,
). Furthermore, each agent updates its own strategy by com-

municating  with  neighbors  through  the  two  communication
topological networks denoted by  and . Graph , called
interference graph, is defined by the relationship between the
agent’s  cost  function  and  the  strategies  of  agents.  For

, (j,i)  only if the strategy of agent j will directly
affect  the  agent i’s  cost  function,  the  interference neighbours
of agent i can be denoted as . We adopt the
classical  framework  established  in [28] and [29],  which
assumes  that  each  agent  has  access  to  the  strategies  of  other
agents  whose  cost  function  directly  influences  its  own.  The
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Gλ
j ∈ Nλi : { j| ( j, i) ∈ E f }

agent  can also exchange local  information through multiplier
graphs ,  agent i can  receive  information  from  agent j if

.
GλAssumption  4: The  multiplier  graph  is  undirected  and

connected.
G f

G f

Remark 3: The interference graph  may be a sparse graph
when the agent’s  cost  function depends on only a fraction of
the  agents  (e.g.,  the  Nash-Cournot  game  in [28]).  If  each
agent’s cost function is contingent upon the strategies chosen
by  all  other  agents,  the  interference  graph  is  a  complete
graph (e.g., aggregative game in [23])

xi λi

σi

λi, i ∈ I γi βi δi
µ(k)

xk
i σ

k
i λk

i xi σi λi

[wi j]
Gλ

The  proposed  distributed  optimal  v-GNE  algorithm  is  out-
lined in Algorithm 1, in which each agent independently man-
ages its local strategy  and Lagragian multiplier . Further-
more,  to  handle  the  limited  information  about  other  agents,
agent i also  maintains  a  local  auxiliary  variable  to  ensure
compliance with the global affine constraint and achieve con-
sensus among . Here, , , and  represent the con-
stant  step-sizes  for  agent i.  Additionally,  corresponds  to
the global decay step, which will be elaborated later. The vari-
ables , , and  denote the values of , , and  at itera-
tion k respectively.  Moreover,  represents  the  weighted
adjacency matrix of .

Algorithm 1 Distributed Optimal v-GNE Seeking

∀i ∈ I x0
i ∈ Θi σ

0
i ∈ 0m λ

0
i ∈ R

m
≥0Intialization: , , , 

i ∈ ILocal update, for :
xk

j , j ∈ N
f

i ,λ
k
j , j ∈ Nλi　1: Phase 1: Receive  and update

x
k+ 1

2
i = argminy∈Θi

(
γi
2

∥∥∥y− xk
i

∥∥∥2
+ li(y)　2: 

+
⟨
y,AT

i λ
k
i +

∑
j∈I\{i}Ci j xk

j

⟩)
　　　　

xk+1
i = x

k+ 1
2

i −µ(k)∇xiϕ

(
x

k+ 1
2

i

)
　3: 

σk+1
i = σk

i +βi
∑

wi j
(
λk

i −λk
j

)
　4: 

σk+1
j , j ∈ Nλi　5: Phase 2: Receive  and update

λk+1
i = projRm

≥0

(
λk

i +δi

(
Ai

(
2x

k+ 1
2

i − xk
i

)
　6: 

−∑
wi j

(
2σk+1

i −σk
i −2σk+1

j +σ
k
j

)
+bi

))
　　　　

(µ(k))k∈N ∈ R≥0

limk→∞ µ(k) = 0
∑

k>0 µ
(k) =∞ ∑

k>0(µ(k))2 <∞
Assumption  5: The  sequence  satisfies

, , and .

xk
−i j ∈ N f

i G f

λk
j j ∈ Nλi δkj
σk+1

j j ∈ Nλi λk
i

Remark  4: Algorithm  1  is  called  a  double-layer  algorithm
because a complete state update requires two rounds of com-
munication among agents. Each iteration k alternates between
“communication” and “computation”, in phase 1, agent i gets

 from  the  neighbors  in  interference  graph ,
meanwhile, agent i gets ,  and update . Then agent i
observes  latest  information ,  and  updates  by
one-step projection.

σi

λi σi

The  auxiliary  variable  can  be  interpreted  as  a  discrete-
time  integrator  for  the  consensual  errors,  ensuring  the  ulti-
mate  consensus  of  Lagrangian  multipliers .  In  addition, 
can also reflect the contribution of agent i to the coupling con-
straints,  and  plays  the  role  of  global  affine  constraint  decou-
pling. Algorithm 1 is called distributed because: 1) Each agent
is  required  to  store  its  own  local  information.  2)  No  central
node  is  required  to  receive,  broadcast,  and  update  multiplier

information (differently from [12], [22]).  

IV.  Algorithm Development & Convergence Analysis
  

A.  Algorithm Development
In this section, we will explore the design motivation behind

Algorithm  1  and  systematically  illustrate  that  how  to  write
Algorithm 1 in the form of the preconditioned proximal point
algorithm  (PPPA)  and  the  hybrid  steepest  descent  method
(HSDM).

Lemma 1: Algorithm 1 is equivalent to
 

Tϖk = JΓ−1Te

(
ϖk

)
ϖk+1 = Tϖk −µ(k)∇ϕ

(
Tϖk

)
, ∀k ∈ N

(10)

ϖk = col(xk,σk,λk) xk = col((xk
i )i∈I) σk = col((σk

i )i∈I)
λk = col((λk

i )i∈I)
with , , 
and .  Γ  is  called  the  precondition  matrix
which is defined as
 

Γ =


γ̄−C 0 −AT

0 β̄−1 Lm

−A Lm δ̄−1

 (11)

γ̄ = (γiIni )i∈I β̄ = (βiIm)i∈I δ̄ =

(δiIm)i∈I A = (Ai)i∈I b̄ = col((bi)i∈I) Lm =

L⊗ Im Te

where  diag{ },  diag{ }  and 
diag{ }.  diag{ },  and 

 . Define operation  as
 

Teϖ =


NΘ (x)+F (x)+ATλ

−Lmλ

NRNm
+

(λ)−
(
Ax− b̄

)
+Lmσ

 . (12)

Proof: Firstly, (10) can be split in two-step iterations
 

ϖk+ 1
2 = JΓ−1Te

(
ϖk

)
(13)

 

ϖk+1 =ϖk+ 1
2 −µ(k)∇ϕ

(
ϖk+ 1

2

)
. (14)

Γ(ϖk −ϖk+ 1
2 ) ∈ Teϖ

k+ 1
2

Te

By  the  definition  of  the  resolvent  operator,  (13)  can  be
rewritten as .  Then,  we simplify each
row in  operator .  In  the  first  row of  the  inclusion,  one has
that
 

(γ̄− c)
(
xk − xk+ 1

2

)
−AT

(
λk −λk+ 1

2

)
∈ NΘ

(
xk+ 1

2

)
+ (G+C) xk+1+ATλk+ 1

2

 

⇔ 0 ∈ γ̄
(
xk+ 1

2 − xk
)
+Cxk +ATλk

+NΘ
(
xk+ 1

2

)
+Gxk+ 1

2

 

⇔
∀i∈I

0 ∈ γi

(
x

k+ 1
2

i − xk
i

)
+

∑
j∈I\i

Ci jxk
j +AT

i λ
k
i

+NΘi

(
x

k+ 1
2

i

)
+∇xi li

(
x

k+ 1
2

i

)
⇔
∀i∈I

0 ∈ ∇y
y∈Θi

(
γi

2
∥y− xk

i ∥2+
⟨
y,

∑
i∈I\i

Ci jxk
j

+AT
i λ

k
i

⟩
+ li(y)

)
.
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diag{(∇xi li)i∈I} C ∈ Rn×n Ci j

To  maintain  a  concise  proof  process,  operator G denotes
,  and  is  a  block  matrix  with 

defined in (2).  Obviously, the above problem is to search the
zero  points  of  the  gradient  in  a  strongly  convex  function,
which corresponds to the unique minima and can be rewritten
as
 

x
k+ 1

2
i = argmin

y∈Θi

(
γi

2

∥∥∥y− xk
i

∥∥∥2

+

⟨
y,

∑
j∈I\i

Ci jxk
j +AT

i λ
k
i

⟩
+ li(y)

)
. (15)

TeSimilarly, simplify the second row of the operator  as
 

β̄−1
(
σk −σk+ 1

2

)
+Lm

(
λk −λk+ 1

2

)
= −Lmλ

k+ 1
2

⇔
i∈I
σ

k+ 1
2

i = σk
i +βi

∑
j∈I

wi j
(
λk

i −λk
j

)
. (16)

Te

Using  the  normal  cones  and  projection  operators,  the  last
row of the operation  can be simplified as
 

0 ∈ δ̄
(
A

(
xk −2xk+ 1

2

)
+ b̄+Lm

(
2σk+ 1

2 −σk
))

−λk +λk+ 1
2 +NRNm

+

(
λk+ 1

2

)
⇔
i∈I
λ

k+ 1
2

i = projRm
+

(
λk

i −δi
(
Ai

(
xk

i − x
k+ 1

2
i

)
+bi

+
∑
j∈I

wi j

(
2σ

k+ 1
2

i −σk
i −2σ

k+ 1
2

j +σk
j)
))
. (17)

Finally,  because  the  global  evaluation  function ϕ is  set  to
search  the  optimal  v-GNE  dedicated  to  strategy  variable x,
(14) is equivalent to
 

xk+1 = xk+ 1
2 −µ(k)∇xϕ

(
xk+ 1

2

)
σk+1 = σk+ 1

2

λk+1 = λk+ 1
2 .

(18)

The conclusion follows by substituting (15)−(17) into (18).
■

Te

Remark  5: It  is  essential  to  emphasize  that  matrix  Γ  plays
two important roles: 1) Since the operator  contains a skew-
symmetric  matrix,  its  resolvent  cannot  be  computed  without
matrix  Γ.  2)  It  can  enable  the  algorithm  to  be  executed  in  a
distributed manner, in which each agent chooses its own step
size  only  based  on  its  local  information,  which  can  be  real-
ized in practice.

T
Te

Next, we will discuss the properties of operator  and oper-
ator , and illustrate that the problem (9) to be solved can be
further transformed by operators.

Lemma 2: Assuming that Assumptions 1−4 are satisfied, the
statements below can be obtained.

∀ x∗,σ∗, λ̄∗ ∈ Te λ̄
∗ = 1N ⊗λ∗ x∗ λ∗

x∗

x∗,σ∗, λ̄∗ ∈ T

1)  col( )  zer( ),  and ,  solves
(8),  hence  is  a  v-GNE  of  the  game  (4).  Moreover,
col( )  fix( ).

Te , ∅ T , ∅2) zer( )  and fix( ) .

Proof:
x∗,σ∗, λ̄∗ Te

Te

1) Given col( ) is a zero point of the operator , by
the definition of the operator  in (12), one has that
 

NΘ (x∗)+F (x∗)+AT λ̄∗

−Lmλ̄
∗

NRNm
+

(
λ̄∗

)
−

(
Ax− b̄

)
+Lmσ

∗

 =


0

0

0

 . (19)

λ̄∗ ∈ Lm ⇔ λ̄∗ = 1N⊗
λ∗,λ∗ ∈ Rm λ∗1 = · · · = λ∗N = λ∗ A =

(Ai)i∈I∑i=1
N NΘi ⇔ N∩N

i=1Θi
∩N

i=1Θi , ∅
1T

N ⊗ Im

x∗,λ∗
VI (F,X) x∗

The  second  line  of  (19)  implies  Ker( )
.  Then  by  the  fact  that  and 

diag{ },  the  first  line  of  (19)  is  equivalent  to  the  first
line of the v-GNE KKT condition (8). Finally, combining the
fact that  when  and multiplying

 in the last line of (19), it  is equivalent to the last line
of the v-GNE KKT condition (8). Hence, col( ) is a solu-
tion  to  the  and  is  a  v-GNE.  Furthermore,  by  the
definition of resolvent operator, one has that
 

0 ∈ Te
(
ϖ∗

)⇔ Γ (ϖ∗−ϖ∗) ∈ Te
(
ϖ∗

)
⇔ϖ∗ = JΓ−1Te

(
ϖ∗

)
(20)

ϖ∗ x∗,σ∗, λ̄∗
T

which implies that  = col( ) is also a fixed point of
operation .

x∗,λ∗ λ∗1 =
λ∗2 = · · · = λ∗N = λ∗

σ∗ (σ∗i )i∈I

z∗ ∈ NRm
+

(λ∗) −(Ax∗−b)+ z∗ = 0 z∗1 = z∗2 = · · · =
z∗N =

1
N z∗

2) In  Remark  1,  we  have  concluded  that  the  v-GNE set  of
the game (4)  is  non-empty.  Hence,  there is  at  least  one point
col( )  satisfying  the  KKT  condition  (8).  Taking 

,  the first  and second lines in (18) naturally
hold.  Next,  we  will  prove  that  there  exists  =  col( )
satisfying  the  last  line  of  (19).  Firstly,  there  must  exist

 such that . Take 
, then one has that

 (
1T

N ⊗ Im
) [
−
(
Ax∗− b̄

)
+Lmλ̄

∗+ col
((

z∗i
)
i∈I

)]
= − (

Ax∗−b
)
+ z∗ = 0 (21)

−(Ax∗− b̄)+Lmλ̄
∗+ col((z∗i )i∈I) ∈ 1T

N ⊗ Im

1T
N ⊗ Im Lm (z∗i )i∈I) ∈

NRNm
≥0

σ∗ ∈ Lm

which  means  Ker( ).
By  the  fact  that  Ker( )  =  Range( )  and  col(

, there exists a  Range( ) satisfying the last line of
(19). ■

Based  on  Lemma 2,  the  optimal  v-GNE selection  problem
(9) can be reformulated as
 arg min

x∈Rn
ϕ (x)

s.t. col (x,σ,λ) ∈ fix (T )
(22)

and feasible space of the problem (22) is non-empty. The form
of  problem  (22)  is  called  the  fixed-point  selection  problem
that was investigated in [30]. We will illustrate that the prob-
lem can be solved via HSDM in the next section.  

B.  Convergence Analysis

T Te

Before  proving that  Algorithm 1 can converge towards  the
solution  to  (22),  it  is  imperative  to  discuss  the  properties  of
operators  and  required in the HDSM based on the rear-
rangement of Algorithm 1.

Γ−1Te T
Lemma  3: Assuming  Assumptions  1−4  hold,  the  operator

 is the maximally monotone, and  is attracting opera-
tor in the Γ-induced norm if matrix Γ is positive definite.

TeProof: Operator  can be split into three terms 
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Te (ϖ) =


NΘ (x)

0
NRNm
+

+


F (x)

0
b̄

+


0 0 AT

0 0 −Lm

−A Lm 0

ϖ.

NΘ NRNm
+

Ji, i ∈ I

Rn

Rn+2Nm

For  the  first  term  on  the  right-hand  side  (RHS),  because
norm crone with respect  to a  closed convex set  is  maximally
monotone [31,  Example  20.26],  operators  and  are
both  the  maximally  monotone.  Moreover  the  constant  vector
is also maximally monotone, and the direct sum of maximally
monotone operators remains maximally monotone [31, Propo-
sition  20.23],  so  the  first  term  on  the  RHS  is  the  maximally
monotone.  Under  Assumption  1,  the  epigraph  of  is
closed.  Consider  the  fact  that  the  subgradient  of  the  convex,
closed  and  proper  function  is  the  maximally  monotone [31,
Theorem  20.25],  the  second  term  on  the  RHS  is  also  maxi-
mally monotone. Maximally monotonicity of the third term on
the RHS follows from the [31, Example 20.35]. Finally, as the
domains  of  the  second  and  third  terms  on  the  RHS  are ,

 respectively,  their  sum results  in  a  maximally  mono-
tone operator.

∀ x,u ∈ Γ−1Te
y,v ∈ Γ−1Te Γu ∈ Γ−1ΓTex Γv ∈
Γ−1ΓTey

Assume  Γ  is  positive  definite.  ( )  gra( )  and
( )  gra( ),  we  have  that  and 

, which implies that
 

⟨x− y,u− v⟩Γ = ⟨x− y,Γ (u− v)⟩ ≥ 0. (23)

Te ΓTe

Equation  (23)  holds  due  to  the  maximally  monotonicity  of
,  hence  is  the  maximally  monotone  in  the  Γ-induced

norm.
T

Γ−1Te T
T ∈ A

(
1
2

)Consider  as  the  resolvent  of  the  maximally  monotone
operator ,  then  is  firmly nonexpansive [31,  Proposi-
tion 23.7], and  from [31, Proposition 4.25]. There-
fore,  Lemma  3  holds  by  the  fact  that  firmly  nonexpansive
operators are also attracting nonexpansive [32, Lemma 2.4]. ■

βi δi γi

Lemma  4: The  matrix  Γ  is  positive  definite  if  every  agent
follows  Algorithm  1  with  fixed  step-sizes , ,  and  in
Algorithm 1 satisfying
 

0 < βi < (2di)−1

γi >
∑
j∈I
∥Ci j∥∞+ ∥Ai∥∞

0 < δi < (2di+ ∥Ai∥∞)−1 .

(24)

Proof: Obviously, matrix Γ is symmetric. Conclusion can be
easily  drawn  by  constructing  a  strictly  diagonally  dominant
matrix,  its  detailed  proof  follows  the  Gershgorin’s  theorem
[33, Corollary 6.2.27]. ■

Ai Ci j di

Remark 6: It  should be noted that, in [17], [22], the setting
of step-sizes for each agent required the coercivity constant of
the  pseudo-gradient,  indicating  that  the  cost  function  of  each
agent  could  not  be  safeguarded.  However,  according  to
Lemma 4, agent i determines its own step-sizes only based on
local information ( , , and ), which ensures Algorithm 1
can be executed in a distributed manner.

The main  result  of  the  convergence  of  Algorithm 1 can be
obtained as follows.

γi βi δi Θ∗
Theorem 1: Suppose Assumptions 1−5 hold, and step-sizes
, ,  satisfy  Lemma 4.  Let  denote  the  solution  set  of

(ϖk)k∈N xk,σk,λkthe problem (22), and  = col( ) is the sequence
generated by Algorithm 1. Then one has
 

lim
k→∞

dist
(
ϖk,Θ∗

)
= 0. (25)

Proof: First,  (22) can be transformed into the general  form
that  can  be  solved  by  HSDM  using  the  definition  of  varia-
tional inequality. Consider
 

x∗ = arg min
x∈Rn
⇔ ⟨

v− x∗,∇ϕ (x∗)⟩ ≥ 0, ∀v ∈ Rn (26)

one has the equivalent form of problem (22)
 {Findϖ∗ = col

(
x∗,σ∗,λ∗

)
, ϖ∗ ∈ fix (T )

s.t.
⟨
v−ϖ∗,∇xϕ

(
ϖ∗

)⟩ ≥ 0, ∀v ∈ fix (T ) .
(27)

T ∇ϕ
T

T

Under  Assumption  1,  Θ  is  compact,  which  ensures  that
fix( )  is  nonempty  and bounded.  Moreover,  is  Lipschitz
continuous and monotone over the domain of the operator 
under Assumption 3. From Lemma 3,  is attracting operator.
Algorithm 1 (or (10)) is the standard form of the HSDM, and
fulfills all  assumptions of [34, Theorem 3]. The result imme-
diately ensues. ■  

V.  Accelerations

T

In this section, we employ the relaxation in Algorithm 1 to
accelerate  the  convergence  speed.  Motivated  by  the  conver-
gence property of Algorithm 1, which relies on the monotone
operator ,  various  modifications  have  been  proposed  to
enhance  its  convergence  speed.  These  modifications  involve
constructing the next iterate by combining the operator’s out-
put with previous outputs. Specifically, we focus on a modifi-
cation  scheme  called  relaxation,  which  has  shown  pretty
acceleration  performance  in  distributed  optimization  algo-
rithms [35].  While  the  introduction  of  a  relaxation  scheme
poses  challenges  to  the  convergence  of  algorithms  based  on
HSDM, we firstly prove that the convergence can be ensured
by properly selecting the relaxation step-size within the opera-
tor framework.

Algorithm 2 Distributed Optimal v-GNE Seeking With Relaxation

∀i ∈ I x0
i ∈ Θi σ

0
i ∈ 0m λ

0
i ∈ R

m
+Intialization: , , , 

i ∈ ILocal update, for :
xk

j , j ∈ N
f

i ,λ
k
j , j ∈ Nλi　1: Phase 1: Receive  and update

x
k+ 1

2
i = argminy∈Θi

(
γi
2

∥∥∥y− xk
i

∥∥∥2
+ li(y)　2: 

+
⟨
y,AT

i λ
k
i +

∑
j∈I\i Ci j xk

j

⟩)
　　　　

x̊k+1
i = xk

i +η

(
x

k+ 1
2

i − xk
i

)
　3: 

xk+1
i = x̊k+1

i −µ(k)∇xiϕ
(
x̊k+1

i

)
　4: 

σk+1
i = σk

i +ηβi
∑

wi j
(
λk

i −λk
j

)
　5: 

σk+1
j , j ∈ Nλi　6: Phase 2: Receive  and update

λ
k+ 1

2
i = projRm

+

(
λk

i +δi

(
Ai

(
2x

k+ 1
2

i − xk
i

)
　7: 

−∑
wi j

(
2σk+1

i −σk
i −2σk+1

j +σ
k
j

)
+bi

))
　　　　

λk+1
i = λk

i +η

(
λ

k+ 1
2

i −λk
i

)
　8: 

∀k ∈ N

Remark 7: Compared to Algorithm 1, Algorithm 2 is estab-
lished  through  adding  an  additional  relaxation  step.  Follow-
ing  the  exact  proof  steps  in  Lemma  1, ,  Algorithm  2
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can be rewritten in a compact form of
 

ϖk+ 1
2 = Tϖk

ϖ̊k+1 =ϖk +η
(
ϖk+ 1

2 −ϖk
)

ϖk+1 = ϖ̊k+1−µ(k)∇ϕ
(
ϖ̊k+1

) (28)

Twhere operator  is defined in (10), and η is a positive relax-
ation parameter.

T

T

γi βi δ

Currently,  relaxation  scheme  is  primarily  investigated  for
the  case  of  firmly  nonexpansive  operators.  However,  in  this
paper,  the  attracting  property  of  operator  is  essential  to
ensure the convergence of the HSDM-based algorithms. Intro-
ducing  relaxation  mechanisms  poses  challenges  in  maintain-
ing  attracting  property  of .  The  following  result  demon-
strates  the  convergence  of  Algorithm  2  under  the  correct
choice for step size η as well as , , . We omit part of the
proof because it is similar to that of Theorem 1.

η ∈ (0, 3/2) γi βi δi
Θ∗

(ϖk)k∈N xk,σk,λk

Theorem  2: Suppose  Assumptions  1−5  hold.  Take  the
 and  each  agent  choose  its  step-sizes , ,  to

satisfy Lemma 4.  denotes the set of the solutions to prob-
lem (22), and  = col( ) is the sequence gener-
ated by Algorithm 2 such that
 

lim
k→∞

dist
(
ϖk,Θ∗

)
= 0. (29)

T ′ = ηT + (1−η) Id
Proof: Recall the compact form (28) of Algorithm 2. Intro-

duce operator  to simplify (28) as
 T

′ϖk = ηTϖk + (1−η)ϖk

ϖk+1 = T ′ϖk −µ(k)∇ϕ
(
Tϖk

)
, ∀k ∈ N

(30)

T ′ T ′
which  is  the  standard  form  of  HSDM  based  on  the  operator

. We need to prove that the operator  satisfies the proper-
ties required by HSDM.

ϖ∗ = x∗, δ∗,λ∗ ∈ T ′Given any col( )  fix( ), one can obtain
 

T ′ϖ∗ = ηTϖ∗+ϖ∗−ηϖ∗ =ϖ∗⇔Tϖ∗ =ϖ∗ (31)
ϖ∗

T
T̆ T = 1

2 Id+ 1
2 T̆

T ′

hence  is  v-GNE  of  game  (4)  from  Lemma  2.  Moreover,
considering  is  firmly  nonexpansive  from  Lemma  3,  there
exists  a  nonexpansive  satisfying .  Therefore

 can be rewritten as
 

T ′ = η
(

1
2

Id+
1
2
T̆

)
+ (1−η) Id

=
η

2
T̆ +

(
1− η

2

)
Id (32)

T ′ ∈ A (η/2) η ∈ (0, 3/2) T ′which implies  if ,  or  is attracting
nonexpansive.  The  remainder  of  the  proof  follows  a  similar
approach as in Theorem 1. ■

Remark 8: Algorithm 2 or (30) can alternatively be viewed
as  the  robust  hybrid  steepest  descent  method  (RHSDM),
which has been proven that it is gifted with notable numerical
robustness  in [36].  The  relaxation  method  is  also  applied  to
the preconditioned-forward-backward (P-FB) method [17]. In
particular,  the  advantages  of  our  algorithm  is  that  relaxation
parameter η can  be  correctly  chosen  globally  and  indepen-
dently i.e., the choice of η does not require any knowledge of
game  mapping F in  (8)  (e.g.,  Lipschitz  constant),  which

ensures Algorithm 2 is in a distributed manner.

η∇ϕ η∇ϕ
L∇ϕ

ηk ∈ {η1,

η2, . . . ,ηN} ηi ∈ (0, 3/2) , ∀i ∈ {1,2, . . . ,N}
ηk = η[k]N

[k]N = {k− iN |i = 0,1, . . . , }∩ {1,2, . . . ,N}
T ′k = ηkT + (1−

ηk)Id fix(T ′N ,T ′N−1, . . . ,T ′1)
= fix (T ′N−1,T ′N−2, . . . ,T ′1T ′N) = · · · = fix (T ′1 ,T ′2 , . . . ,T ′N) =
fix (T )

µ(k) = µ0/k

µ0 ∈
(
0, 2η∇ϕ

L∇ϕ2

)

Remark 9: In addition, we consider a special case where the
derivative of the global evaluation function is strongly mono-
tonic with respect to , and each agent has access to  and

. If the algorithm incurs a high computational cost and the
optimal relaxation parameter is unknown, we consider adopt-
ing  time-varying  relaxation  parameter,  denoted  as 

,  where ,  to  achieve  a
trade-off in acceleration effects. Specifically, , where

.  Similarly  to  the
proof  of  Theorem  2,  at  each  update  instant, 

 is  a  nonexpansive  operator,  and 

.  According  to  Theorem  2,  it  can  be  easily  demon-
strated that under the Assumptions 1−4 and , where

, Algorithm 2 with the adoption of time-varying
relaxation  parameter  satisfies  all  assumptions  of [36,  Theo-
rem  3.3],  and  thus  still  converges  to  the  unique  optimal  v-
GNE.  

VI.  Numerical Simulations

N = 6

M = 3

In  this  section,  the  advantages  of  our  algorithms  with  the
modified  simulation  in [12] are  demonstrated.  In  order  to
ensure  the  results  more  convincing,  the  aggregation  game  is
extended to the more general game model. A networked Nash-
Cournot game with  companies (agents) participating in
the  production  of  a  homogeneous  commodity,  competing
across  markets is considered (see Fig. 1).

 
 

1 2 3

4 5 6

M1 M2 M3

Mi

i Company

Market

 
M j

M j

Fig. 1.     Networked  cournot  game:  A  undirected  edge  from i to  in  the
graph represent company i participate in the competition in market .
 

Gλ

ni = M = 3
xi ∈ Rni Ji

The  multiplier  graph  of  the  companies  refers  to Fig.  2.
For company i, the number of markets it is engaged in is rep-
resented as . Company i should decide on the quan-
tities  to minimize its cost function , which is set as
 

Ji(xi, x−i) = qT
i xi+

1
N

xT
i C̄ixi+

⟨ ∑
j∈I\i

Ci jx j, xi

⟩
. (33)

C̄i Ci j

qi

Θi =
∏3

j=1 [ai j,100]

ai, j

Ai = I3 bi = 513

 and  are both set as diagonal matrices, whose non-zero
elements  are  randomly  sampled  in [0,  1],  and  is  randomly
sampled in [−10,  0].  The local  constraint 
represents  the  upper  and  lower  bounds  of  goods  production
for company i, in which  is set from [−1, 1]. Moreover, the
global  constraint  in  (3)  is  set  as  and ,  which
denotes  each  market  has  the  same maximal  capacity.  We set
the global evaluation function as 
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ϕ (x) =
N∑

i=1

xT
i Qixi+ q̃T

i xi (34)

Qi
q̃i

βi = 0.15 γi = 2
δi = 2 η = 1.4 µ(k) µ(k) = µ0/k0.8

µ0 =

in  which  is  set  as  a  diagonal  matrix  whose  nonzero  ele-
ments are randomly chosen in [1, 2], and the components of 
are  stochastically  sampled  from  the  interval [−1,  1].  Finally,
we take the step-sizes for each company as  , ,

 and , decay step  is defined by ,
with 0.1.

F (x) =
col (Fi (x))i∈I Fi (x) = qT

i +
1
N Cixi+

∑
j∈I\i Ci jx j

The  global  evaluation  function  in  (34)  is  set  to  reduce  the
sum  of  the  distances  between  the  strategy  variables  of  each
agent  and randomly generated  reference  points.  Furthermore,
the pseudo-gradient of the game model can be written as 

,  where .  It  is
easy  to  prove  that  the  setting  of  the  parameters  satisfies
Assumptions 1−5.

We conduct a performance comparison of Algorithms 1 and
2  versus  PPPA  in [19] under  the  same  parameters.  The  pri-
mary outcome is demonstrated in Fig. 3, where all three algo-
rithms  are  initialized  with  an  identical  initial  condition.  It  is
shown the v-GNE computed by the PPPA is suboptimal with
respect  to  the  global  evaluation  function ϕ,  and  our  Algo-
rithms can converge to the optimal v-GNE with lower ϕ value.
Moreover, Fig. 3 shows Algorithm 2 has the superior conver-
gence  speed  with  help  of  relaxation,  which  can  also  be  seen
from  the  convergence  curve  of  agents’ strategy  variables  in
Fig. 4.
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Fig. 3.     Comparison of Algorithms 1 and 2 with PPPA method in terms of
the global function ϕ.
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xk
i

In Fig.  5,  the trajectory of  represents consen-
sus  of  each  company’s  local  multiplier,  it  can  be  observed
Algorithms  1  and  2  can  ensure  the  local  multiplier  of  each
company  tends  to  be  same.  Finally,  the  strategy  variable 
convergence of each company can be obtained from Fig. 6.

The  convergence  speed  of  the  algorithm  is  significantly
determined  by  the  rate  at  which  the  Lagrange  multipliers

achieve consensus. Therefore, we compared the impact of dif-
ferent relaxation factors on the convergence of the multipliers.
The  results  are  depicted  in Fig.  7,  where  it  can  be  observed
that within the permissible range, larger relaxation factors lead
to a faster achievement of consensus among the multipliers of
agents, resulting in a faster convergence of the algorithm.  

VII.  Conclusion

The  optimal  GNE  seeking  problem  with  affine  coupling
constraints  for  merely  monotone  games  is  studied  in  this
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GλFig. 2.     Multiplier graph : An edge from i to j on this graph implies that

information can be received and transmitted between i and j.
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Fig. 4.     The trajectories of the strategies of company 1, 3 and 5.
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Ker( ), which implies all the multipliers eventually converge to a consen-
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paper.  A distributed algorithm, based on HSDM, is  proposed
to  select  the  optimal  GNE  with  respect  to  the  given  global
evaluation  function.  Further,  a  relaxation  scheme  is  intro-
duced on the basis of the original algorithm for faster conver-
gence.  We  have  proved  its  global  convergence  under  mild
assumptions based on monotone operator theory, and verified
the effectiveness in numerical simulation.

In  the  future,  we  will  study  the  fully-distributed  methods,
where the utilization of strategy information that influences its
own cost function is not permissible for each agent. The most
of existing fully-distributed algorithms assume that their game
mappings  are  restricted-monotone,  which  cannot  ensure  the
global convergence of HSDM-based algorithms.
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