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Secure Tracking Control via Fixed-Time Convergent
Reinforcement Learning for a UAV CPS
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 Dear Editor,
This letter is concerned with the secure tracking control problem in

the  unmanned  aerial  vehicle  (UAV)  system  by  fixed-time  conver-
gent  reinforcement  learning  (RL).  By  virtue  of  the  zero-sum  game,
the  false  data  injection  (FDI)  attacker  and  secure  controller  are
viewed as game players. Then, the attack-defense process is recast as
a min-max problem. For solving the problem and acquiring the opti-
mal  secure  control  policy,  a  single-critic  RL  algorithm  with  fixed-
time  convergence  is  presented.  Meanwhile,  the  associated  conver-
gence  and  stability  proofs  are  given.  A  simulation  is  provided  to
show the effectiveness of the raised method.

The  UAV  system  integrates  data  sensing,  information  interaction
and  decision  making  by  the  network,  which  can  be  considered  as  a
cyber physical system (CPS) [1]. To complete the specified mission,
the UAV is required to receive the control command from the ground
control station by network transmission. Nevertheless,  the open net-
work environment is vulnerable to cyber attacks. In the transmission
process, the FDI attacker can inject misleading data into control com-
mands,  resulting  in  the  UAV  actuators  receiving  the  compromised
control  signals.  Hence,  designing  a  secure  control  scheme  for  the
UAV system is of significance [2].

Optimal control can maintain control performance while minimiz-
ing  the  specified  cost.  RL provides  an  effective  scheme  for  solving
optimal control problems, which can obviate the curse of dimension-
ality. By the neural network (NN) architecture, [3]–[5] addressed the
optimal  tracking  control  problem.  Although  these  works  designed
effective  RL-based  optimal  tracking  controllers,  they  did  not  con-
sider  the  impact  of  cyber  attacks.  It  inspires  us  to  develop  a  secure
control scheme for the UAV system.

For the attacker and secure controller, the impact of the opponent’s
policies  needs  to  be  assessed  while  executing  their  policies.  Game
theory  provides  a  unified  framework  to  describe  this  interaction.
Researchers  devised  the  defense  mechanism  using  the  Stackelberg
game [6] and hybrid game [7]. RL can be utilized to solve the secure
game.  References [8], [9] employed  the  off-policy  and  Q-learning
algorithms in designing secure controllers. These works have devel-
oped a series of schemes by RL and game theory. Besides, they did
not consider the convergence rate of RL. Recently, it is worth noting
that [10] introduced  a  finite-time  convergent  RL  algorithm.  For
improving the flexibility of settling time, the fixed-time convergence
technique  can  be  combined  with  the  RL algorithm,  which  conducts
this work.

Motivated  by  addressing  the  secure  tracking  control  problem  via
fixed-time convergent RL for the UAV system, this letter adopts the
zero-sum game to describe the attack-defense process. The main con-
tributions of this letter are summarized as follows.

1) In the zero-sum game framework, the secure controller and the
FDI attacker are regarded as game players. The secure tracking con-
trol problem in the UAV system is recast as a min-max problem.

2)  By  the  single-critic  NN  structure  and  experience  replay  (ER)
mechanism,  a  fixed-time  convergent  RL  algorithm  is  proposed,
which can remove the dependence of  the settling time on the initial
NN weights compared to [10].
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Notations:  The  dimensional  zero  matrix  and  dimen-
sional identity matrix are denoted by  and , respectively. The

σmin(·) λmin(·) ⌈·⌋ sgn(·)| · |
sgn(·) | · |

∇e(·) ∂(·)/∂e Bς[x0]
ς x0

S1 S2 S1 ×S2

minimum singular value and the minimum eigenvalue are denoted by
 and , respectively. The operator  represents ,

where  is the sign function and  represents the calculation of
the  absolute  value.  represents .  The  set  is  the
closed-ball with radius  and center . The Cartesian product of two
sets  and  is given by .

Problem statement: Consider the following UAV model:
 

ṗ = v
v̇ = −cg+ ū (1)

p = [px py pz]T v = [vx vy vz]T

c = [0 0 1]T ū
x = [pT vT ]T

where  and  represent  the  position
vector and velocity vector for the center of mass of the UAV in the
inertial coordinate system, respectively. The x-axis, y-axis, and z-axis
point to the east, north, and center of the earth, respectively. g is the
gravity acceleration, , and  is the controller. Define the
system state as . The UAV dynamics becomes
 

ẋ = Ax+Bū+Cg (2)

A =
[

03×3 I3
03×3 03×3

]
B =

[
03×3
I3

]
C = [01×5 −1]Twhere , , .

pr = [pxr pyr pzr]T ṗr = vr vr = [vxr vyr
vzr]T ep = p− pr
ev = v− vr e = [eT

p eT
v ]T

The aim of  tracking  control  is  designing  a  controller  to  guide  the
UAV to reach the expected trajectory and velocity. For the expected
position  and  velocity  with 

,  define  the  position  and  velocity  tracking  error  as ,
, respectively. Let . The error dynamics is

 

ė = Ae+Bū+Cg+ f (3)
f = [01×3 − p̈T

r ]T e→ 0where . The tracking task is completed if .
Consider  the  cyber  attacker  will  inject  the  FDI  attack w into  the

control  signal.  Then,  the actuators  will  receive false control  signals.
Hence, one has
 

ū = ǔ+w (4)
ǔwhere  is the secure tracking controller to be designed.

Note  that  there  exist  the  constant  term g and  the  time-dependent
term f in  the  error  system.  We  can  eliminate  them  by  introducing
their  opposite  terms.  Hence,  design  the  following  secure  tracking
controller:
 

ǔ = u+ cg+ p̈r (5)
where u is the controller to be further designed. Substituting (4) and
(5) into (3), one has
 

ė = Ae+Bu+Bw. (6)
Main results: Consider the following performance function:

 

J(e(0),u,w) =
w ∞

0
U(e,u,w)dt

=
w ∞

0
(eT Qe+uT Ru−γ2wT Tw)dt (7)

Q,R,T > 0
γ > 0

where symmetric weight matrices  and the attack attenua-
tion level .  In the attack-defense process,  the FDI attacker will
deteriorate  system  performance  while  the  secure  controller  aims  to
improve it.  It  indicates  that  one side’s  gain leads to the other  side’s
loss, which can be viewed as a zero-sum game. Correspondingly, the
secure  controller  and  FDI  attacker  are  players,  and  the  secure  con-
troller  aims  to  minimize  the  performance  function  while  the  FDI
attacker intends to maximize it. The zero-sum game can be recast as
the following min-max problem:
 

V(e(0)) =min
u

max
w

J(e(0),u,w) (8)
V(e(0)) (u∗,w∗)where  is the game value. Moreover, the saddle point 

is the Nash equilibrium if the following condition holds:
 

J(e(0),u,w∗) ≥ J(e(0),u∗,w∗) ≥ J(e(0),u∗,w). (9)
V(e)For the value function , define the Hamiltonian function as

 

H(e,u,w,∇eV(e)) = U(e,u,w)+∇eVT (e)ė. (10)
By the stationary condition, we can obtain optimal policies below:

 

u∗ = −1
2

R−1BT∇eV(e) (11)
 

w∗ =
1

2γ2 T−1BT∇eV(e). (12)
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Then, the following theorem is given for analyzing the fixed-time
stability with the existence of the Nash equilibrium.

l1 > 0, l2 > 0, 0 < d1 < 1, d2 > 1

V(e)

Theorem  1:  Consider  the  error  system  (6)  and  the  given  attack
attenuation level γ. Set . Suppose that
there  exists  a  radially  unbounded,  continuously  differentiable,  posi-
tive function  satisfying
 

∇eVT (e)ė ≤ −l1(V(e))d1 − l2(V(e))d2 , V(0) = 0. (13)
(u∗,w∗)Then,  the  system  (6)  with  optimal  policies  is  globally

fixed-time stable, and the settling time fulfills
 

T̃ ≤ 1
l1(1−d1)

+
1

l2(d2 −1)
. (14)

(u∗,w∗)
V(e(0))

Furthermore,  is the Nash equilibrium and the game value is
.

limt→T̃ e(t) = limt→∞ e(t) = 0 V(e(∞)) =
V(0) = 0

Proof: According to [11], the settling-time function can be derived
directly. Moreover, note that , 

. By completing the squares for (7), one yields
 

J(e(0),u,w) = V(e(0))+
w ∞

0
(u−u∗)T R(u−u∗)dt

−
w ∞

0
γ2(w−w∗)T T (w−w∗)dt. (15)

(u,w∗) (u∗,w∗) (u∗,w)Set policies as , , and , respectively. One has
 

J(e(0),u,w∗) ≥ J(e(0),u∗,w∗) ≥ J(e(0),u∗,w).
Then, the Nash equilibrium condition (9) is met. It leads to

 

J(e(0),u∗,w∗) = V(e(0)) (16)
which gives the zero-sum game value. ■

Next, the fixed-time convergent RL algorithm is designed to obtain
optimal policies.

The value function can be approximated by the NN. Consider the
following critic NN:
 

V(e) =WTϕ(e)+ε(e), e ∈ E (17)
ϕ(·) ε(·) E ⊆ Rn

V(e)

where W, , ,  represent expected NN weights, the basis
function, the approximation error of critic NN and the error state set,
respectively.  Moreover,  the  differentiable  basis  function  should  be
selected.  Since  the  expected  NN  weights  are  unknown,  estimation
NN weights are utilized to estimate . Then, one has
 

V̂(e) = ŴTϕ(e), e ∈ E. (18)
Correspondingly, the optimal policies can be estimated by

 

û = −1
2

R−1BT∇eϕ
T (e)Ŵ (19)

 

ŵ =
1

2γ2 T−1BT∇eϕ
T (e)Ŵ. (20)

Substituting (18)−(20) into the Hamiltonian function (10), it yields
the following residual error function:
 

ξ(t) = ŴT (t)∇eϕ(e(t))ė(t)+U(e(t), û(t), ŵ(t)). (21)

0 < t0, . . . , t f < t
According to the ER mechanism, the historical residual error in the

time series  is defined as
 

ξ[t](s) = ŴT (t)∇eϕ(e(s))ė(s)+U(e(s), û(s), ŵ(s)). (22)
Construct the following loss function:

 

E(t) =
1

q+1

(∣∣∣∣∣ ξ(t)
1+ψT (t)ψ(t)

∣∣∣∣∣q+1
+

t f∑
s=t0

∣∣∣∣∣ ξ[t](s)
1+ψT(s)ψ(s)

∣∣∣∣∣q+1)

+
1

r+1

(∣∣∣∣∣ ξ(t)
1+ψT (t)ψ(t)

∣∣∣∣∣r+1
+

t f∑
s=t0

∣∣∣∣∣ ξ[t](s)
1+ψT(s)ψ(s)

∣∣∣∣∣r+1)
(23)

ψ(·) = ∇eϕ(e(·))ė(·) 0 < q < 1 r > 1 ψ̄(·) = ψ(·)
1+ψT (·)ψ(·)where ,  and .  Let .

By  the  gradient  descent  principle,  we  can  derive  the  following  NN
weight updating law:
 

˙̂W(t) = −α
(
ψ̄(t)

⌈
ξ(t)

1+ψT (t)ψ(t)

⌋q
+

t f∑
s=t0

ψ̄(s)
⌈

ξ[t](s)
1+ψT(s)ψ(s)

⌋q

+ ψ̄(t)
⌈

ξ(t)
1+ψT (t)ψ(t)

⌋r
+

t f∑
s=t0

ψ̄(s)
⌈

ξ[t](s)
1+ψT(s)ψ(s)

⌋r)
(24)

α > 0where  is  the  learning  rate  of  the  critic  NN.  Furthermore,  the
following assumption is needed to relax the persistence of excitation
(PE) condition.

Ψ = [ψ(t0), . . . ,ψ(t f )]Assumption 1: The matrix  is comprised by k
historical data and full row rank.

O(n) O(1)

Remark 1: The PE condition is required in the weight training pro-
cess. A common practice is to add probing noise to control policies.
However,  selecting proper probing noise signals is  a tricky problem
and they may deteriorate system stability. The ER mechanism needs
to fulfill Assumption 1, which can be achieved by introducing suffi-
cient data. Moreover, the historical data is updated as time, resulting
in time complexity  and space complexity ,  where n repre-
sents the scale of the problem.

W̃ = Ŵ −WDefine the weight error as . The weight error dynamics
is
 

˙̃W(t) = −α
(
ψ̄(t)

⌈
ψ̄T (t)W̃(t)+ ϵ̄(t)

⌋q
+

t f∑
s=t0

ψ̄(s)
⌈
ψ̄T (s)W̃(t)

+ ϵ̄(s)
⌋q
+ ψ̄(t)

⌈
ψ̄T (t)W̃(t)+ ϵ̄(t)

⌋r

+

t f∑
s=t0

ψ̄(s)
⌈
ψ̄T(s)W̃(t)+ ϵ̄(s)

⌋r
)

(25)

ϵ̄(·) = ϵ(·)
1+ψT (·)ψ(·) ϵ(·) =WT∇eϕ(e(·))ė(·)+U(e(·), û(·), ŵ(·))where  with .

Next,  the  fixed-time convergence  will  be  analyzed by the  follow-
ing theorem.

Ψ̄ = [ψ̄(t0), . . . ,
ψ̄(t f )] 0 < β < 1 k̄ = k

1−r
2 ι = (1−β)σq+1

min (Ψ̄) ῑ = 21−r k̄σr+1
min(Ψ̄)

ς =
( (k+1)(ϵ̄qm+ϵ̄rm)ψ̄m

βσ
q+1
min (Ψ̄)

) 1
q ϵ̄m > 0 ψ̄m > 0 ϵ = 0

Theorem 2: Suppose that Assumption 1 is met. Let 
, , ,  and .

Define  with , .  Then,  1)  If ,

the solution to (25) is globally fixed-time stable with the settling-time
function
 

T ≤ 1

σ
q+1
min (Ψ̄)(2α)

q+1
2 (1− q+1

2 )
+

1

k̄σr+1
min(Ψ̄)(2α)

r+1
2 ( r+1

2 −1)
.

ϵ , 02)  If ,  the  solution  to  (25)  is  globally  fixed-time  uniformly
ultimately bounded (UUB) with the settling-time function
 

T ≤ 2
1−q

2 α−
q+1

2 −α−1ς1−q

ι(1−q)
+

2
1−r

2 α−
r+1

2

ῑ(r−1)
.

Proof: Choose the following Lyapunov function:
 

Ṽ(W̃) =
1

2α
W̃T W̃. (26)

Taking the time derivative of (26) along (25), it yields
 

˙̃V(W̃) = −α
(
W̃T (t)ψ̄(t)

⌈
ψ̄T (t)W̃(t)+ ϵ̄(t)

⌋q

+

t f∑
s=t0

W̃T (t)ψ̄(s)
⌈
ψ̄T (s)W̃(t)+ ϵ̄(s)

⌋q

+ W̃T (t)ψ̄(t)
⌈
ψ̄T (t)W̃(t)+ ϵ̄(t)

⌋r

+

t f∑
s=t0

W̃T (t)ψ̄(s)
⌈
ψ̄T (s)W̃(t)+ ϵ̄(s)

⌋r
)
. (27)

ϵ = 0 ö1)  If ,  by p-norm  monotonicity  property  and  the  H lder
inequality, (27) can be scaled as
 

˙̃V(W̃) ≤ −σq+1
min (Ψ̄)(2α)

q+1
2 Ṽ

q+1
2 (W̃)

− k̄σr+1
min(Ψ̄)(2α)

r+1
2 Ṽ

r+1
2 (W̃).

W̃ = 0
T

It shows that the solution  to (25) is globally fixed-time sta-
ble.  By  the  comparison  lemma,  the  corresponding  settling  time 
satisfies
 

T ≤ 1

σ
q+1
min (Ψ̄)(2α)

q+1
2 (1− q+1

2 )
+

1

k̄σr+1
min(Ψ̄)(2α)

r+1
2 ( r+1

2 −1)
. (28)

sgn(ψ̄T W̃ + ϵ̄) =
sgn(ψ̄T W̃)

2)  According  to  Proposition  1  in [10],  one  has 
. By Lemmas 3.3 and 3.4 in [12], one can derive that 
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|ψ̄T W̃ |q − |ϵ̄|q ≤ |ψ̄T W̃ + ϵ̄ |q. (29)
 

21−r |ψ̄T W̃ |r − |ϵ̄ |r ≤ |ψ̄T W̃ + ϵ̄ |r. (30)
|ϵ̄ | ≤ ϵ̄m ψ̄m > 0

∥ψ̄∥2 ≤ ψ̄m

By Proposition 1 in [10], one has . There exists  that
satisfies . Based on (29) and (30), one has
 

˙̃V(W̃) ≤ − (1−β)σq+1
min (Ψ̄)∥W̃∥q+1

2 −βσq+1
min (Ψ̄)∥W̃∥q+1

2

−21−r k̄σr+1
min(Ψ̄)∥W̃∥r+1

2 + (k+1)(ϵ̄qm + ϵ̄
r
m)ψ̄m∥W̃∥2.

ς
Then,  the  solution  to  (25)  is  globally  fixed-time  UUB  with  the

bound . By the comparison lemma, the settling time fulfills
 

T ≤ 2
1−q

2 α−
q+1

2 −α−1ς1−q

ι(1−q)
+

2
1−r

2 α−
r+1

2

ῑ(r−1)
. (31)

■
Next, the following theorem is provided to discuss the closed-loop

stability.

ϵ , 0 ς̃ =

(
h+(ϵ̄qm+ϵ̄rm)ψ̄m

βσ
q+1
min (Ψ̄)

) 1
q

0 < β < 1 h > 0 Π = [W̃T ,eT ]T ∈ RN ×E

Theorem 3:  Consider  the  error  closed-loop system (6)  using  poli-

cies  (19)  and  (20).  Let .  Given  with  proper

 and , the  augmented  state  is
fixed-time UUB with the settling time
 

T̄ ≤ 2
1−q

2 α−
q+1

2 −α−1ς̃1−q

ι(1−q)
+

2
1−r

2 α−
r+1

2

ῑ(r−1)
.

Proof: Select the Lyapunov function
 

V̄(Π) = V(e)+ Ṽ(W̃). (32)
∥W∥2 ≤Wm ∥∇eϕ(e)∥2 ≤ ϕm ∥∇eε(e)∥2 ≤ εm

V(e)
Assume  that ,  and .

Combining with Theorem 1, the time derivative of  satisfies
 

V̇(e) ≤ −l1(V(e))d1 − l2(V(e))d2 + m̄(ϕm∥W̃∥2 +εm)

m̄ = (Wmϕm +εm)( 1
2 ∥B∥22λmin(R)+ 1

2γ2 ∥B∥22λmin(T ))

h > 0 m̄(ϕm∥W̃∥2 +εm) ≤ h∥W̃∥2 ς̄ = εm
h
m̄−ϕm

where .  Choose
 such that . Let . One yields

 

V̇(e) ≤ −l1(V(e))d1−l2(V(e))d2 +h∥W̃∥2, W̃ ∈ Bς̄[0], e ∈ E. (33)
By (33) and Theorem 2, choosing the parameter β allows:

 

˙̄V(Π) ≤ −l1(V(e))d1 − l2(V(e))d2 − ι∥W̃∥q+1
2 − ῑ∥W̃∥r+1

2

W̃ ∈ Bς̃[0], e ∈ E (34)
Bς̄[0] ⊆ Bς̃[0]where  holds for sufficiently small β. Likewise, the set-

tling time fulfills
 

T̄ ≤ 2
1−q

2 α−
q+1

2 −α−1ς̃1−q

ι(1−q)
+

2
1−r

2 α−
r+1

2

ῑ(r−1)
. (35)

Bς̃[0]×ETherefore, Π is fixed-time UUB with the bound . ■
pr =

[10cos( π5 t) 12sin( π5 t) 1.5+0.4t]T
Simulation  example: The  reference  trajectory  is  set  as 

.  The  optimal  secure  controller  and
optimal attack are solved by the raised scheme. Fig. 1 depicts that the
UAV can reach the desired trajectory and velocity under optimal FDI
attack by the raised secure controller. Fig.  2(a) shows that  the critic
NN  weights  will  converge  in  11.63  s.  As  a  comparison,  the  finite-
time convergent RL [10] is introduced. In Fig. 2(b), one can observe
that  the  critic  NN weights  converge  in  13.81  s.  It  indicates  that  the

presented algorithm has a faster convergence rate.
Conclusion: This  letter  studies  the  secure  tracking  control  prob-

lem under  the  FDI attack for  the  UAV system.  The zero-sum game
framework is  built  to  analyze the attack-defense process.  Combined
with  the  fixed-time  convergence  technique,  the  online  single-critic
NN is utilized and a novel weight updating law is presented to obtain
optimal policies. In the future, secure control schemes for multi-UAV
systems will be designed.
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Fig. 1. Evolution  of  UAV  states  and  reference  states.  (a)  The  trajectories  of
the UAV and reference; (b) The velocities of the UAV and reference.
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Fig. 2. Evolution  of  critic  NN  weights  by  fixed-time  convergent  RL  and
finite-time  convergent  RL.  (a)  The  fixed-time  convergent  RL  case;  (b)  The
finite-time convergent RL case.
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