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   Abstract—In  this  paper,  a  model  predictive  control  (MPC)
framework  is  proposed  for  finite-time  stabilization  of  linear  and
nonlinear  discrete-time  systems  subject  to  state  and control  con-
straints.  The  proposed  MPC  framework  guarantees  the  finite-
time convergence property by assigning the control horizon equal
to  the  dimension  of  the  overall  system,  and  only  penalizing  the
terminal  cost  in  the  optimization,  where  the  stage  costs  are  not
penalized  explicitly.  A  terminal  inequality  constraint  is  added  to
guarantee  the  feasibility  and  stability  of  the  closed-loop  system.
Initial  feasibility  can  be  improved  via  augmentation.  The  finite-
time  convergence  of  the  proposed  MPC  is  proved  theoretically,
and is supported by simulation examples.
    Index Terms— Constraints, deadbeat  control, finite-time  stabiliza-
tion, model predictive control (MPC).
  

I.  Introduction

FOR  discrete-time  systems,  finite-time  (or  deadbeat)  con-
trol  implies  that  the  closed-loop  state  is  identically  zero

after  finite  time  steps.  The  essence  of  finite-time/deadbeat
control for discrete-time linear systems was discovered in [1],
where existence of linear finite-time control was proved to be
equivalent to controllability. A well known design strategy for
linear finite-time control is to assign all eigenvalues to the ori-
gin.  Finite-time  convergence  is  beneficial  especially  for  sys-
tems  requiring  high  accuracy  and  short  transient  process [2].
A  typical  situation  is  multi-layer  (or  multi-loop)  system,
where the lower-layer (inner-loop) subsystem is often required
to track the desired input of the upper-layer (outer-loop) sub-
system with sufficient accuracy [3]−[5]. Other potential appli-
cations include deadbeat observer [6], [7], adaptive model pre-
dictive control (MPC) [8], learning-based MPC [9], and adap-
tive identification [10], where the overall system performance
can be improved by finite-time state estimation.

Fundamental  and  systematic  design  approaches  of  linear
finite-time control are fairly mature, and can be found in [11],
[12] and  references  therein.  Apart  from  direct  pole  assign-

ment,  finite-time control  can  also  be  designed in  the  (uncon-
strained)  linear  quadratic  regulator  (LQR)  framework,  where
the finite-time gain is calculated from optimizing the quadratic
function with proper weighting matrices and boundary condi-
tions. In [13], the finite-time control was solved in a recursive
way  from  a  singular  Riccati  equation,  where  only  terminal
cost  was  penalized.  Analytical  solution  to  singular  Riccati
equation was provided in [14], where the unconstrained finite-
time  control  was  considered  as  a  special  case.  Another  strat-
egy for optimal finite-time control is to only penalize the state
cost without penalizing the control costs [15]. In [16], a direct
solution is proposed for singular Riccati equation to calculate
the deadbeat gain for multi-input systems.

Comparatively, for nonlinear systems, finite-time control is
a relatively open problem, and results are fairly limited. Some
recent results are provided in [17], [18] and references therein.
In [17], the deadbeat (or finite-time) controller is designed for
fully-actuated  nonlinear  systems,  where  a  specific  Lyapunov
function  can  be  found  for  the  design  process  and  proof  of
deadbeat performance. In [18], a more general form of nonlin-
ear system is considered, and a more general problem of dead-
beat tracking is handled, where the nonlinear finite-time con-
trol is solved from intersections of sets. It is noted that either
[17] or [18] considers state or control constraints.

In presence of constraints, if saturation is exerted directly on
the  previously  designed  unconstrained  finite-time  control,
instability  or  sharp  oscillation  would  possibly  happen.  Con-
strained  deadbeat  control  problem  was  firstly  investigated
geometrically  in [19],  where  the  plant  eigenvalues  were
required  to  be  inside  the  closed  unit  circle  to  guarantee  the
global admissibility. An alternative strategy for constraint sat-
isfaction  is  to  apply  model  predictive  control  (MPC).  MPC
has been introduced to guarantee bounded finite-time conver-
gence for some specific engineering systems, e.g., permanent-
magnet  synchronous  motor [20],  power  converters [21],  and
vehicle  charging  systems [22],  etc.  Theoretical  results  on
finite-time  MPC  are  introduced  in  textbooks,  e.g., [23] for
canonical forms, [24] for input-output forms.

Currently,  rigorous  and  systematic  results  on  constrained
finite-time  MPC  are  somewhat  limited.  In [25] and [26],
unconstrained finite-time constraints  are  applied  to  guarantee
the finite-time convergence as extended special cases of tradi-
tional  MPC for  the  input-output  linear  model.  MPC via  con-
troller matching [27] can possibly be applied to achieve dead-
beat  performance;  however,  by  setting  weighting  matrix  for
control  to  zero,  exact  matching  is  not  always  guaranteed.  In
[28] and [29], finite-time control is applied as theoretical basis
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to  prove  the  feasibility  of  optimization  in  MPC.  For  (uncon-
strained) linear systems [28],  the finite-time convergence can
be achieved by properly selecting control parameters; for non-
linear  systems [29],  however,  parameter  settings  are  not  pro-
vided to  ensure  finite-time convergence.  An alternative  strat-
egy  to  implement  finite-time  convergence  is  minimum-time
MPC [30], where a secondary optimization is applied to guar-
antee stability.

This paper is motivated by providing a solution (in the MPC
framework)  to  the  finite-time  control  problem,  such  that  the
finite-time convergence can be guaranteed in  the presence of
states and control constraints. Compared with existing results
on finite-time (or deadbeat) control, main contributions of this
paper include:

1)  For  linear  discrete-time  systems,  results  on  finite-time
control are abundant. However, in the presence of constraints,
existing  results  would  fail.  The  proposed  MPC  guarantees
finite-time convergence for systems subject to constraints.

2)  For  nonlinear  discrete-time  systems,  some  recent  exist-
ing  results  on  finite-time  control  are  often  applicable  for
unconstrained scalar systems or fully actuated vector systems.
The  proposed  MPC  is  applicable  to  finite-time  stabilization
for constrained under-actuated vector systems.

3) Feedback linearization can be applied to calculate finite-
time  controller.  However,  the  diffeomorphism  to  achieve
feedback  linearization  for  discrete-time  systems  has  to  be
computed through complicated algorithms, and it would fail in
case of constraints. The proposed finite-time MPC is applica-
ble for constrained vector systems, and calculation for diffeo-
morphism can be avoided.

4)  The  proposed  finite-time  MPC  is  applicable  for  multi-
input systems, and its feasibility can be improved by augmen-
tation.

This paper also provides a solution framework, where exist-
ing techniques can be directly applied for further studies, e.g.,
using  set-theoretical  methods  to  determine  terminal  region
[31] and initial feasible region [32].  

II.  Preliminaries
  

A.  Notations
Z+ C

Rn

n ∈ Z+

In  this  paper,  denotes  the  set  of  all  positive  integers; 
denotes the set of all complex numbers; and  denotes the set
of all n-dimensional real-value vectors, where .

⊗ ⊕The  notation  denotes  Cartesian  product,  and  denotes
the Minkowski addition.

k ∈ Z+∪{0}
k = 0

The time instant is denoted by . Throughout this
paper,  is the initial time.  

B.  Unconstrained Linear Finite-Time MPC
Consider the discrete-time linear system

 

x(k+1) = Ax(k)+Bu(k) (1)
x ∈ Rn u ∈ Rm

(A,B)

where  and  are  the  system  state  and  control
input,  respectively;  the state  matrix A and the input  matrix B
have proper dimensions, and  is controllable.

u ∈ R1For  unconstrained  single-input  systems  ( ),  deadbeat
control  can  be  obtained  by  inverse  optimization [14],  where

only  the  terminal  cost  is  penalized.  In  this  regard,  the  cost
function is constructed by
 

J(k) = xT (N |k)Px(N |k) = xT (n|k)Px(n|k)

N = n
x(N |k) = x(n|k)

where N denotes the control horizon, and it is set equal to the
state  dimension,  namely ;  the  matrix P is  positive  defi-
nite. The terminal state  is predicted by
 

x(i+1|k) = Ax(i|k)+Bu(i|k), i = 0,1, . . . ,n−1 (2)
x(i|k) u(i|k)where  and  denote the i-th step predictive state and

control from time k, respectively. The deadbeat control can be
solved from the following optimization:
 

[U∗(k),X∗(k)] = arg min
U(k),X(k)

xT (n|k)Px(n|k) (3)

x(0|k) = x(k) U(k)subject  to  (2)  and ,  where  denotes  the  pre-
dictive control sequence, namely
 

U(k) = [u(0|k),u(1|k), . . . ,u(n−1|k)]T

and the corresponding state sequence is denoted by
 

X(k) = [xT (1|k), xT (1|k), . . . , xT (n|k)]T .

The optimal control is exerted in a receding horizon scheme
 

u(k) = [1,0, . . . ,0]U∗(k) (4)
where the superscript * denotes the optimal value.

It can be proved by direct calculation that, in unconstrained
finite-time MPC, the control is linear state feedback
 

u(k) = [1,0, . . . ,0]U∗(k) = −Kdbx(k) (5)
Kdb

A−BKdb

where  is  the  feedback  gain  such  that  all  eigenvalues  of
 are zero.  

C.  Proof of Finite-Time Convergence by “Tail-Method”

Kdb

The finite-time convergence of (5) can also be proved in the
framework of MPC by using the “tail method” without explic-
itly calculating .

u ∈ R1 m = 1
(A,B)

N = n
x(k) = 0 k > n

Theorem 1: Consider the linear system (1) with single input
(namely,  and ),  and  suppose  no  constraints  are
exerted,  and  is  controllable.  The  MPC  is  calculated
from optimization (3) and implemented by (4), where the con-
trol horizon is equal to the system dimension . Then, the
closed-loop state satisfies  for all .

x∗(n|k) = 0
Proof: In  the  absence  of  constraints,  the  optimal  terminal

state is . It is always feasible since
 

x∗(n|k) = Anx(0|k)+S U∗(k) (6)
S = [An−1B An−2B · · · B] (A,B)

U∗(k) = −S −1Anx(k)
x∗(n|k) = 0 x(0|k) = x(k)

where  is invertible (due to that 
is  controllable,  and B is  a  vector  for  single-input  systems).
Consequently,  can  be  solved  uniquely
from  (6)  with  and  at  time k.  Conse-
quently,  receding  horizon  implementation  at  time k can  be
obtained by
 

u(k) = −[1,0, . . . ,0]S −1Anx(k) = −Kdbx(k).
k = 0At time , the optimal control sequence is unique, i.e.,

 

U∗(0) = [u∗(0|0), . . . ,u∗(n−1|0)]T

u(0) = u∗(0|0) x(1) = x∗(1|0)where  is  implemented,  thus .  The
corresponding optimal state sequence is also unique 
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X∗(0) = [x∗T (1|0), . . . , x∗T (n−1|0),0]T . (7)
k = 1 x∗(n|1) = 0At  time ,  the  optimal  terminal  state  is .

There exists a feasible control sequence
 

U∗(1) = [u∗(1|0), . . . ,u∗(n−1|0),0]T

and the corresponding state sequence
 

X∗(1) = [x∗T (2|0), . . . , x∗T (n−1|0),0,0]T .

U∗(1)

u(1) = u∗(0|1) = u∗(1|0) x(2) =
x∗(1|1) = x∗(2|0)

The  above  feasible  solution  is  also  unique  due  to
invertibility  of S,  such  that  it  has  to  be  the  optimal  solution.
Hence,  is  implemented,  and 

.

k = n−1
Similar  proof  of  unique  control  and  state  sequence  can  be

repeated till , where the control sequence and the opti-
mal state are unique, and they have to be
 

U∗(n−1) = [u∗(n−1|0),0, . . . ,0]T

X∗(n−1) = [0, . . . ,0]T

u(n−1) = u∗(0|n−1) = u∗(n−1|0)
x(n) = 0 x(k) = 0 k > n
where  is  implemented,  and

. It implies that,  for all . ■  

III.  Problem Statement

Suppose the linear system (1) is subject to constraints
 

x ∈ X, u ∈ U (8)
X U

u(k)
where  and  are convex sets containing the origin in their
interior. The first objective is to design  in the constrained
linear  MPC framework  (subject  to  (8)),  such  that  the  system
state converges to the origin in finite time, or mathematically
 

x(k) = 0, ∀ k > T (9)
T ∈ Z+where  is a finite positive integer.

Moreover, consider the nonlinear discrete-time system
 

x(k+1) = f (x(k),u(k)) (10)
f : Rn×R1→ Rn

f (0,0) = 0
u(k)

where  is  continuously  differentiable  with
respect  to x and u,  and  it  satisfies .  The  second
objective  is  to  design  constrained  nonlinear  control  in
MPC framework (subject to (8)) such that the finite-time con-
vergence (9) is guaranteed.

x(n|k) = 0 x(n|k)T Px(n|k)
Remark  1: In  the  case  of  constraints  (8),  the  terminal  state

 that  ideally  minimizes  is  possibly
infeasible,  and  hence  the  proof  of  unconstrained  finite-time
MPC is inapplicable to the constrained finite-time MPC.  

IV.  Constrained Linear Finite-Time MPC

In  this  section,  finite-time  MPC for  linear  constrained  sys-
tems is investigated. We start from the single input case, and
the  result  is  extended to  multi-input  case.  Integral  action  can
be incorporated to improve the feasibility of optimization.  

A.   Constrained  Finite-Time  MPC  for  Single-Input  Linear  Sys-
tems

u ∈ R1For  single-input  discrete-time  linear  systems,  i.e., ,
key settings of the constrained finite-time MPC include:

N = n
1) The control horizon is set equal to the dimension of sys-

tem state, i.e., ;

J(k) = xT (n|k)Px(n|k)
2) The stage cost is set to zero, and only the terminal cost is

penalized, i.e., ;

3)  The  positive  definite  weighting  matrix P is  solved  from
the Lyapunov equation
 

AT
K PAK −P = −Q−KT RK (11)

AK = A−BK
where Q and R are positive definite matrices; and the control
gain K is  selected  such  that  all  eigenvalues  of 
are inside the unit circle.

The optimization is constructed by
 

[U∗(k),X∗(k)] = arg min
U(k),X(k)

xT (N |k)Px(N |k)

s.t. x(i+1|k) = Ax(i|k)+Bu(i|k), for i = 0, . . . ,N −1

x(i+1|k) ∈ X, u(i|k) ∈ U, for i = 0, . . . ,N −1

x(0|k) = x(k), x(N|k) ∈ X f (12)
N = n X fwhere the control  horizon is  set  to ;  the set  denotes

the terminal constraint containing the origin in its interior, and
satisfying
 

X f ⊂ X, −KX f ⊂U, (A−BK)X f ⊂ X f . (13)
The MPC is implemented in receding horizon scheme (4).

KdbRemark 2: The gain K in (11) does not have to be .
X f

x(k+1) = (A−BK)x(k)
X f = {x ∈ Rn|xT Px ≤ ϵ}

Remark 3: Conditions in (13) indicate that  is an invari-
ant  set  of ,  and  it  can  be  given  by

, where ϵ is calculated by
 

ϵ =min
[

min
−Kz∈∂U

zT Pz, min
−z∈∂X

zT Pz
]

(14)

∂U ∂X U X
X f

x = 0

where  and  denote the boundaries of  and , respec-
tively. Alternatively, a conservatively small set  in simpler
form  (e.g.,  a  small  neighborhood  of )  can  be  chosen  to
satisfy (13).

u ∈ R1Theorem  2: Consider  system  (1)  with  single  input 
subject  to  constraints  (8).  The  MPC  is  calculated  by  con-
strained optimization (12), and implemented by (4), where

N = ni) the control horizon is set to ;
ii) the stage cost is set to zero;
iii) the terminal weighting matrix P is calculated from (11).
If constrained optimization (12) is feasible initially, then,
1) constrained optimization (12) is feasible recursively;
2) the closed-loop system is asymptotically stable;
3) T > 0

x(k) = 0 k > T
 there exists a finite time , such that the state of the

closed-loop system satisfies  for all .

U∗(k)
u(k) = u∗(0|k)

Proof: 1)  Suppose,  at  time k,  the  optimization  is  feasible,
i.e.,  exists  such  that  all  constraints  are  satisfied,  and

 is implemented.
k+1It then follows that, at time , the state satisfies:

 

x(k+1) = x(0|k+1) = x∗(1|k) = Ax(0|k)+Bu∗(0|k)
and at least one feasible control sequence exists:
 

u(i|k+1) = u∗(i+1|k), i = 0, . . . ,n−2

u(n−1|k+1) = −Kx∗(n|k)
u∗(i|k), i = 0, . . . ,n−1

x∗(n|k)
where  denote  the  optimal  control
sequence  at  time k,  and  denotes  the  corresponding
optimal terminal state at time k.

u(i|k+1), i = 0, . . . ,n−2
u(n−1|k+1) = −Kx∗(n|k)

x(i|k+1), i = 1, . . . ,
n−1 x(n|k+1) = (A−BK)x(n−

It  is  clear  that  satisfy  the  control
constraint,  and  satisfies  the  control
constraint  due to (13).  It  is  also clear  that 

 satisfy the state constraint, and 
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1|k+1) = (A−BK)x∗(n|k) satisfies  the  state  constraint  due  to
(13).

k+1Consequently,  at  time ,  the constrained optimization is
feasible, provided that it  is feasible at time k.  This completes
the proof of recursive feasibility.

J∗(k) = x∗T (n|k)Px∗(n|k)
x∗(n|k)

2) Take  as the Lyapunov candidate
for . It follows that:
 

J∗(k+1)− J∗(k) ≤ J(k+1)− J∗(k)

= xT (n|k+1)Px(n|k+1)− x∗T (n|k)Px∗(n|k)

= x∗T (n|k)AT
K PAK x∗(n|k)− x∗T (n|k)Px∗(n|k)

= x∗T (n|k)
(
AT

K PAK −P
)

x∗(n|k)

= −∥x∗(n|k)∥2Q−∥Kx∗(n|k)∥2R (15)

∥x∗(n|k)∥2Q = x∗T (n|k)Qx∗(n|k) ∥Kx∗(n|k)∥2R = x∗T (n|k)×
KT RKx∗(n|k) x∗(n|k)→ 0 k→∞
where , 

. It indicates that  as .
x∗(n|k)The terminal state  at each time k satisfies

 

x∗(n|k) = Anx(k)+S U∗(k) (16)
S = [An−1B,An−2B, . . . ,B]

x∗(n|k)
U∗(k) = S −1 (x∗(n|k)−Anx(k))

where  is  invertible.  It  follows  from
(16) that, for each , the corresponding constrained con-
trol  sequence  is ,  and  the  con-
trol is implemented by
 

u∗(k) = [1,0, . . . ,0]S −1 (x∗(n|k)−Anx(k)
)

(17)
 

= −Kdbx(k)+S T
n x∗(n|k) (18)

Kdb = [1,0, . . . ,0]S −1An

S T
n = [1,0, . . . ,0]S −1 S −1

where  is  the  unconstrained  deadbeat
gain, and  is the first row of .

Substituting the control (18) into the original system yields
 

x(k+1) = (A−BKdb)x(k)+BS T
n x∗(n|k) (19)

BS T
n x∗(n|k)

which is  the  closed-loop finite-time control  system perturbed
by the vanishing term . Its solution is
 

x(k) = Ak
dbx(0)+ [Ak−1

db B, . . . ,B]


S T

n x∗(n|0)
...

S T
n x∗(n|k)


Adb = A−BKdb k ≥ n Ak

db = 0where . For , it holds that , and
 

x(k) = [An−1
db B, . . . ,B]


S T

n x∗(n|k−n+1)
...

S T
n x∗(n|k)

 . (20)

x∗(n|k)→ 0 k→∞ x(k)→ 0
k→∞

Since  as ,  it  follows  that  as
, i.e., the closed-loop system is asymptotically stable.

x(k)
Xdb

3) Based on 1) and 2),  converges to the origin asymp-
totically, and enters the non-empty set  satisfying
 

Xdb ∈ X, −KdbXdb ∈ U, (A−BKdb)Xdb ∈ Xdb

Xdb

x(k)

after a finite time. Inside the set , the state and control con-
straints  are  inactive,  and  the  optimization  is  actually  uncon-
strained. Consequently, the behavior of  follows from that
of  the  unconstrained finite-time MPC,  and it  reaches  the  ori-
gin in finite time and maintains zero thereafter. ■

The implementation procedure  of  the  proposed constrained

finite-time  MPC for  single-input  discrete-time  linear  systems
can be summarized by Algorithm 1.

Algorithm  1 Constrained  finite-time  MPC  for  single-input  dis-
crete-time linear systems

Offline:

N = n

1: Set  the  control  horizon  equal  to  the  system  dimension,  i.e.,
; set Q and R to be positive definite matrices.

A−BK2: Find  a  feedback  gain K such  that  eigenvalues  of  are
inside the unit circle.

3: Solve the terminal weighting matrix P from Lyapunov equation
(11).

4: Calculate the terminal constraint via (14).
Online:

k = 05: for  to the end of task do
x(k)6: 　Measure the system state .

U∗(k)

7: 　Solve  the  optimization  (12)  to  obtain  the  optimal  control
sequence .

u(k) = [1,0, . . . ,0]U∗(k)8: 　Apply  to system (1).
9: end for

  

B.  Constrained Finite-Time MPC for Multi-Input Linear Systems
beThe proposed constrained finite-time MPC can  extended

to address multi-input systems
 

x(k+1) = Ax(k)+Bu(k) = Ax(k)+
m∑

i=1

biui(k) (21)

biwhere m denotes the number of inputs,  and  is  the i-th col-
umn of B. States and inputs are subject to constraints (8).

ui ∈ Ui

Remark 4: For  multi-input  systems,  control  constraints  can
be  coupled,  such  that  it  is  inappropriate  to  express  control
constraints in element-wise form, i.e., .

(A,B)Provided  that  is  controllable,  system  (21)  can  be
transformed to Wonham controllable canonical form [33]:
 

z(k+1) = Fz(k)+Gu(k) (22)
z = Mx

F = MAM−1 G = MB
where  with M being  the  transformation  matrix;  and

 and  are in the form of
 

F =



F11 F12 · · · F1q

0 F22 · · · F2q

...
. . .

...

0 0 · · · Fqq


, G =


g1 ∗

0
. . . ∗

0 0 gq ∗


i = 1, . . . ,q Fii ∈ Rni×ni gi ∈ Rni×1 ∑q

i=1 ni = n
(Fii,gi)
where, for , , , ,  and

 are controllable.
z = [zT

1 , . . . ,z
T
q ]T zi ∈ Rni i = 1, . . . ,q

u = [u1, . . . ,uq,uq+1, . . . ,um]T

ui (i =
1, . . . ,q)
u j ( j = q+1, . . . ,m)

Denote ,  where  for .
Denote .  The  controllable  multi-
input  system  can  be  regarded  as q subsystems,  with 

 being  the  single  input  for  the i-th  subsystem,  and
 can be set to zero.

Ni = ni (i = 1, . . . ,q)
Np =maxi=1,...,q[ni]

Set  the  control  horizons  for  decoupled  subsystems  to  be
, and the predictive horizon for the overall

system  to  be .  The  cost  function  can  be
designed by 
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Jm(k) =
q∑

i=1

zi(Ni|k)T Pizi(Ni|k) =
q∑

i=1

zi(ni|k)T Pizi(ni|k)

Piwhere  is the solution to Lyapunov equation
 

(Fii−giKi)T Pi(Fii−giKi)−Pi = −Qi−KT
i RiKi (23)

Qi Ri Ki
Fii−giKi

where  and  are positive definite; and  is selected such
that all eigenvalues of  are inside the unit circle.

Ui(k) = [ui(1|k), . . . ,ui(ni|k)]T i = 1, . . . ,q
u j = 0 j = q+1, . . . ,m

Denote  for .  Set
 for .

The optimization is designed by
 

[U∗1(k), . . . ,U∗q(k)] = arg min
U1(k),...,Uq(k)

Jm(k)

s.t. z(i+1|k) = Fz(i|k)+Gu(i|k), for i = 0, . . . ,Np−1

z(i+1|k) ∈ MX, u(i|k) ∈ U, for i = 0, . . . ,Np−1

z(0|k) = Mx(k)

zi(Ni|k) ∈ Z f ,i, for i = 1, . . . ,q (24)
Z f ,iwhere  denotes the terminal constraint satisfying

 q⊗
i=1

Z f ,i ⊂ MX,
q⊗

i=1

−KiZ f ,i ⊂U (25)

 

(Fii−giKi)Z f ,i ∈ Z f ,i. (26)
The  finite-time  MPC  for  multi-input  discrete-time  linear

systems can be implemented in receding horizon scheme
 

ui(k) = [1,0, . . . ,0]U∗i (k), for i = 1, . . . ,q (27)
 

u j(k) = 0, for j = q+1, . . . ,m. (28)

Z f ,i

Remark  5: Set-theoretic  methods  (e.g., [31], [34])  can  be
applied to calculate the terminal sets satisfying (25) and (26).
Practically,  it  is  unnecessary  to  always  explicitly  calculate
maximum  terminal  sets;  instead,  for  controllable  systems,
conservatively small sets  can be chosen such that they are
subsets of the largest terminal sets. By using conservative ter-
minal  sets,  recursive  feasibility  and  finite-time  stability  are
guaranteed with some sacrifice of initial feasibility.

T > 0
x(k) = 0 k > T

Theorem 3: For multi-input discrete-time linear system (21)
subject  to  state  and  control  constraints  (8),  if  the  deadbeat
MPC is designed by (24)–(28), then the optimization is recur-
sively  feasible,  and  there  exists  a  finite  such  that

 for all .
Proof: The recursive feasibility can be proved by using “tail

method”, since the overall model is applied to prediction, and
the terminal sets are invariant.

It follows from (28) that the q-th subsystem in transformed
decoupled system (22) becomes:
 

zq(k+1) = Fqqzq(k)+gquq(k)

(Fqq,gq)
zq(k) = 0

k > Tq Tq > 0

where  is  controllable.  Then  its  finite-time  conver-
gence follows from Theorem 2, and it holds that  for
all , where  is finite.

Tq (q−1)After the finite  steps, the -th subsystem becomes:
 

zq−1(k+1) = Fq−1,q−1zq−1(k)+gq−1uq−1(k)

(Fq−1,q−1,gq−1)
zq−1(k) = 0 k > Tq+Tq−1 Tq−1 > 0
where  is  controllable.  It  then  holds  that

 for all , where  is finite.

zi (i = 1, . . . ,q)
z(k) = 0

k > T > 0 x(k) = M−1z(k) = 0
k > T

The above analysis can be processed recursively, and it can
be proved that all  converge to the origin within
finite  times  steps,  indicating  that  for  some  finite

.  Consequently,  for  some  finite
. ■

The implementation procedure  of  the  proposed constrained
finite-time  MPC  for  multi-input  discrete-time  linear  systems
can be summarized by Algorithm 2.

Algorithm 2 Constrained finite-time MPC for multi-input discrete-
time linear systems

Offline:
z = Mx1: Find  to transform (21) to decoupled form (22).

Ni = ni (i = 1, . . . ,q) ni

Qi Ri

2: Set the control horizons to be ,  where  is the
dimension of  each subsystem after  decoupling;  set  and  to
be positive definite matrices.

Ki Fii −giKi3: Find  such that  all  eigenvalues of  are inside the unit
circle.

Pi4: Solve  the  terminal  weighting  matrices  from Lyapunov equa-
tion (23).

5: Calculate the terminal constraint via (25) and (26).
Online:

k = 06: for  to the end of task do
z(k) = Mx(k)7: 　Measure the system state .

U∗i (k)

8: 　Solve  the  optimization  (24)  to  obtain  the  optimal  control
sequence .

ui(k) = [1,0, . . . ,0]U∗i (k) i = 1, . . . ,q9: 　Set  for .
u(k) = [u1(k), . . . ,uq(k),0, . . . ,0]T10: 　Apply  to system (21).

11: end for
  

C.  Improving Initial Feasibility by Augmentation

k = 0
For  the  proposed  constrained  linear  finite-time  MPC,  at

, it holds that
 

x∗(n|0) = Anx(0|0)+S U∗(0) = Anx(0)+S U∗(0) (29)
x∗(n|0) ∈ X f x(0) ∈ X U∗(0) ∈ Ū =U⊗·· ·⊗Uwhere , , and . It

follows from (29) that:
 

Anx(0) = −S U∗(0)+ x∗(n|0)
and the initial feasible region can be calculated explicitly by
 

X∩
{
x ∈ Rn|Anx ∈ −S Ū ⊕X f

}
= X0. (30)

N = n
A limitation of the proposed finite-time MPC is that,  if  the

system dimension  is  small,  then  the  control  horizon  is
short,  such that the initial feasibility would be unsatisfactory.
In this section, augmentation is applied to improve the initial
feasibility.  The core idea is to increase the system dimension
by  using “integral-like” action,  such  that  the  control  horizon
increases, and the initial feasibility can be improved.

The original system can be augmented by
 

σ1(k+1) = α1σ1(k)+C1x(k)

x(k+1) = Ax(k)+Bu(k) (31)
α1 −1 ≤ α1 ≤ 1where  is  a  constant  to be chosen (preferably ).

The augmented system (31) can be rewritten into
 

ξ(k+1) =Aξ(k)+Bu(k) (32)
ξ = [σT

1 , x
T ]Twhere , and
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A =
[
α1Ip1×p1 C1

0 A

]
, B =

[0
B

]
.

C1 ∈ Rp1×n 0 < p1 ≤ mThe  matrix ,  and  are  selected  such
that
 

Rank
[

C1 0
α1In−A B

]
= n+ p1 (33)

to guarantee the controllability of the augmented system (31).
Proof of controllability of (31) is given in Appendix.

N = n+ p1,

The proposed constrained finite-time MPC can be applied to
the  augmented  system  (31)  with  a  longer  control  horizon

 such that the initial feasibility is improved.
The  implementation  procedure  of  finite-time  MPC  with

integral action can be summarized by Algorithm 3.

Algorithm 3 Constrained finite-time MPC with integral action

C1 α11: Choose  and  such that (33) is satisfied.
A B2: Calculated  and  in (31) and (32).

A
B

3: Apply Algorithm 1 or 2 to (32) with A and B replaced by  and
, respectively.

C1
(A,C1) p1 ≤ m

Remark  6: A  typical  example  of  satisfying  (33)  is  one
such that  is observable, and .

Remark 7: If initial feasibility of (32) is still unsatisfactory,
the system can be augmented further by
 

σ2(k+1) = α2σ2(k)+C2ξ(k)

ξ(k+1) =Aξ(k)+Bu(k) (34)

C2 ∈ Rp2×(p1+n) 0 < p2 ≤ mwhere  and , such that
 

Rank
[

C2 0
α2I−A B

]
= n+ p1+ p2.

N = n+ p1+ p2

Apply  the  proposed  finite-time  MPC  to  (34)  with  greater
control  horizon ,  such  that  the  states  have
deadbeat  performance,  and  constraints  can  be  satisfied.  This
augmentation  by  integration  can  be  applied  recursively,  such
that  the  control  horizon  can  be  set  sufficiently  large,  and  the
initial feasibility can be improved further.  

V.  Nonlinear Finite-Time MPC

In this section, we consider the single-input nonlinear plant
(10)  subject  to  convex  state  and  control  constraints  (8).  The
result is straightforward to be extended for multi-input case by
using the technique similar to Section IV-B.  

A.  Finite-Time MPC via Feedback Linearization
A  sufficient  condition  for  deadbeat  controllability  of  dis-

crete  nonlinear  systems  is  that  the  plant  is  feedback  lineariz-
able.  Sufficient  conditions  for  feedback  linearization  can  be
found in [35]−[37].

z = T (x)
u = γ(z,v) = γ(T (x),v) x ∈ D T (0) = 0
γ(0,0) = 0

If  the  nonlinear  plant  is  feedback  linearizable,  then  there
exists  a  (local)  diffeomorphism  and a feedback con-
trol  for  all ,  such  that 
and , and the nonlinear system can be linearized to
 

z(k+1) = Az(k)+Bv(k) (35)
(A,B) A ∈ Rn×n B ∈ Rn×1for  some  controllable ,  and , .  For  the

linearized  system  (35),  linear  finite-time  MPC  in  Section  IV

can be applied to achieve deadbeat performance.
N = nSpecifically, set . The optimization can be formulated

by
 

[V∗(k),Z∗(k)] = arg min
V(k),Z(k)

zT (N |k)Pz(N |k) (36)

 

s.t. z(i+1|k) = Az(i|k)+Bv(i|k), for i = 0,1, . . . ,N −1 (37)
 

z(i|k) ∈ T (X∩D), for i = 1, . . . ,N (38)
 

γ(z(i|k),v(i|k)) ∈ U, for i = 0,1, . . . ,N −1 (39)
 

z(0|k) = T (x(k)) (40)
 

z(N |k) ∈ Z f (41)
Z f Z f ⊂ T (X∩D)where  is an invariant set such that , and

 

(A−BK)z ∈ Z f , γ(z,−Kz) ∈ U, ∀ z ∈ Z f

(A−BK)with  all  eigenvalues  of  inside  the  unit  circle;  the
matrix P is  the  solution  to  the  discrete-time  Lyapunov  equa-
tion  (11).  It  then  follows  that  the  finite-time  control  can  be
implemented by
 

u(k) = γ(T (x(k)),v∗(0|k))
v∗(0|k) = [1,0, . . . ,0]V∗(k)where .

T > 0 z(k) = 0 k > T
x(k) = T−1(z(k)) = 0 k > T

According  to  Theorem  2,  provided  that  the  optimization
(36)–(41)  is  feasible  initially,  it  is  feasible  recursively,  and
there exists finite  such that  for all . It indi-
cates that  for all .

z = T (x)

The  above  optimization  and  receding  horizon  control  are
only  for  theoretical  purpose.  They  are  capable  of  guarantee-
ing the existence of nonlinear finite-time control. However, it
is unsuitable for finite-time MPC design, since the diffeomor-
phism  is often difficult,  or sometimes prohibitive, to
find.  

B.  Finite-Time MPC for Unconstrained Nonlinear Systems
For  unconstrained nonlinear  system (10),  suppose  that  it  is

globally feedback linearizable.
In  unconstrained  nonlinear  finite-time  MPC,  the  optimiza-

tion can be formulated by
 

[U∗(k),X∗(k)] = arg min
U(k),X(k)

xT (n|k)Px(n|k) (42)

 

s.t. x(i+1|k) = f (x(i|k),u(i|k)), for i = 0,1, . . . ,n−1 (43)
 

x(0|k) = x(k). (44)
where  the  control  horizon  is  set  equal  to  the  system  dimen-
sion,  and P is  a  positive  definite  matrix.  The  MPC  can  be
implemented by the receding horizon way (4).

x(k) = 0 k > T
T > 0

Theorem 4: Consider  unconstrained  nonlinear  system (10),
and suppose it  is  globally feedback linearizable.  The MPC is
calculated  from optimization  (42),  where  the  control  horizon
is set equal to the system dimension. Then the receding hori-
zon  implementation  (4)  guarantees  for  all ,
where  is a finite constant.

[U∗(k),X∗(k)] x(n|k) = 0

Proof: Global  feedback  linearizability  guarantees  that  the
unconstrained  system is  capable  of  reaching  the  origin  in  no
more than n steps. It indicates that (42) has the ideal solution

 satisfying .
[V∗(k),Z∗(k)]The  ideal  solution  is  unique,  since  the  ideal 
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z = T (x)for  the  linearized  system  (35)  is  unique,  and  is  a
global diffeomorphism.

k+1
x(n−1|k+1) = x(n|k) = 0 x(n|k+1) = 0

Consequently,  at  time ,  the  optimal  solution is  unique,
and  it  satisfies  and .
The rest of the proof follows from that of Theorem 2. ■

z = T (x)
u = γ(x,v)

Remark  8: If  the  diffeomorphism  and  control
 can  be  found  explicitly,  then  the  unconstrained

finite-time  MPC  can  be  written  in  explicit  feedback  form
given by
 

u∗(k) = γ
(
T (x(k)), [1,0, . . . ,0]S −1AnT (x(k))

)
S = [B,AB, . . . ,An−1B]where .  Otherwise we have to calculate

the optimization (42) numerically.  

C.  Finite-Time MPC for Constrained Nonlinear Systems

x ∈ D
Suppose  that  the  nonlinear  plant  (10)  is  feedback  lineariz-

able for all .
In the presence of constraints (8), the optimization for non-

linear finite-time MPC can be formulated by
 

[U∗(k),X∗(k)] = arg min
U(k),X(k)

xT (N |k)Px(N |k) (45)

 

s.t. x(i+1|k) = f (x(i|k),u(i|k)), for i = 0,1, . . . ,N −1 (46)
 

x(0|k) = x(k) (47)
 

x(i|k) ∈ X∩D, for i = 1, . . . ,N (48)
 

u(i|k) ∈ U, for i = 0,1, . . . ,N −1 (49)
 

x(N |k) ∈ T−1(Z f ) (50)

N = n T−1(Z f )
T−1(Z f ) ⊂ X∩D x ∈ T−1(Z f )

where  the  control  horizon  is  set  equal  to  the  system  dimen-
sion,  i.e., ;  and  is  an  invariant  set  such  that

, and for all  it holds that
 

f (x,γ(T (x),−KT (x))) ∈ T−1(Z f ), γ(T (x),−KT (x)) ∈ U.
The  constrained  finite-time  MPC is  implemented  in  reced-

ing horizon way (4).

x ∈ D
Theorem  5: Suppose  that  the  nonlinear  plant  (10)  is  feed-

back linearizable for all , and it is subject to constraints
(8).  The constrained optimization is formulated by (45)–(50),
and  the  MPC  is  implemented  by  (4).  If  the  optimization
(45)–(50) is feasible initially, then

1) the optimization (45)–(50) is feasible recursively;
2) T > 0

x(k) = 0 k > T
 there exists a finite time , such that the state of the

closed-loop system satisfies  for all .
Proof: 1)  Recursive  feasibility  is  guaranteed  by  the  termi-

nal constraint (50).

k+1
Specifically, suppose that optimization (45)–(50) is feasible

at  time k.  It  follows that,  at  time ,  there  exists  a  feasible
control sequence:
 

u(i|k+1) = u∗(i+1|k), for i = 0,1, . . . ,n−2

u(n−1|k+1) = γ(T (x∗(n|k)),−KT (x∗(n|k)))
such that the corresponding state sequence can be obtained by
 

x(i|k+1) = x∗(i+1|k), for i = 0, . . . ,n−1

x(n|k+1) = f (x(n−1|k+1),γ(T (x(n−1|k+1))

−KT (x(n−1|k+1)))).

x(n−1|k+1) ∈ X fwhere .
u(i−1|k+1) ∈ U x(i|k+1) ∈ X∩D

i = 1, . . . ,n−1
u(n−1|k) ∈ U x(n|k) ∈ X f

It  is  clear  that  and  for
. It is guaranteed by the terminal constraint (50)

that  and .  This  completes  the  proof
of recursive feasibility.

z = T (x) D T (0) = 0
xT Px

T T (x)PT (x) = zT Pz

z(k) = 0 k > T x(k) = T−1(z(k)) = 0
k > T

2) Since  is a diffeomorphism in  with , it
indicates  that  optimizing  is  equivalent  to  optimizing

.  Consequently,  optimization  (45)–(50)  is
equivalent to optimization (36)–(41), and it follows from The-
orem 2 that  for all . Finally, 
for all . ■

The implementation procedure  of  the  proposed constrained
finite-time  MPC  for  discrete-time  nonlinear  systems  can  be
summarized by Algorithm 4.

Algorithm  4 Constrained  finite-time  MPC  for  discrete-time  non-
linear systems

Offline:
D1: Determine the region  where the nonlinear system (10) is feed-

back linearizable.
N = n2: Set the control horizon to be , where n is the system dimen-

sion; set P to be a positive definite matrix.
3: Calculate  a  control  invariant  set  for  (10)  via  some  nonlinear

design techniques, and use this control invariant set as the termi-
nal constraint.

Online:
k = 04: for  to the end of task do

x(k)5: 　Measure the system state .

U∗i (k)

6: 　Solve  the  optimization  (45)  to  obtain  the  optimal  control
sequence .

ui(k) = [1,0, . . . ,0]U∗i (k)7: 　Set  to system (10).
8: end for

z = T (x)

Remark 9: The terminal constraint (50) can be replaced by a
smaller  control  invariant  set,  and  explicit  calculation  of

 can be avoided.  

VI.  Simulation

Simulation examples are provided to illustrate the proposed
theoretical results on constrained linear and nonlinear systems.  

A.   Constrained  Finite-Time  MPC  for  Single-Input  Linear  Sys-
tems

The plant to be controlled is given by
 

A =


1.1 2 0
0 0.95 1
0 0 1.2

 , B =


0

0.079
0.1


n = 3where its dimension is . Suppose that the states and con-

trol input are subject to hard constraints given by
 

−2 ≤ x2+ x3 ≤ 2, −6 ≤ u ≤ 6.

N = 3
Q = I3×3

R = 0.1 K = [2.2150 15.0471 14.6128]

Algorithm 1 is  applied  to  guarantee  the  finite-time conver-
gence.  The  control  horizon  is  set  to  which  equals  the
system  dimension.  Set  the  weighting  matrices  and

.  A  linear  feedback  is
selected  to  solve  the  weighting  matrix P from the  Lyapunov
equation (11) 
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P =


6.1590 19.4637 5.8132

19.4637 96.8173 40.0964
5.8132 40.0964 29.9407

 .
X f = {xT Px ≤ 4.6151}The  terminal  constraint  is ,  which  is

calculated from (14). The initial feasibility region can be cal-
culated by (30).

x(0) = [1.9,−1.1,0.8]TSuppose  the  initial  state  is .  By  test-
ing  (30),  it  can  be  verified  that  the  constrained  optimization
(12)  is  feasible  initially.  Closed-loop  performances  are  illus-
trated by Fig. 1, where states and control input are capable of
converging to zero in finite time. The states and control input
are bounded within their  constraints.  The finite transient pro-
cess takes 6 steps.

As expected, the finite-time convergence and constraint sat-
isfaction  are  in  well  accordance  with  Theorem  2.  The  tran-
sient process (6 steps) is longer than that of the unconstrained
case (less than 3 steps). The transient performance varies with
different  choices  of Q, R and K.  However,  currently  no
explicit  clues  are  found  on  how  to  select Q, R and K to
improve the transient performance.  

B.  Improving Initial Feasibility by Augmentation

α = −0.5
C1 = [0.5,0,0]

N = 4

Augmentation  in  Section  IV-C  can  be  applied  to  improve
the initial feasibility of the proposed finite-time MPC. For the
example in Section VI-A, we apply Algorithm 3 with 
and .  The  control  horizon  is  equal  to  the  aug-
mented system dimension, i.e., .

The  initial  feasible  regions  of  the  finite-time  MPC and  the
augmented finite-time MPC are illustrated by Fig. 2, where it
can  be  seen  that  the  initial  feasible  region  is  significantly
enlarged via augmentation.

For comparative study, the initial feasible region of an exist-
ing finite-time MPC, namely lexicographic MPC [30], is dis-
played in Fig. 2, where the key control parameters are set the
same  as  those  in  the  proposed  finite-time  MPC.  In  lexico-
graphic  MPC,  the  terminal  equality  constraint  is  applied  to
guarantee  closed-loop  stability.  Comparatively,  in  the  pro-
posed  finite-time  MPC,  inequality  terminal  constraints  are
applied.  It  can  be  seen  that  the  proposed  finite-time  MPC
demonstrate  superior  performance in  initial  feasibility.  If  ini-
tial states are feasible, and the key control parameters are with
same  values,  then  transient  and  steady-state  performances  of
the  proposed  finite-time  MPC  are  very  similar  with  those  of
the lexicographic MPC.  

C.  Constrained Finite-Time MPC for Multi-Input Linear Systems
The multi-input linear system to be controlled is given by

 

A =



1.47 1.44 −0.06 0.68 0.08
−0.17 1.44 1.06 −0.43 0.50
−0.42 1.04 1.33 −0.91 0.51
−0.99 0.12 −0.02 −0.77 0.39

1.18 −3.38 −0.41 2.62 −0.41


B = [bT

1 , bT
2 ]

b1 =
[
−0.0075 0.085 0.116 0.023 −0.048

]T
b2 =

[
0.29 −0.27 −0.61 −0.51 1.91

]T
subject to decoupled and coupled control constraints
 

−6 ≤ u1 ≤ 6, −2 ≤ u2 ≤ 2, −4 ≤ 0.5u1+u2 ≤ 4. (51)
The system can be decoupled to

 

z(k+1) =
[
F11 F12

0 F22

]
z(k)+

[
g1 0
0 g2

]
u(k)

F11 =


0 1 0
0 0 1

1.25 −3.5 3.25

 , F12 =


1 0
1 0
1 0

 , g1 =


0
0
1


F22 =

[
0 1

0.99 −0.2

]
, g2 =

[0
1

]
.

Algorithm  2  is  applied  in  this  example,  where  the  weight-
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−2 ≤ x2 + x3 ≤ 2 −6 ≤ u ≤ 6
Fig. 1.     States and control of the single-input system with constrained finite-
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Qi = I Ri = 0.1 i = 1,2
K1 = [2.2150,15.0471,14.6128] K2 = [0.9750,

−0.0120] P1 P2
−0.1 ≤ zi ≤

0.1 i = 1, . . . ,5

ing matrices are set by  and  with . Feed-
back  gains  and 

 are  applied  to  calculate  and  from  (23).  The
terminal constraints are assigned conservatively by 

 with .  The  result  is  displayed  in Fig.  3,  where
the closed-loop multi-input system is stabilized with deadbeat
performance,  and the  transient  process  is  completed within  6
steps. It is straightforward to judge that constraints in (51) are
all satisfied.
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Fig. 3.     States  and  control  of  the  multi-input  closed-loop  system with  con-
strained finite-time MPC: the transient  process ends within 6 steps;  the con-
trol  satisfies  the  constraint ;  the  control  satisfies  the  con-
straint ; the coupled constraint  is satisfied.
 

The  finite-time  convergence  and  constraint  satisfaction  are
with  expectation.  Some  decoupling  works  have  to  be  pro-
cessed before calculating the finite-time MPC. The initial fea-
sibility  can  be  improved  via  augmentation  proposed  in  Sec-
tion IV-C.  

D.  Finite-Time MPC for Nonlinear Systems
The nonlinear plant to be controlled is given by

 

x1(k+1) = −1.1x1(k)+2sin x2(k)+w1(k)

x2(k+1) = 0.12x1(k)x2(k)+0.79x3(k)

x3(k+1) = x3(k)+u+w2(k)
w1(k) w2(k)where  and  are  un-matched  and  matched  distur-

bances. The nonlinear plant is subject to constraints
 

−2 ≤ x2+ x3 ≤ 2, −2 ≤ u ≤ 2.

w1 = 0
w2 = 0

D = {x ∈ R3| −π/2 ≤ x2 ≤ π/2}

N = 3

To test the finite-time convergence, we have to assume that
the  nonlinear  system  is  disturbance-free,  i.e.,  and

.  By  checking  conditions  for  feedback  linearization  in
[37], it can be shown that the nonlinear plant is feedback lin-
earizable  in .  The  nonlinear
finite-time MPC is processed by Algorithm 4, where the con-
trol  horizon is  set  to  the  system dimension .  The  simu-

lated results are displayed in Fig. 4, where it can be seen that
states reach the origin with finite steps, and stay at the origin
for  all  future  time  instants.  The  states  and  nonlinear  control
input are bounded within their constraints.
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Fig. 4.     States  and  control  of  the  closed-loop  nonlinear  system  with  con-
strained finite-time MPC in the case of  no disturbance:  the transient  process
ends  within  steps,  and  states  satisfy  constraints  and

; the control u satisfies the constraint .
 

In  implementation  of  the  proposed  nonlinear  finite-time
MPC,  we  do  not  have  to  explicitly  calculate  the  diffeomor-
phism for feedback linearization. The existence of diffeomor-
phism is only used in theoretically proving feasibility of opti-
mization. If the finite-time solution exists, it can be calculated
numerically by the proposed finite-time nonlinear MPC.

|w1(k)| ≤
0.2 |w2(k)| ≤ 0.1

To  test  the  robustness  of  the  proposed  finite-time  MPC
against  non-vanishing  disturbances,  we  assume  that 

 and  are  random  numbers.  The  results  are
shown  in Fig.  5,  where  it  can  be  seen  that  the  closed-loop
states are ultimately bounded due to the inherent robustness of
MPC. Finite-time convergence property is no longer ensured,
since the closed-loop poles  cannot  be assigned exactly to  the
origin in the presence of disturbances.  

VII.  Conclusion

In this paper, it is shown that finite-time control for discrete-
time  systems  can  be  designed  in  MPC  framework,  such  that
the  finite-time  convergence  can  be  achieved  in  the  case  of
state and control constraints. The key settings in the proposed
finite-time MPC include:  set  the  control  horizon equal  to  the
system dimension, and only penalize the terminal cost. Recur-
sive  feasibility,  closed-loop  stability  and  finite-time  conver-
gence  are  proved  theoretically.  Initial  feasibility  can  be
improved  by  integral  control.  The  proposed  finite-time  MPC
is applicable in not only single-input linear systems, but multi-
input and nonlinear systems.

Limitations  of  the  proposed  finite-time  MPC  include:  1)
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although  it  is  proved  that  the  transient  process  can  be  com-
pleted before a finite time, however, the finite time itself can-
not be accurately calculated in prior; 2) in the presence of dis-
turbances,  the  finite-time  (deadbeat)  performance  is  not
robust, and only ultimate boundedness is guaranteed.

Future  works  include:  1)  explicit  calculation  of  the  finite
convergence  time,  2)  robust  finite-time  MPC with  respect  to
noise  and  disturbances,  and  3)  applying  the  proposed  finite-
time  MPC  to  engineering  systems,  e.g.,  UAV  (unmanned
aerial vehicle) [38] and UGV (unmanned ground vehicle) [39].  

(A,B)
Appendix

Proof of Controllability of 

s ∈ C

The  controllability  of  the  augmented  system  (31)  can  be
proved  by  Popov-Belevitch-Hautus  (PBH)  criterion.  For  all

, test
 

Rank[sIn+p1 −A,B] = Rank
[
(s−α1)Ip1 −C1 0

0 sIn−A B

]
.

s , α1 Rank[(s−α1)Ip1 ] = p1 Rank[sIn−A,B] =
n Rank[sIn+p1 −A,B] = n+ p1

If , then , and 
, such that .

s = α1If , then
 

Rank
[
(s−α1)Ip1 −C1 0

0 sIn−A B

]
= Rank

[
0 −C1 0
0 α1In−A B

]
= n+ p1

s ∈ C Rank[sIn+p1 −A,B] = n+ p1 (A,B)
which is  given by the  rank condition (33).  Consequently,  for
all , it holds that , and 
is controllable.
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