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 Dear Editor,

This  letter  develops  a  novel  method to  implement  event-triggered
optimal  control  (ETOC)  for  discrete-time  nonlinear  systems  using
parallel  control  and  deep  reinforcement  learning  (DRL),  referred  to
as  Deep-ETOC.  The  developed  Deep-ETOC  method  introduces  the
communication cost into the performance index through parallel con-
trol,  so  that  the  developed  method  enables  control  systems  to  learn
ETOC policies directly without  triggering conditions.  Then,  dueling
double deep Q-network (D3QN) is utilized to achieve our method. In
simulations, we present a preliminary comparative study of DRL and
Lyapunov analysis for ETOC.

Event-triggered  control  (ETC)  has  been  brought  to  the  fore  in
recent years due to the increasing complexity of systems [1]–[5].  In
contrast to the control mode of periodic sampling, ETC updates con-
trols when an “event” triggers. The aperiodic sampling nature of ETC
allows  control  systems  to  substantially  save  communication  and
computation resources.

While saving communication resources, many control systems still
need  to  be  designed  with  the  consideration  of  optimizing  the  given
performance  index,  which  has  resulted  in  the  formation  of  ETOC
[6]–[9].  The  existing  ETOC  methods  are  ordinarily  formulated  by
means  of  Lyapunov  analysis.  Through  the  application  of  the  Lya-
punov  methodology,  triggering  conditions  are  derived  by  ensuring
the  closed-loop  stability.  As  for  optimizing  the  performance  index,
reinforcement learning (RL) is employed to solve the event-triggered
Hamilton-Jacobi-Bellman  equation.  In  addition  to  RL,  parallel  con-
trol  plays  a  pivotal  role  in  controlling  complex  systems [10]–[15].
Notably,  Wang et  al. [16] formally  proposed  a  new parallel  control
framework by introducing controls into the feedback system and the
new control framework has been utilized for ETOC [17]. Since these
methods  employ  Lyapunov  analysis  to  ensure  stability,  the  above
ETOC method can be referred to as Lyapunov stability-based ETOC
methods. Considering the impressive performance of deep learning in
complex  tasks,  it  is  a  natural  fit  for  applying  deep  RL  (DRL)  to
achieve  ETC [18].  This  type  of  method  can  be  termed  DRL-based
ETC.  However,  DRL-based  ETC  methods  only  convert “designing
triggering  conditions” to “training  triggering  conditions” and  fail  to
discuss  ETOC  in  terms  of  performance  indices.  Meanwhile,  Lya-
punov stability-based ETOC methods are mostly concerned with the
system  stability  and  rarely  explore  the  performance  of  communica-

tion cost reduction.
To facilitate the development of ETOC, this letter develops Deep-

ETOC based on parallel  control and DRL, and provides a compara-
tive discussion of DRL and Lyapunov analysis for ETOC. The main
contributions are as follows.

1) The developed Deep-ETOC method introduces the communica-
tion  cost  into  the  performance  index  and  learns  the  ETOC  policy
using this performance index.

2) Compared to existing Lyapunov stability-based ETOC methods,
the  developed  Deep-ETOC  method  can  deeply  reduce  the  usage  of
communication resources.

3) We present a comparative study of DRL and Lyapunov stability-
based ETOC methods in simulations and fully discuss their strengths
and weaknesses.

Task formulation: Consider a discrete-time system
 

xk+1 = F(xk,uk) (1)
xk ∈Ω ⊂ Rn uk ∈ Rm

F(xk,uk) :
Rn+m→ Rn

where  and  denote  separately  the  state  vector
and  the  control  vector  with  Ω  being  a  compact  set,  and 

 presents the system dynamics.
Task 1: Optimal Control. Infinite-time optimal control seeks to sta-

bilize system (1) and minimize the performance index
 

J(x0,u0) =
∞∑

k=0

γkU(xk,uk) (2)

U(xk,uk) ≥ 0 γ ∈ [0,1]with  and .
uk

xk

{ki} k0 = 0 ki < ki+1 i ∈ N
[ki,ki+1)

Task  2:  ETOC.  In  Task  1,  the  control  vector  is  required  to  be
updated  according  to  the  state  vector  at  every  time  instant k.  In
contrast  to  this,  ETC  updates  its  control  vector  only  at  triggering
instants, which are denoted by  with , , . Dur-
ing ,  the  control  vector  is  held  constant.  As  for  ETOC,  we
not  only  seek  to  determine  triggering  instants  but  also  consider  the
performance index (2).

uk = K(xk) K(·)
Methodology: For  Tasks  1  and  2,  a  commonly  used  state-feed-

back control  policy can be described by  where  is  a
control function. Parallel control is different, and one of parallel con-
trol is [13], [16]
 

uk =K(xk,uk−1) (3)
K(·)with  being a dynamic control policy to achieve tasks.

vk = uk −uk−1 sk = [xT
k ,u

T
k−1]T

To achieve parallel  control  (3),  defining the virtual  control  vector
 and  the  augmented  state  vector  [13],

one gets an augmented system (AS)
 

sk+1 = F (sk,vk) (4)

F (sk,vk) = [(F(xk,uk−1+ vk))T ,uT
k−1]T +Gvk G = [0m×n,

Im]T ∈ R(n+m)×m.
with  and 

So far, we are able to achieve our goal by designing
 

vk = π(sk) (5)
π(·)

uk = uk−1+ vk = uk−1+π(sk) K(xk,uk−1) = uk−1+

π(sk)

with  being a  control  function for  the AS (4),  and we transform
the design of the control policy (3) for system (1) into the design of
the  control  policy  (5)  for  the  AS (4).  The  control  policy  (3)  can  be
obtained  by ,  and 

.
Based on the AS (4), we now introduce a new performance index

considering the communication loss
 

J(s0,v0) =
∞∑

k=0

γkU(sk,vk) (6)

U(sk,vk)where  is an improved utility function and is
 

U(sk,vk) = U(xk,uk)+M(vk)+ ceIe(vk) (7)
M(vk) ce ≥ 0

Ie(vk)
with  being  a  semi-positive  definite  function,  being  a
constant  for  ETC,  and  being  an  indicator  function  for  ETC,
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i.e., 

Ie(vk) =
1, if ∥vk∥ , 0

0, else.

Apparently, the triggering instant is determined by
 

ki+1 = inf
{
k
∣∣∣∥vk∥ , 0,k > ki

}
. (8)

∥vk∥ = 0 uk
vk = uk −uk−1 ∥vk∥ , 0 uk

vk

uk = K(xk)

Remark 1: It is obvious that, at the instant k, if ,  remains
unchanged  because  of ;  if ,  has  to  be
changed, that is, the event is triggered. Consequently, we can directly
penalize control policies to achieve ETC according to .  A distinct
advantage of the utility function (7) is  that  it  effectively reflects the
communication  loss  caused  by  ETC,  and  it  is  almost  infeasible  to
construct  the  utility  function  (7)  based  on  the  control  policy

.
Based  on  the  AS (4)  and  the  performance  index  (6),  we  can  now

employ D3QN to directly learn the control  policy (5)  with the ETC
attribute,  without  triggering conditions,  i.e.,  a  neural  network learns
the capabilities of real-time optimal control and triggering conditions
simultaneously, and it consists of the following steps.

vk ∈ {v|vmin+ jvintv, j = 0,1,2, . . . ,
L−1,L ∈ N+} L = 1+ (vmax− vmin)/vintv

vmax vmin
vintv

Step  1:  Discretization  of  control  space.  In  the  training  phase,  the
control  space  is  discretized  into 

, where  is the total number of
discretized controls,  and  are separately the maximum and
minimum values, and  is the discretization interval.

vk = π(sk)
Step  2:  Training  using  D3QN.  According  to  the  RL  theory [19],

given  a  control  policy ,  the  augmented  version  of  the  Q-
function  for  the  AS  (4)  with  the  performance  index  (6)  can  be
defined as
 

Qπ(sk,vk) =
∞∑

t=k

γt−kU(st,vt). (9)

Similarly, according to D3QN [20], the augmented versions of the
value and advantage functions are
 

Vπ(sk) = Qvk∼π(sk,vk) (10a)
 

Aπ(sk,vk) = Qπ(sk,vk)−Vπ(sk). (10b)

Q∗(sk,vk) =minπQπ(sk,vk)
Q(sk,vk |ω)

Li(ωi) = ∥Ti−Q(sk,vk |ωi)∥2 Ti =U(sk,
vk)+γQ(sk+1,argminvk+1 Q(sk+1,vk+1|ωi)|ω−) ω−

In our tasks, we seek to obtain the optimal augmented Q-function
.  In  the  training  phase,  utilize  neural  net-

works to approximate (9), i.e.,  with parameters ω.  Then,
we seek to  minimize  the  following temporal  difference  by updating
ω at  iteration i: [19]:  where 

 with  being the para-
meters of the target network.

Comparative  simulations: Simulations  provide  two  examples
with  a  comparative  discussion  to  show  advantages  and  disadvan-
tages of DRL-based and Lyapunov stability-based ETOC methods.

Example 1: Consider a linear discrete-time system
 

xk+1 =

[
0.1 1.0

0.007 0.9

]
xk +

[
0
1

]
uk (11)

xk = [x1,k, x2,k]T ∈ R2 uk ∈ Rwith  and .
Te =

∑N
k=0 Ie(vk)/N×

100%
To evaluate ETC, define the triggering rate as 

 with the total number of running time steps in an episode N.

U(sk,vk) = 0.1xT
k xk +0.1uT

k uk +10−4vT
k vk+

Ie(vk) vmax = 1 vmin = −1 vintv = 0.0005 γ = 1 x0 = [−1,1]T

u−1 = 1 N = 100
J(s0,v0) ≥ 1000

J(s0,v0) Te
J(s0,v0)

Te

The  training  and  simulation  setup  for  the  developed  Deep-ETOC
method  is  as  follows.  The  neural  network  is  with  the  structure  of
3–1024–1024–1024–401; 

; , ,  and ; ; ;
; . To better exhibit training results, we terminate an

episode when .  Then, Fig.  1 presents trajectories of
 and . Fig.  1 shows  that  the  developed  Deep-ETOC

method  enables  efficient  optimization  of  and  reduction  of
.
In what follows, we compare the top-performing model with some

popular  Lyapunov stability-based ETOC methods [1], [6], [17],  and
comparative  simulation  results  are  depicted  in Fig.  2,  where Fig.  2
shows trajectories of states and controls. Table 1 presents values for
triggering rates of the different methods. Results demonstrate that all

the  methods  are  effective  in  stabilizing  the  system  (11),  but  the
developed  Deep-ETOC  greatly  outperforms  others  in  reducing  the
communication  cost.  Noticing  that  there  is  a  parameter “γ” in [17]
could influence the triggering rate, we change it to “α” in this letter.

Example 2: Consider a torsional pendulum system [17]
 

xk+1 =

[
x1,k +0.1x2,k

−0.49sin(x1,k)+0.98x2,k

]
+

[
0

0.1

]
uk (12)

xk = [x1,k, x2,k]T ∈ R2 uk ∈ Rwhere  and .

U(sk,vk) =
0.1xT

k xk +0.1uT
k uk +0.1vT

k vk + Ie(vk) vmax = 1 vmin = −1 vintv =

0.005 γ = 0.99 x0 = [−1,1]T u−1 = 1

Te = 5.5%

The  parameters  for  training  and  simulation  are  as  follows.  The
structure  of  neural  network  is  3–1024–1024–1024–401; 

; , , and 
; ; , ; Fig. 3 presents state and con-

trol  trajectories of the top-performing model,  and the triggering rate
,  which  means  that  our  method  applies  to  nonlinear  sys-

tems.
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α ≥ 10

The above study shows that,  compared with  the  Lyapunov stabil-
ity-based  ETOC  methods,  the  developed  Deep-ETOC  method
enables a more substantial reduction in the communication cost. It is
worth noting that the method in [17] permits to influence the trigger-
ing rate by tunning α. Table 2 presents more control results with dif-
ferent α for Example 1. According to Table 2, when , the trig-
gering rate no longer decreases, and thus the limiting performance of
the  method in [17] still  fails  to  reach the  performance of  the  devel-
oped  Deep-ETOC  method  in  terms  of  the  triggering  rate.  Thus,  we
can conclude that the Deep-ETOC method offers greater advantages
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Table 1. Triggering Rates of Different Methods
Deep-ETOC Method in

[1]
Method in

[6] α = 10−2
Method in [17]

( )
Te 1% 34% 51% 50%
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in terms of reducing the communication cost.
However,  DRL-based  ETOC methods  cannot  provide  a  clear  sta-

bility  analysis.  In  addition,  the  performance  of  DRL-based  ETOC
methods is highly contingent on the training set. For example, if there
are  fewer  data  within  the  small  neighborhood  of  the  origin  in  the
training set, then system states cannot converge strictly to the origin,
see Fig.  3.  This  is  endemic  in  realizing  high-precision  control  with
neural  networks.  Thus,  an  elaborate  neural  network  and  a  suitable
training set are critical to obtaining a desirable result.

Conclusion: This  letter  provides  a  new  thought  for  realizing
ETOC, i.e., to construct a novel performance index considering ETC
penalties, and then train the ETOC policy directly based on this per-
formance  index.  The  developed  Deep-ETOC  method  is  established
on parallel control and employs DRL to realize this method. Besides,
we present a preliminary comparative study of DRL-based and Lya-
punov stability-based ETOC methods and discuss their strengths and
weaknesses based on the simulation results.
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