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ABSTRACT

Audio watermarking is a promising technology for copyright

protection, yet traditional methods are limited that must be

combined with auxiliary techniques against attacks. This ar-

ticle proposes a new audio watermarking method that embeds

watermarks through a trained neural network. It adds small

imperceptible perturbations to the original audio so that its

deep features point to specific watermark features. Data aug-

mentation and error correcting coding are employed to guar-

antee its practicable robustness. This method is robust against

many attacks without auxiliary techniques and shows better

performance than other deep learning-based methods.

Index Terms— audio watermarking, deep learning, ad-

versarial example

1. INTRODUCTION

Digital watermarking is a promising technology for digital

copyright protection in the Internet era [1]. In watermark-

ing systems, information, also called watermark, is embedded

into the host material under the constraints of (1) impercep-

tibility – the distortion introduced by the watermark must be

negligible; and (2) robustness–the extractor can detect the em-

bedded information even if the material has been distorted to

some extent.

In recent years, digital watermarking technology has

shifted gradually from hand-designed traditional methods to

new methods based on deep learning. Because computer

vision is the most prevalent application of deep learning,

these new methods also focus on the digital watermarking of

images and videos. As audio is a vital form of daily commu-

nication, it is also essential to explore the deep learning-based

digital audio watermarking method [2].

In traditional methods, the watermark is frequently em-

bedded into the transform domain, such as DCT [3] or SVD

[4], to ensure its imperceptibility. Anti-interference embed-

ding algorithms and other robustness auxiliary techniques are

widely employed to enhance robustness. These static heuris-

tics methods are effective against the specific attacks and dif-

ficult to combine with each other.

In this study, we embed a watermark into a feature domain

mapped by a deep neural network. It has been demonstrated

that the deep features of deep neural networks are general-

izations of the input materials [5], and small perturbations of

the input can result in substantial changes in the deep fea-

tures while the perturbations are imperceptible [6]. Thus, we

add small perturbations to the original audio so that the fea-

tures extracted by the network point to a specific feature, also

called the watermark. Moreover, audio added perturbations is

the watermarked audio.

Backpropagation will be used on samples of the input au-

dio in order to embed the watermark. Meanwhile, we employ

data augmentation and error correcting code, which are more

generalize and combinable than other robust auxiliary tech-

niques, to enhance robustness.

The contributions of this study as follow,
• A novel audio watermarking framework is provided,

which can embed watermarks into audio using a trained

neural network.

• Data augmentation is utilized during embedding to im-

prove the robustness of watermarks.

• Due to error correcting coding on the watermark mes-

sage, our method is robust to numerous attacks.
The remainder of this article is organized as follows, Section

2 introduces the related works; Scetion 3 describes the pro-

posed method. Section 4 contains the experiment and discus-

sion; The summary of this work is in Scetion 5.

2. RELATED WORKS

Traditional audio watermarking methods can be catego-

rized according to their embedding domains, a few of which

are time domain methods [7] and the majority of which

are transform domain ones, which adhere to the transform,

embedding and then inverse-transform pipeline, and these

transforms include SVD (Singular Value Decomposition),

DCT (Discrete Cosine Transform), and STFT (Short-Time

Fourier Transform) [8], etc. Methods for transforming do-

mains employ several embedding approaches with distinct

properties. For instance, spread spectrum [3] is more anti-

interference, but host signal interference occurs, whereas
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QIM [4](Quantization Index Modulation) is the inverse. Tra-

ditional methods must incorporate some auxiliary techniques

to enhance their robustness [9, 10], yet these auxiliary tech-

niques are designed for specific attacks. Thus, the types of

attacks that these techniques can withstand are limited.

Deep learning based watermarking has emerged as a

potential alternative to traditional methods in the image do-

main. The networks are frequently constructed as an encoder-

decoder architecture, where the encoder embeds the water-

mark information into a host material, and the decoder ac-

complishes the extraction. For example, HiDDeN [11] cas-

caded the encoder, noise layer, and decoder and enhanced

the perceptual quality using a parallel-connection adversarial

discriminator. Liu et al. [12] proposed a two-stage learning

method to address the constraint that the noise layer in HiD-

DeN must be differentiable. MBRS [13] adopted adversar-

ial training for JPEG attacks to provide additional robustness,

while Distortion Agnostic [14] performs a similar purpose for

unknown transformations. IGA [15] and Yu [16] introduce at-

tention mechanisms to improve the robustness and impercep-

tibility of watermarking. ReDMark [17] and Tavakoli et al.

[18] integrate conventional DCT or DWT with deep learning

to improve the methods’ performance. There are also meth-

ods that use adversarial examples to watermark images. Fer-

nandez et al. [19] used a pre-trained DINO model to avoid se-

mantic collapse. Jia et al. [20] embed watermark on a black-

box model. EAST [21] implements multi-bit embedding on

the classification logit instead of the feature map. However,

These image-domain methods have not been successfully ap-

plied to audio since the one-dimensional audio provides much

less contextual information.

Kong et al. [22] developed a new method for audio water-

marking based on adversarial examples, which embeds and

recovers the information using a private DNN-based ASR

(Automatic Speech Recognition) model. However, Kong

et al. do not take some strategies to guarantee robustness,

so that the embedding information is utterly unrecognizable

after attacks.

3. THE PROPOSED METHOD

Our method embeds the watermark information after error

correcting coding into the original audio through a trained

neural network. Consequently, our method consists of three

components: the trained deep feature extractor, the embed-

ding and extraction approaches, and the error correcting code.

3.1. Trained deep feature extractor

We trained an audio classification network. The part before

its linear layer is employed as the deep feature extractor fθ :
A → F , where A is denoted as the audio domain and F as

the feature space. The network structure is shown in Figure

1, where the feature extractor is in the pink box.

The input audio is first fed into the differentiable MFCC

(Mel Frequency Cepstrum Coefficient) layer, followed by 6

Fig. 1. Block diagram of the classification network. The part

in the pink box is the deep feature extractor fθ.

residual blocks. The output of each residual block will be

added as a feature map, and then go through 1×1 convolution

layer and adaptive mean pooling to obtain a 320-dimensional

deep feature. This deep feature will predict the audio into 8

different categories after passing through a linear layer and

softmax layer. The activation function used in this network is

g(x) = tanh(W1x)�sigmoid(W2x), where W1 and W2 are

learnable parameters and � means Hadamard product, as it is

shown that this activation function as more suitable for audio

feature extraction [23].

The feature extractor fθ should meet two properties, (1)

fθ(A) will change as perturbing the input audio A impercep-

tibly to achieve the information embedding; and (2) the ex-

tracted features for different augmented forms of one audio

should be as consistent as possible. Since the extractor fθ we

use is differentiable, information embedding can be achieved

by adding perturbations to the audio via Backpropagation. A

reasonable solution for satisfying feature invariance is to train

the fθ using augmentations of training data.

Data augmentation during training Consider a collection

T of augmenting transforms that contain additive noise, ran-

dom crop, lowpass filtering, and reverberation transforms.

The data in the training dataset are transformed as stated

above and fed into the network for training in to produce a

transform-insensitive feature extractor.

3.2. Embedding and extraction approaches
3.2.1. Embedding
The watermark w is a polar vector of the same dimension as

the deep feature, with elements that are either 1 or -1, which

is obtained by substituting -1 for the 0 in a binary information

string. The w can be considered as a vertex of a hypercube in

the feature space F .

The embedding process of our method is depicted in Fig-

ure 2. Initially, the original audio Ao is input into extractor

fθ and the loss l
′

is computed. During the iteration, a per-

turbation δ, determined by the loss, is added to the original
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Fig. 2. The process of embedding the watermark into the orig-

inal audio.

audio. Their sum is then re-fed into fθ, and the loss is re-

computed. Finally, when the iteration stops, the watermarked

audio Aw = Ao + δ̃, where δ̃ is δ when the iteration stops.

We measure the distance between the deep features re-

covered by fθ from the watermark vertex w using the loss

function Lw := ‖w − fθ(A)‖22. On the other hand, it is antic-

ipated that the difference between original and watermarked

audio will be imperceptible, so we impose a limitation on

the magnitude of the perturbation δ using the loss function

LA :=
‖δ‖22

Size(δ)
, where the denominator indicates averaging

over all channels and samples of δ. Thus, the loss function of

watermark embedding is,

l(Ao, δ, w) = Lw + λLA

= ‖w − fθ(Ao + δ)‖22 + λ
‖δ‖22

Size(δ)

(1)

where λ is the weight to balance the two losses. We refer to

Lw as the watermark loss to manage robustness and LA as the

distortion loss to ensure imperceptibility.

Data augmentation during embedding The collection of

augmenting transforms T mentioned in Section 3.1 is like-

wise employed during the watermark embedding. These

transformations are used as attacks that audio may encounter.

The loss is computed by assuming that the watermarked au-

dio may undergo attacks, and the distance between the deep

features from these attacked audio and watermark w can be

stated as,

Lw,t = ‖w − fθ(Tr(Ao + δ, t))‖22 (2)

where Tr(A, t) ∈ A denotes the application of a transforma-

tion (attack) t ∈ T to the audio A.

During watermark embedding, the transformed loss Lw,t

is first averaged according to various t ∈ T and then em-

ployed as the optimization objective. Consequently, when

data augmentation is considered, the loss function of water-

mark embedding is as,

l
′
(A, δ, w) = Et∈T [Lw,t] + λLA (3)

where the term Et∈T [Lw,t] pushes the deep feature to the des-

ignated point (watermark), and ensures that the watermark in-

formation can be extracted after various transformations; fur-

thermore, the term LA limits the magnitude of the perturba-

tion and keeps the watermark imperceptible.

The Eq. (3) can be solved by the typical method of adver-

sarial attacks [6, 24],

δ̃ = argmin
δ

l
′
(A, δ, w) (4)

Since all the augmenting transform t ∈ T and the feature

extractor fθ are differentiable, Gradient descent optimizers

can be used to optimize the loss l
′
(A, δ, w). Moreover, it is

assumed that all transformations t ∈ T are equally probable.

3.2.2. Extraction

Simply feeding the received watermarked audio Ãw into fθ
yields a deep feature extraction. The extracted watermark in-

formation is the nearest hypercube vertex to the deep feature

corresponding to the watermarked audio, as,

ŵ = binary(fθ(Ãw)) (5)

where

binary(x) =

{
1, x ≥ 0

0, x < 0

3.3. Error correcting code

The embedding approach in Eq. (4) minimizes the loss be-

tween extracted and embedded watermark, but does not guar-

antee that they are identical. We employ RS (Reed-Solomon)

error correcting code to ensure that the extracted watermark

information is as precise as feasible.

RS code is one of the most powerful known linear cyclic

packet codes to correct random and multiple burst errors. We

employ codes whose codewords are drawn from the Galois

field GF(28), where every 8 bits constitute a codeword, ide-

ally suited for byte-wise processing on computers.

During the encoding phase, the created redundant codes

are attached to the message codes to generate RS codes. RS

codes with a certain level of inaccuracy can still reconstruct

the message codes accurately.

We encode a 64-bit (8-byte) message string as a 320-bit

(40-byte) watermark string and replace its zeros with -1 to

obtain a 320-dimensional watermark w. This encoding can

correct errors of up to 16 bytes. When there are too many

errors to decode, only the first 64 bits of the 320-bit string are

extracted as the message.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Experimental settings and implementation details

Data: The classification network was trained and evaluated

in the FMA-small dataset [25]. The dataset contains 8000
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Table 1. The transformations or attacks used in this study
Abv. Attack Description
CLP Closed loop Audio is not attacked.

WGN
Additive white Gaussian noise with SNR

Gaussian Noise of 20dB ia added.

LPF Lowpass filter
Audio is filtered by a Butter-

worth filter, with 8kHz cutoff.

CRP Random Crop
Audio is cropped randomly,

retaining 80% of duration.

RVB Reverberation
Simulating audio propagation

in a closed room.

audio tracks, of which 6400 belong to the trainingset and 800

tracks each to the test and validation sets. These tracks are

stereo audio in MP3 format with a samplerate of 44100Hz

and a duration of 30s. The dataset consists of 8 categories,

each with 1000 audio tracks. 100 audio from the validation

set were used for the watermark embedding experiments.

Experimental settings: During watermark embedding,

the weight in Eq. (3) is set to λ = 1. Adam [26] optimizer

with a learning rate of 0.001 are used to solve Eq. (4) over

300 iterations. The settings of the training network will be

mentioned later.

Data augmentations or attacks: The transformations or

attacks used at training network, watermark embedding and

evaluation are presented in Tab. 1. The reverberation was

simulated by Pyroomacoustics [27] with a 9 × 7.5 × 3.5m3

rectangular room. To avoid the difficulty of gradient computa-

tion, we use masking with 0s instead of the random crop when

training network and watermark embedding. When evaluat-

ing the proposed method, we use the actual crop.

Metrics: The imperceptibility of the watermark is eval-

uated by SWR (Signal Watermark Ratio), which means the

energy ratio of perturbation to audio,

SWR = 10 lg
‖δ‖22
‖Ao‖22

The BDR (Bit Detection Rate) is used to evaluate the

robustness of the proposed method, where CBDR (Coarse

BDR) measures the robustness of 320-dimensional features

and the FBDR (Fine BDR) measures the robustness of the

watermark after RS decoding.

4.2. Training of the classification network
The classification network predicts the audio into 8 categories

according to musical style, and the cross-entropy loss was em-

ployed for training. The network was trained twice, one with

augmented data (augment) and the other without (base).

The Adam optimizer with learning rate 0.001 is also em-

ployed for network training, and training is terminated when

the training loss and test loss cease dropping. Training with

augmented data was iterated with 120 epochs, while the base

training was iterated with 200 epochs.

The loss and prediction accuracy of training and test are

shown in Figure 3. The red plots in Figure 3 indicate the

(a) loss (b) prediction accuracy

Fig. 3. The classification network training.

’augment’ training, while the blue plots indicate the ’base’

training. The solid lines indicate the training experiment, and

the dashed lines mean the test.

After training, the network perfectly predicted the cate-

gories on the training set, but on the test set, only 65% of pre-

dictions were accurate. Although ’augment’ converges faster,

’base’ and ’augment’ networks almost achieve the same end

performance.

4.3. Ablation study of data augmentation
In this subsection, we conduct an ablation study on the appli-

cation of data augmentation. We performed four embedding

experiments, which are (1) using the ’base’ feature extrac-

tor and embedding without augmented data (TOEO), (2) us-

ing the ’augment’ feature extractor and embedding without

augmented data (TAEO), (3) using the ’base’ feature extrac-

tor and embedding with augmented data (TOEA), and (4) us-

ing the ’augment’ feature extractor and embedding with aug-

mented data (TAEA).

The CBDRs were recorded during these experiments.

The results are shown in Figure 4. In the presence of attacks,

there are significant improvements through data augmenta-

tions. Overall, embedding watermarking with data augmenta-

tion (TOEA, green) improves performance significantly more

than the training network with data augmentation (TAEO,

blue). The method achieves the best robustness when the

training network and the embedded watermark both with data

augmentation (TAEA, orange).

The CBDRs are different against different attacks. In par-

ticular, the robustness of the four experiments is comparable

against CLP (no attack) and finally detects close to 90% of

the watermark bits. The experimental results of LPF and RVB

have some similarities due to the fact that they both use con-

volution for implementation. The difference between the vari-

ous experiments in CRP is negligible, as both can only extract

roughly 80% of the watermark. Embedding with data aug-

mentations makes the proposed method more robust against

WGN, but the accuracy of TAEA is still below 60%.

In TAEA, the robustness of our method is better against

LPF than against CLP, and we speculate that the lowpass fil-

tering and MFCC calculation make the watermark more ro-

bust. For this, WGN and LPF were combined and participated

in the experiments, and the experimental results showed that

WGN+LPF also demonstrated good robustness.
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(a) CLP (b) WGN

(c) LPF (d) CRP

(e) RVB (f) WGN+LPF

Fig. 4. The CBDRs against different attacks.

(a) perturbed norm ‖δ‖22 (b) SWR

Fig. 5. The imperceptibility of the watermark

We also recorded the perturbed norm ‖δ‖22 and the SWRs,

as shown in Figure 5. They can reflect the imperceptibility

of the watermark. The norm ‖δ‖22 gradually oscillates as the

iteration proceeds due to the conflict between watermark loss

Lw and distortion loss LA. TOEA and TAEA correspond to

a slightly larger norm than TAEO and TOEO. The data aug-

mentation during embedding limits the range of perturbation

so that only a larger magnitude of perturbation can be chosen

to satisfy the robustness of the watermark. However, it is not

easy to see this cost in SWR.

In a nutshell, data augmentation significantly improves

the robustness of watermarking. In the subsequent experi-

ments, we only use the results of TAEA.

Table 2. The CBDRs and FBDRs
Attack CBDR(%) FBDR(%) Diff
CLP 92.75 99.29 6.54

WGN 57.37 57.80 0.53

LPF 94.00 99.42 5.42

CRP 88.50 96.55 8.05

RVB 93.30 99.33 6.03

WGN+LFP 82.73 92.23 9.50

4.4. Effectiveness of RS code
We further evaluated the FBDR of this method and compared

it with CBDR. Due to the time consumption of RS decoding,

we only experimented with the results after the embedding

iterations were stopped. The experimental results are shown

in Table 2.

RS coding has improved robustness in most attacks. The

FBDR reaches more than 95% except for both WGN and

WGN+LPF attacks.

Although perfect extraction is not achieved, we believe

that 95% of the FBDR is robust enough in the application.

A further benefit of the proposed method is that it re-

sists reverberation and cropping without auxiliary techniques,

which is impossible with traditional methods.

4.5. Comparison with existing works
We compare the imperceptibility and robustness of the pro-

posed method with other methods. Since deep learning based

audio watermarking methods are scarce in the literature, we

only found the work by Kong et al. [22]. We transferred HiD-

DeN [11], Landmark work for deep image watermarking, to

the audio domain as HiDDen-A and trained it with 20,000

minutes of audio (part of the FMA dataset) and then com-

pared HiDDeN-A with the proposed method.

The comparisons are shown in Table 3. Our method has

better robustness than that of comparisons. The impercepti-

bility is slightly worse than the comparison methods, but the

improvement in robustness is more pronounced.

The performance of HiddeN-A is worse than that of HiD-

DeN in the image domain, indicating that additional efforts

are needed for directly transfering the image watermarking

to audio. Moreover, Kong’s method focuses more on infor-

mation hiding and ignores the necessity of robustness. Our

method demonstrates a more practical performance in com-

parison, which is rare in deep learning-based audio water-

marking.

5. SUMMARY

In this article, we propose a new audio watermarking method

that embeds watermarks into deep features using trained neu-

ral networks. We demonstrate that data augmentation signif-

icantly increases the watermarking’s robustness. The perfor-

mance of the proposed method is also enhanced via RS cod-

ing. The proposed method is more robust than existing DL-

based methods.
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Table 3. The performance of proposed and other methods.

(Imp. means imperceptibility, Rob. means robustness.)
Performance Kong[22] HiDDeN-A Our

Imp.(dB) SWR 30.17 28.24 22.95

Rob.

(FBDRs:%)

CLP 100 88.73 99.29

WGN 0 47.93 57.80

LPF 1 68.49 99.42

CRP 0 79.78 96.55

RVB 1 52.48 99.33

However, our work still deserves of improvement. The

feature extractor trained with the classification challenge suf-

fers from semantic collapse, and extracting more extensive

audio features will be the focus of the following research. In

addition, we will continue to improve the robustness of this

work against pointwise random noise.
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