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Nonlinear Robust Stabilization of Ship Roll by Convex
Optimization

Jiafeng Yu , Qinsheng Li , and Weijie Zhou 

 Dear Editor,

This letter presents a nonlinear robust controller design method for
ship roll stabilization by combining the dual of Lyapunov’s stability
theorem  with  the  sum  of  squares  (SOS)  technique.  Varying  initial
metacentric  height  and ship  speed are  regarded as  uncertainties,  sea
waves  are  considered  as  external  disturbances,  and  then  the  robust
nonlinear controller is designed. Taking a container ship as an exam-
ple, simulations are performed to verify the effectiveness of the pro-
posed design scheme.

Introduction: Robustness  issues  are  among  the  most  challenging
research  problems  related  to  nonlinear  control  design,  especially
robustness with respect to uncertain parameters in a dynamic system.
Take  the  ship  roll  stabilization  as  an  example.  During  ship  naviga-
tion,  the  model  parameters  for  roll  control  are  uncertain  resulting
from varying ship speed and initial metacentric height. Therefore, the
ship roll controller with robustness is always expected [1], [2].
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There  exists  voluminous  literature  on  the  subject  of  designing
robust control schemes for ship roll motion. Reference [1] presented
a robust adaptive fuzzy control approach for the problem of ship roll
stabilization. A robust fin controller based on  gain design is pro-
posed, in order to reduce the roll motion of surface ships [2]. Refer-
ence [3] proposed  a  robust  fin  controller  based  on  functional  link
neural  network  for  roll  reduction.  Reference [4] addressed  applica-
tion of a robust adaptive first-second-order sliding mode controller in
stabilizing the uncertain fin roll dynamics.

Lyapunov’s  stability  theorem has  long  been  recognized  as  one  of
the  most  fundamental  analytical  tools  for  analysis  and  synthesis  of
nonlinear control systems [5], [6]. Stability analysis of nonlinear sys-
tem has been a difficult  problem since constructing Lyapunov func-
tion  involves  to  verify  positivity  of  a  function  and  negativity  of  its
derivative along the system trajectory.

Recent  results  on  the  SOS  decomposition  have  transformed  the
verification  of  nonnegativity  of  polynomials  into  semidefinite  pro-
gramming;  hence  we  can  either  check  if  a  candidate  function  satis-
fies  the  condition  of  the  Lyapunov’s  stability  theorem  or  search
directly for a polynomial Lyapunov function for stability [7].

H∞

There  have  been  some  results  on  the  SOS  method  for  controller
design in existing literature. To metion a few, in [8], the SOS method
is  used  to  design  event-based  consensus  controller  for  polynomial
fuzzy  multi-agent  systems  with  Markovian  switching  signed  topol-
ogy. Reference [9] presents a systematic computational procedure for
controller  design  of  polynomial  systems  with  uncertain  parameters,
combining the SOS techniques with some results on polynomial cer-
tificate  in  real  algebraic  geometry.  Reference [10] studies  nonlinear

 control  designs  of  an  axisymmetric  spacecraft  using  the  SOS
method.

In this  letter,  combining SOS method and the dual  to Lyapunov’s
stability  theorem [11],  we  present  a  novel  controller  design  method
for  the  uncertain  nonlinear  system  of  ship  roll.  This  combination
allows the convex parameterization of the nonlinear controller. Moti-
vated  by [9],  we  explore  the  proposed  method  for  the  controller
design of ship roll  with uncertain parameters resulting from varying
initial metacentric height and varying ship speed. Our objective is to
find controller in worst case, in the sense that the system is stabilized
for all  the possible values of the uncertain parameter set.  Therefore,
the stability of the uncertain system is guaranteed.

Notations: Throughout  the  letter,  the  following  notations  will  be
used:
 

∇V =
[
∂V
∂x1
· · · ∂V
∂xn

]
, V : Rn −→ R

∇ · f = ∂ f1
∂x1
+ · · ·+ ∂ fn

∂xn
, f : Rn −→ Rn.

Mathematical  model  of  ship  roll: In  this  letter,  uncertainties  of
parameters  are  taken  into  account  in  ship  roll  mathematical  model,
which are originated from varying ship speed and initial metacentric
height.  Consider  the  following  nonlinear  model  of  ship  roll  motion
by fin control [12], [13]:
 

(Ixx + Jxx)θ̈+Nθ̇+Mθ̇|θ̇|+Dhθ(1− (
θ

θv
)2) = FC +FS W (1)

θ, θ̇ θ̈
Ixx Jxx

N = Nθ0+△Nθ
M = Mθ0+△Mθ. Nθ0 Mθ0

h = h0+△h, h0
θv FC = −ρw(V0+∆V)2AFCLα×

lFα(α f +
θ̇lFα

V0+∆V ). FC V0

△Nθ, △Mθ, △h ∆V

AF CLα
lFα α f

FS W = FW sinωet. FW
ωe

Ixx + Jxx =
DB2

g (0.3085+ 0.0227B
d − 0.0043L

100 )2, Nθ0 =
2c1
√

Dh(Ixx+Jxx)
π ,

Mθ0 =
3c2(Ixx+Jxx)

4 ,

ρw c1 c2

where  and  denote the roll angle, angular rate and angular accel-
eration  of  roll  motion,  respectively.  and  denote  the  inertia
moment  and  added  inertia  moment,  respectively. ,

  and  denote the linear damping coefficient
and  the  nonlinear  damping  coefficient,  respectively. D is  the  dis-
placement  of  ship.    is  specified  initial  metacentric
height.  denotes  the  flooding  angle. 

  denotes the control moment of fin stabilizer. 
denotes  nominal  ship  speed.   ,  and  are  the  varia-
tion of the parameters resulting from ship loaded conditions, external
environment and other reasons.  is the area of fin stabilizer,  is
the slope of lift coefficient,  is the force arm of fin stabilizer, 
is the rotation angle of fin stabilizer.   is the ex-
ternal wave amplitude.  denotes the encounter frequency of the wa-
ve.  

 where g denotes  gravitational  acceleration, B
denotes  the  ship  breadth, d denotes  the  draft  of  the  ship. L denotes
the ship length.  is the density of sea water.  and  are the test
coefficients for different ship types.

G(x) G(x) =
∑

i h2
i (x)

hi(x) G(x) ≥ 0

Preliminaries: 1) SOS method: It is well known that the problem
of  checking  global  nonnegativity  of  a  polynomial  of  quartic  (or
higher) degree is computationally hard. For this reason, we need con-
venient sufficient conditions that guarantee nonnegativity and are not
overly conservative. A particularly interesting sufficient condition is
given by the existence of a sum of squares decomposition [14]: if the
polynomial  can be written as  for some polyno-
mials , then .

In this respect, it is interesting to notice that many methods used in
control  theory  for  constructing  Lyapunov  functions  (for  example,
backstepping [6]) use either implicitly or explicitly a SOS approach.
In  particular,  the  SOS  technique  provides  a  good  method  for  con-
structing Lyapunov functions.

2)  Dual  to  Lyapunov’s  stability  theorem: A convergence criterion
for  nonlinear  systems presented  in [11] is  viewed as  a  dual  to  Lya-
punov’s stability theorem.

ẋ(t) = f (x(t)) f ∈C1(Rn,
Rn) f (0) = 0 ρ ∈C1(Rn\{0} ,
R) ρ(x) f (x)/|x| {x ∈ Rn : |x| ≥ 1}

Theorem 1 [11]: Given the system , where 
 and , suppose there exists a non-negative 

 such that  is integrable on  and
 

∇ · (ρ f )(x) > 0, for almost all x. (2)

 
Corresponding author: Jiafeng Yu.
Citation: J. Yu, Q. Li, and W. Zhou, “Nonlinear robust stabilization of ship

roll by convex optimization,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 7, pp.
1714–1716, Jul. 2024.

J. Yu is with Jiangsu Maritime Institute, Nanjing 211170, and also with the
School  of  Mathematics,  Southeast  University,  Nanjing  210096,  China  (e-
mail: 20060806@jmi.edu.cn).

Q.  Li  and  W.  Zhou  are  with  Jiangsu  Maritime  Institute,  Nanjing  211170,
China (e-mail: 20060757@jmi.edu.cn; 20060185@jmi.edu.cn).

Color  versions  of  one  or  more  of  the  figures  in  this  paper  are  available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2016.7510163

1714 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

http://orcid.org/0000-0003-2214-2766
http://orcid.org/0000-0001-7494-7879
http://orcid.org/0009-0004-4083-4752
http://orcid.org/0000-0003-2214-2766
http://orcid.org/0000-0001-7494-7879
http://orcid.org/0009-0004-4083-4752
mailto:20060806@jmi.edu.cn
mailto:20060757@jmi.edu.cn
mailto:20060757@jmi.edu.cn
http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2016.7510163


x(0) x(t)
t ∈ [0,+∞) t→∞
x = 0

Then, for almost all initial states  the trajectory  exists for
 and tends to zero as . Moreover, if the equilibrium

 is stable, then the conclusion remains valid even if ρ takes neg-
ative values.

Controller design for polynomial systems with certain parame-
ters: Consider the system
 

ẋ = f (x)+g(x)u (3)
x ∈ Rn f (x) g(x)where  is  the state  vector,  and  are polynomial  vec-

tors, and u is the control input vector. Inequality (2) for the polyno-
mial nonlinear system (3) can be written as
 

∇ · [ρ( f +gu)] (x) > 0. (4)
(ρ,uρ)

uρ

Thus, the set  satisfying (4) is convex [15]. In order to search
the  density  function ρ and  the  controller u jointly,  consider  the  fol-
lowing parameterized representation for ρ and  [15]:
 

ρ =
a(x)
b(x)s , uρ =

c(x)
b(x)s (5)

a(x) b(x) c(x) b(x)where , , and  are polynomials.  is positive. s is cho-
sen large enough so as to satisfy the integrability condition in Theo-
rem 1.  Note  that  by  choosing  this  particular  representation,  we pre-
suppose that we will be searching for ρ and u that are rational. In par-
ticular, the controller will be
 

u =
c(x)
a(x)
. (6)

In this case, (4) can be written as
 

∇ · [ρ( f +gu)
]
= ∇ ·

[
1

b(x)s ( f a+gc)
]

=
1

b(x)s+1

[
b(x)∇ · ( f a+gc)− s∇b(x) · ( f a+gc)

]
> 0.

b(x)Since  is positive, we only need to satisfy the inequality
 

G(x) = b(x)∇ · ( f a+gc)− s∇b(x) · ( f a+gc) > 0. (7)

G(x)

Assuming that f and g in the above inequality are polynomials cor-
responding  to  either  the  original  system  or  the  recasted  system
obtained through algebraic transformations,  the left-hand side of (7)
will  also  be  a  polynomial.  Instead  of  checking  positivity  in  (7),  we
will  resort  to the relaxation to check if  is  a  SOS, and then the
problem can be solved using semidefinite programming [14]. In par-
ticular,  a  free  available  software  SOSTOOLS can  be  used  for  solv-
ing SOS programs [16].

Robust nonlinear control synthesis for polynomial systems with
uncertain parameters: Consider the polynomial system
 

ẋ = f (x,η)+g(x,η)u (8)
x ∈ Rn f (x,η) : Rn×Rm→ Rn, g(x,η) : Rn×Rm→

Rn×r u ∈ Rr η = (η1, ...,ηk

where  is the state,  
,  and . )  is  unknown  parameter  vector  but

bounded as follows:
 

ηi ≤ ηi ≤ η̄i, i = 1, . . . ,k (9)

Our objective is to find a controller u that stabilizes the system (8)
for all possible values of the parameter η. Let
 

ζ1 = η1−η1 ≥ 0

...

ζ2k−1 = ηk −ηk ≥ 0

ζ2k = η̄k −ηk ≥ 0.

Thus, define a set K for upcoming use as
 

K =
{
(x,η) ∈ Rn×Rm : ζ1(η) ≥ 0, . . . , ζ2k(η) ≥ 0

}
.

Similar  to  (5),  design  the  controller  (6).  In  this  case,  the  conver-
gence criterion in Theorem 1 for the system (8) can be written as
 

∇ · [ρ( f +gu)
] |K

=
1

b(x)s+1

[
b(x)∇ · ( f a+gc)− s∇b(x) · ( f a+gc)

] |K > 0.

b(x)Since  is positive, we only need to satisfy the inequality
 

GK(x,η) = b(x)∇ · ( f a+gc)− s∇b(x) · ( f a+gc) > 0
∀(x,η) ∈ K. (10)

Although  the  system  contains  uncertain  parameters,  the  explicit
expressions of the functions f and g are known, so inequality (10) can
be computed.

G(x) x ∈ Rn

GK(x,η)
K ∈ Rn×Rm

We  remark  that  (7)  is  different  from  (10).  We  check  the  global
nonnegativity  of  in  (7)  for  all ,  so  (7)  can be solved by
the SOS method directly. However, the nonnegativity of  in
(10)  requires  to  be  checked  only  on  a  local  subset ,  so
(10) cannot be solved by SOS method directly.

In order to solve this problem we consider another kind of certifi-
cate  using some concepts  from the field  of  real  algebraic  geometry.
The  controller  design  procedure  is  based  on  the  translation  of  the
pointwise  property  of  (10)  into  an  algebraic  property  (polynomial
certificate [9]) that can be directly checked by the SOS method. The
specific  constructive  derivation  of  a  polynomial  certificate  can  be
found in [9].

si(x,η) ∈ Σ2

For  our  purposes,  using  Positivstellensatz  theorem [17] and  the
polynomial  certificate  in [9],  the  pointwise  property  of  inequality
(10) can be satisfied if there exists   such that
 

ϑ(x,η) =GK(x,η)−
2k∑
i=1

si(x,η)ζi(x,η) ∈ Σ2 (11)

Σ2

GK(x,η)

where  denotes  the  SOS  set.  It  is  worth  noting  that  membership
test is sufficient condition to ensure nonnegativity of the polynomial

 over the set K.

m2

42◦
m/s

Robust controller design for ship roll: Here, using the proposed
method,  we  design  the  controller  for  a  container  ship [18],  whose
length is 175 m, breadth 25.4 m, full-load draft 8.5 m, displacement
21 222 t, fin area 10.2 , fin arm 14.88 m, slope of the fin lift coef-
ficient  3.39,  flooding angle ,  initial  metacentric  height 1  m,  and
nominal  speed  7.71 .  Uncertainties  of  parameters  and  environ-
mental disturbances are taken into account in ship roll mathematical
model.

x1 = θ x2 = θ̇Choose the state variables , .  Consider the mathemat-
ics model (1) of ship roll with the uncertain parameters
 ẋ1 = x2

ẋ2 = η1x2+η2x2|x2| +η3x1+η4x3
1 +η5α f + fw

(12)

x1 = θ x2 = θ̇
v = η5α f u = α f η1 = η10+△η1,

η2 = η20+△η2, η3 = η30+△η3, η4 = η40+△η4, η5 = η50+△η5. η1 =

−Nθ0+△Nθ+ρw(V0+∆V)AFCLαl2Fα
Ixx+Jxx

, η2 = −Mθ0+△Mθ
Ixx+Jxx

, η3 = −D(h0+△h)
Ixx+Jxx

, η4 =
D(h0+△h)

(Ixx+Jxx)θv
, η5 = − ρw(V0+∆V)2AFCLαlFα

Ixx+Jxx
, fw =

FW
Ixx+Jxx

sinωe. η10 =

−Nθ0+ρwV0AFCLαl2Fα
Ixx+Jxx

, η20 = − Mθ0
Ixx+Jxx

, η30 = − Dh0
Ixx+Jxx

, η40 =
Dh0

(Ixx+Jxx)θv
,

η50 = − ρwV0
2AFCLαlFα

Ixx+Jxx
.

η10 = −0.0106, η20 = −0.0131,
η30 = −0.1117, η40 = 0.1983, η50 = −0.0433. fw =

FW
Ixx+Jxx

sinωe

.

|△η1| ≤ ψ1 |△η2| ≤ ψ2, |△η3| ≤ ψ3, |△η4| ≤ ψ4, |△η5| ≤
ψ5 ψ1, ψ2, ψ3,ψ4 ψ5

ψ1 = 0.01 ψ2 = 0.02, ψ3 = 0.06, ψ4 = 0.1 ψ5 = 0.06

where  denotes  the  ship  roll  angle,  denotes  angular
rate  and ,  is  the  control  input. 

    
    

   

    

 Ship  parameters  are  obtained  by  nominal
speed  and  initial  metacentric  height:  

     is
regarded  as  external  disturbance  During  ship  navigation,  model
parameters  are  uncertain  resulting  from  varing  initial  metacentric
height  and  ship  speed.  Parameters  are  uncertain  but  assumed  to  be
bounded,  i.e., ,    

.    and  denote the maximum absolute value of the
estimated parameters variation, respectively. The bounds can be esti-
mated as ,  and .

f (0) = 0
fw

In  order  to  satisfy  the  condition  in  Theorem  1,  external
disturbance  is temporarily ignored while designing the controller.
In this way, system model is rewritten as
 

ẋ = f (x,η)+g(x,η)v

f (x,η) =
[

x2
η1x2+η2x2|x2| +η3x1+η4x3

1

]
g(x,η) =

[
0
1

]
u(x)

where  and .

To find a controller , we only need to satisfy (10), that is
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GK(x,η) = b∇ · ( f a+gc)− s∇b · ( f a+gc) > 0
 

∀(x,η) ∈ K

where
 

K =
{
(x,η) ∈ R2×R5 : ζi(η) ≥ 0, i = 1, . . . ,10

}

=



(x,η) ∈ R2×R5 :
η1+0.0206 ≥ 0, −0.0006−η1 ≥ 0
η2+0.0331 ≥ 0, 0.0069−η2 ≥ 0
η3+0.1717 ≥ 0, −0.0517−η3 ≥ 0
η4−0.0983 ≥ 0, 0.2983−η4 ≥ 0
η5+0.1033 ≥ 0, 0.0167−η5 ≥ 0


.

b = 3x2
1 +2x1x2+2x2

2, c(x),
a(x) = 1 s = 4

ϑ(x,η)

si, i = 1, . . . ,10,

Choose  a  cubic  polynomial  for  and  a
constant  for  and let  to  satisfy the integrability  condi-
tion in Theorem 1. Now, we apply for polynomial certificate of non-
negativity of (10) in the form , and translate (10) into the alge-
braic property that can be directly checked by the SOS method. Con-
troller  can  be  found  by  SOS  programming  as  follows:  find

 such that
 

GK(x,η)−
10∑
i=1

si(x,η)ζi(x,η) ∈ Σ2.

v = −1.3714x1− x3
1 − x2|x2|−

0.72219x2.
After solving the above SOS problem, 

 The nonlinear controller is obtained as
 

u =
v
η5
=
−1.3714x1− x3

1 − x2|x2| −0.72219x2

η5
.

(x1, x2) = (0.3,2)
η1,η2,η3,η4

Fig. 1 shows the phase plot of the close-loop system illustrating the
convergence  to  the  origin  with  the  initial  state  for
five  different  values  for  the  parameters  ( ).  For  external
disturbance, time responses of ship roll angle under the action of fin
control and without the fin are shown in Fig. 2.
  

−2.0 −1.5 −1.0 −0.5 0 0.5 1.0
−2.0

−1.5

−1.0

−0.5

0
0.5

1.0

1.5

2.0

x1

x 2

(−0.0206, −0.006, −0.1, 0.2)
(−0.015, −0.03, −0.0517, 0.1)
(−0.0006, −0.02, −0.15, 0.0983)
(−0.008, −0.006, −0.06, 0.2983)
(−0.001, −0.01, −0.1717, 0.2)

 

(x1, x2) = (0.3,2)
Fig. 1. Phase plot of the closed-loop system about ship roll stabilization. The
curves are trajectories with the initial state .
 

Conclusion: The focus of this letter is to develop a nonlinear con-
troller design method for a ship roll using the SOS method with the
dual  of  the  Lyapunov’s  stability  theorem.  We  consider  the  model
with  nonlinear  damping  moment  and  nonlinear  restoring  moment.
Especially, our method can be applied to the ship large rolling angle
motion. As shown in the letter, the controller has good robustness to
uncertain  parameters.  Combination  of  the  SOS  method  and  dual  of
the Lyapunov’s stability theorem is a promising method in the prob-
lem of ship roll control.
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Fig. 2. Time response of ship roll angle.
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