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To optimize flapping foil performance, in the current study we apply deep reinforcement
learning (DRL) to plan foil non-parametric motion, as the traditional control techniques
and simplified motions cannot fully model nonlinear, unsteady and high-dimensional
foil–vortex interactions. Therefore, a DRL training framework is proposed based on the
proximal policy optimization algorithm and the transformer architecture, where the policy
is initialized from the sinusoidal expert display. We first demonstrate the effectiveness
of the proposed DRL-training framework, learning the coherent foil flapping motion
to generate thrust. Furthermore, by adjusting reward functions and action thresholds,
DRL-optimized foil trajectories can gain significant enhancement in both thrust and
efficiency compared with the sinusoidal motion. Last, through visualization of wake
morphology and instantaneous pressure distributions, it is found that DRL-optimized
foil can adaptively adjust the phases between motion and shedding vortices to improve
hydrodynamic performance. Our results give a hint of how to solve complex fluid
manipulation problems using the DRL method.
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1. Introduction

The design of novel bioinspired flapping propulsors has garnered considerable interest
within the scientific community (Licht et al. 2004). As Lighthill eloquently stated, ‘about
109 years of animal evolution . . . have inevitably produced rather refined means of
generating fast movement at low energy cost’ (Lighthill 1969). Indeed, when compared
with traditional man-made aquatic transportation methods (Low 2011), nature offers
alternative solutions that have proven to be more agile and effective in overcoming the
constraints posed by aquatic environments (Fish 1993; Jayne & Lauder 1995; Domenici &
Blake 1997; Triantafyllou, Weymouth & Miao 2016). For instance, consider the vortical
wake generated behind a rigid hull submarine, which results in energy losses due to flow
separation, ultimately leading to a significant loss of propulsive efficiency (Newman 1977).
On the contrary, aquatic animals employ oscillatory actuation techniques (Triantafyllou,
Triantafyllou & Yue 2000) that can reduce flow separation, recover losses incurred by their
bodies (Barrett et al. 1999) and even harness energy from unsteady oncoming flows (Beal
et al. 2006).

To model animal oscillatory propulsion, many researchers have adopted a simplified
model involving sinusoidally flapping foils with easily parameterized trajectories (Wu
et al. 2020). Notably, studies have highlighted the strong correlation between flapping
efficiency and the Strouhal number (Sr), which is evident in its narrow optimal
range across aquatic animals of varying sizes (Qi et al. 2022). In addition, numerous
research efforts have been dedicated to discovering a universal scaling law governing
the wake patterns produced by flapping foils. For instance, Lagopoulos, Weymouth
& Ganapathisubramani (2019) deduced that the foil’s kinematics can serve as a
parameterization for the drag-to-thrust wake transition. Moreover, investigations of the
hydrodynamic characteristics of foils, such as thrust, side force, power coefficient and
efficiency, based on sinusoidal motion, have yielded valuable insight over decades
(Godoy-Diana, Aider & Wesfreid 2008; Schnipper, Andersen & Bohr 2009; Xiao & Zhu
2014; Young, Lai & Platzer 2014; Wu et al. 2020). For example, Floryan et al. (2017)
demonstrated that foil performance depends both on the Strouhal number and the reduced
frequency.

However, recent observations have revealed that animals often employ non-sinusoidal
motions, especially in complex group formations. For instance, Li et al. (2021) shed light
on how fish can modulate a distinctive intrinsic cycle to maintain their desired speed
in the burst-and-coast swimming gait. This unique swimming pattern not only allows
fish to achieve their desired speed but also endows them with rapid manoeuvrability
through substantial body flexing (Triantafyllou et al. 2016). Furthermore, Chin & Lentink
(2016) conducted a study on the wing–wake interaction during stroke reversal in insects,
which elucidates how they can travel efficiently. When fish travel in tandem or schooling
formations with non-sinusoidal gaits, the resulting wake interactions and patterns become
notably more complex, adding to the intrigue of their locomotion. Lagopoulos, Weymouth
& Ganapathisubramani (2020) conducted a comprehensive examination of the influence
of the downstream field on the front foil, providing further information on these complex
interactions.

As flapping motions become more complex, their trajectories become less amenable
to simple parameterization. Preliminary studies (Teng et al. 2016; Liu, Huang & Lu
2020; Ashraf, Wassenbergh & Verma 2021) have examined various non-sinusoidal
flapping trajectories and have demonstrated significant hydrodynamic enhancements that
cannot be ignored. Biological investigations by Lighthill (1971) and Videler (1981)
have revealed that such swimming gaits can substantially improve energy efficiency.
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However, this improvement is intricately linked to intrinsic and motion parameters specific
to fish, rendering their intermittent dynamics incompatible with scaling laws designed
for continuous swimming (Gazzola, Argentina & Mahadevan 2014; Van Buren et al.
2018). In reality, even moderate changes in the instantaneous angle of attack can lead to
significant alterations in forces, mainly attributed to intricate interactions between the foil
and vortices (Izraelevitz & Triantafyllou 2014). Therefore, the underlying flow mechanism
of non-parametric foil flapping remains only partially explored and lacks clarity.
This represents a quintessential nonlinear, unsteady and high-dimensional flow control
problem (Gerhard et al. 2003; Flinois & Morgans 2016; Guéniat, Mathelin & Hussaini
2016). Optimizing such non-parametric flapping trajectories presents a formidable
challenge for traditional control techniques, often resulting in inefficient and intractable
solutions.

Deep reinforcement learning (DRL) has recently gained significant attention in fluid
mechanics for its astonishing achievement in solving complex problems, such as Atari
(Silver et al. 2017) and the three-dimensional maze game (Beattie et al. 2016), continuous
control of underwater robot fish (Zheng et al. 2021; Zhang et al. 2022), optimal control
of nonlinear systems (Luo, Liu & Wu 2017), pedestrian regulation (Wan et al. 2018),
traffic grid signal control (Tan et al. 2019), robotics (Won, Müller & Lee 2020) and other
industrial tasks (Degrave et al. 2022).

Recently, DRL has found applications in various flow control problems, achieving
several notable successes. These successes encompass drag reduction for bluff bodies
(Rabault et al. 2019; Fan et al. 2020) and lift enhancement for airfoils (Wang et al.
2022), where DRL has been employed to learn statistical mean control actions that
induce favourable wake patterns. Furthermore, Verma, Novati & Koumoutsakos (2018)
implemented DRL to reveal how fish schooling could harvest energy in parametric motion.
However, it is worth noting that optimizing foil flapping motions presents a distinct
challenge. This challenge involves learning a coherent cyclical motion, meticulously
manipulating the strength and timing of shedding vortices and effectively managing their
interactions with the moving foil (Muhammad, Alam & Noack 2022). These requirements
extend beyond the capabilities of conventional DRL algorithms, which may not readily
adapt to such complex tasks.

The present study introduces a DRL training framework based on the proximal policy
optimization (PPO) algorithm and the transformer architecture. Notably, the policy is
initialized using expert demonstrations rather than randomization. In our initial phase, we
conduct a comprehensive comparison with other DRL training frameworks to ascertain
the learning capabilities of the proposed agent in the context of flapping. Furthermore,
by meticulously adjusting reward functions and action thresholds, we demonstrate
substantial improvements in different optimization emphases related to thrust and
efficiency through the learned non-parametric flapping trajectories. Finally, through flow
visualization and the comparison of key hydrodynamic parameters, we provide insights
into why the agent’s flapping behaviour may outperform statistically equivalent sinusoidal
motion.

This rest of the paper is organized as follows. In § 2, the physical and simulation models
are presented with an emphasis on the DRL learning framework. Results are presented
in § 3 on DRL learning results and their comparison with sinusoidal motions. To close,
§ 4 provides a summary and conclusions. In the appendices, we provide validation and
verification of the simulation method as well as additional DRL learning results using a
different reward function.
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2. Materials and methods

2.1. Physical model
We numerically study a two-dimensional NACA0016 foil flapping in the uniform inflow at
Re = U∞c/ν = 1173, where U∞ is the uniform inflow velocity, c is the foil chord length
and ν is the fluid kinematic viscosity. The trajectory of the flapping foil is first prescribed as
a sinusoidal motion combined with both heave hs(t) and pitch θs(t) around c/4. Therefore,
the prescribed sinusoidal motion can be parameterized as follows:

hs(t) = h0 sin(2πft),

θs(t) = θ0 sin(2πft + φ),

}
(2.1)

where the flapping frequency f is set to be the same for both pitch and heave with
amplitudes of θ0 and h0, respectively. Here φ denotes the phase difference between the
two motions. Therefore, the non-dimensional parameters of Strouhal number Sr and scaled
amplitude factor AD can be defined as follows:

Sr = fD
U∞

, AD = 2A
D

, (2.2a,b)

where D is the foil thickness, and A is the foil peak-to-peak trailing edge amplitude. We
measure the flapping foil thrust, lift and moment coefficients as follows:

CT = 2Fx

ρU2∞c
, CL = 2Fy

ρU2∞c
, CM = 2M

ρU2∞c2 , (2.3a–c)

where Fx and Fy are the fluid forces opposite and perpendicular to the inflow direction.
Here, M is the fluid moment around the pitching point, and ρ is fluid density. Therefore,
we can quantify flapping performance via the mean thrust coefficient C̄T , as

C̄T = 1
T

∫ T
0

CT dt, (2.4)

and the efficiency coefficient η as

η = C̄T∫ T
0

CP dt

= C̄T∫ T
0

1
U∞

(CLḣ+ CM θ̇ ) dt

, (2.5)

where ḣ and θ̇ are the heaving and angular velocity, respectively, and T is one flapping
period.

For the DRL learning cases, the instantaneous heaving and pitching velocities V̂y and V̂θ

are used, and hence the instantaneous heaving position and pitching angle are cumulative
values from the start of training until the current time, which can be described by

yl(t) =
t∑

i=0

V̂i
yδt, θl(t) =

t∑
i=0

V̂i
θ δt, (2.6a,b)

where i denotes the current step for simulation. The multiplier δt is one time step in
simulation.
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2.2. Numerical method
In the current work, we select the CFD solver based on the boundary data immersion
method (BDIM) (Weymouth & Yue 2011) for its capability to simulate complex geometries
undergoing rapid motion with large amplitudes (Schlanderer, Weymouth & Sandberg
2017). The solver has been validated with various experimental data (Maertens &
Weymouth 2015). In detail, the simulation is set with the resolution of 32 grids per
foil chord and a domain size of 16c× 12c, and the calculation time step is set to adapt
dynamically to the complexity of the calculation. The calculation speed and efficient
data communication make the current BDIM solver a favourable DRL environment.
A detailed description of the simulation set-up, together with the validation and
verification is provided in Appendix A. It shall be noted that both the mesh density, domain
size, Reynolds number and resolution in the current study could easily be increased in a
future study, but are kept low here as it allows for fast training which is the primary aim
to demonstrate our proof-of-concept DRL learning process for flapping foil. In the current
work, each simulation with 20 flapping periods takes 20 min on a single core of a windows
laptop with an i7-9700 CPU.

2.3. Reinforcement learning framework and algorithm
In this section, we formulate the non-parametric foil motion within the framework of
a sequential decision problem. Based on this formulation, we approach the problem of
foil trajectory planning as a reinforcement learning (RL) task, paving the way for the
application of DRL to control non-parametric motion (Peng, Berseth & Van de Panne
2016). After a comprehensive analysis of the core challenges encountered when addressing
this high-dimensional RL problem, we integrate transformers, pretrained policies and
diverse reward functions into the DRL training framework, utilizing the PPO algorithm.
We provide a concise overview of the principles that underlie these methods and highlight
their distinct advantages. Furthermore, we outline the complete pipeline for executing RL
within the context of foil trajectory planning.

We treat the flapping foil as the agent in the decision-making process and formulate
this as a partially observable Markov decision process (POMDP) (Cassandra 1998).
Incorporating POMDP is motivated by its ability to address complex decision-making
challenges in the presence of uncertainty and partial observability. The nature of the
foil non-parametric motion planning problem introduces partial observability due to
limited environmental data availability (Dusek et al. 2012). In practice, obtaining a full
set of information about the foil’s interaction with the fluid, including forces, pressure
distributions along the foil and the wake patterns, can be challenging. To account for this,
we formulate the problem as a POMDP, where the agent must make decisions based on
incomplete information. This partial observability is a significant challenge that our DRL
framework tackles head-on.

In detail, POMDP describes the process of an agent at time t and in state st receiving
observation ot with a belief b over the state space, and then taking action a based on
policy π(a | o, b) with feedback reward rt. Specifically, the POMDP is defined by a tuple
(S, Z , A, O,P, R, γ ), where S, Z , A are finite sets of state s, observation o and action a.
The transition and observation functions P and O describe the probability of the next state
st+1 and observation ot+1 in a given state st after taking a given action at, which are defined
as follows:

P : S × A→ 	(S),

O : S × A→ 	(Z).

}
(2.7)
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Figure 1. Sketch of DRL framework and data flow. The arrows indicate the control sequence. Before the
active learning process, the policy net is first pretrained by the expert data (selected sinusoidal motion) as an
imitation learning. In each episode, the agent enquires about the states via observation o from 10 parallel
simulation environments where the foil is free to heave and pitch in the uniform inflow. Then the agent
sends actions a (V̂θ , V̂y) adjusted by L̂. We implement the XML-RPC (extensible markup language remote
procedure call) protocol to enable cross-platform communication between the environment (computational
fluid dynamics (CFD) solver) and DRL agent (Python).

In addition, the reward function R defines the reward received by the agent as follows:

R : S × A→ R, (2.8)

where γ ∈ [0, 1] is the discount factor. Therefore, the goal of the agent is to find a
policy π that maximizes the expected discounted sum of rewards over time, subject to
the uncertainty of the environment, as follows:

max
π

Es0,a0,s1,a1,...

[ ∞∑
t=0

γ tR(st, at)

]
, (2.9)

where in the current problem, ot is a 24-dimensional array, containing the instantaneous
heave and pitch positions and velocities, and pressure measured from 20 sparse sensors
around the foil. Here at is a two-dimensional array of the prescribed pitch and heave
velocities determined by the agent. It is noted that the locations of the 20 pressure sensors
are described in figure 1.

Compared with the traditional RL tasks, the foil trajectory planning problem entails
overcoming domain-specific obstacles, such as vast exploration spaces and multiobjective
preferences.

The vast exploration spaces refer to the wide range of possible trajectories and motion
patterns that the flapping foil can adopt within the fluid environment. This space is vast
because there are numerous parameters and variables that can be adjusted to influence
the motion of the foil, such as the amplitude and frequency of the flapping motion. The
significant challenge to the algorithm’s exploration arises from the tendency for extensive
and often fruitless searches within the vast exploration spaces, which lack meaningful
trajectories.

In the context of the foil trajectory planning task, the ways to evaluate the motion
pattern are diverse. Therefore, the reward function should be designed to combine multiple
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objectives, such as maximizing thrust, minimizing energy consumption and achieving
stability (Esfahani, Karbasian & Kim 2019; Liu et al. 2019). However, foil motion planning
often involves multiple conflicting objectives (Marler & Arora 2004). Balancing these
objectives adds complexity to the exploration space, as different motion patterns may
be required to optimize each goal. To address these challenges, we employ a PPO-based
algorithm (Schulman et al. 2017) combined with a transformer architecture (Vaswani et al.
2017). Since limited environmental data (e.g. force, pressure on the foil) can be obtained in
real-world situations, we formulate this issue as a POMDP, effectively addressed through
our transformer architecture implementation. In the following, we emphasize the primary
elements of our DRL framework.

PPO algorithm. The PPO algorithm is a popular model-free DRL algorithm used
in machine learning and robotics for solving complex decision-making tasks (Raffin
et al. 2021; Mock & Muknahallipatna 2023). It gains recognition for its stability and
effectiveness. The PPO is a policy optimization algorithm that belongs to the family of
policy gradient methods. This family of methods utilizes the gradient of expect reward to
iteratively optimize policy.

One of the strengths of PPO is its stability in training. The PPO is robust as an efficient
approximation of the trust region optimization approach, which promises reliable policy
improvement in noisy environments (Zhang et al. 2020). The PPO employs clipping to
ensure that policy updates are not too drastic, thus approximately operating within a trust
region, which defines a boundary for how much the policy can change in each iteration,
which helps prevent overly aggressive policy updates, contributing to the algorithm’s
stability.

In addition, the aforementioned strength of the PPO algorithm also facilitates support
for large-scale parallel training (Yu et al. 2022). In parallel training, multiple agents are
trained simultaneously on different batches of data. This can significantly accelerate the
training process, but it can also lead to instability, since the policies of different agents
usually diverge from each other. This divergence leads to unstable policy update, which
further hurts the performance of the algorithm. Fortunately, this risk could be mitigated
by the clipping technique used in the PPO, making it a good choice for large-scale parallel
training. With the large-scale parallel training, more data can be collected in a shorter time,
essential for long-episodic and high-dimensional tasks (Berner et al. 2019). It is noted that
we applied parallel simulation environments in our study, which significantly speed up the
training process.

As the trajectories in the context of foil motion planning are longer than common RL
tasks, our method faces the problem of credit assignment. The credit assignment problem
pertains to the fundamental challenge of attributing the consequences of actions taken
by an agent to the responsible decisions or states that preceded those outcomes. It is
particularly salient in scenarios where the temporal gap between actions and rewards is
substantial. In order to address this issue effectively, we integrate generalized advantage
estimation (GAE) (Schulman et al. 2017) into the PPO algorithm to assist in long-term
credit assignment, thereby improving the algorithm’s performance and data efficiency.
This approach has proven favourable for addressing high-dimensional continuous control
problems, including the flapping foil problem studied in our current research. The GAE
is a pivotal technique in the field of RL. Its core concept lies in estimating the advantage
function, denoted as A(s, a). The advantage function quantifies the advantage of choosing
a particular action a in a given state s over following the current policy. Mathematically,
it is calculated as the difference between the expected cumulative reward, known as the
action-value function Q(s, a), and the value function V(s). In other words, it can be

984 A9-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1096


Z.P. Wang and others

expressed as A(s, a) = Q(s, a)− V(s). The use of the advantage function allows us to
measure the value of each action, aiding in more precise and effective credit assignment
over extended time horizons. However, calculating the advantage function with only one
time step return is unstable. The GAE computes the advantage estimate for each time
step in an episode by considering a combination of one-step and multistep returns. It
combines the advantages from different time scales to provide a more comprehensive view
of the advantage function. The GAE introduces a parameter λ that controls the degree of
generalization across different time steps. By adjusting λ, you can emphasize more recent
rewards or place greater weight on long-term rewards in the advantage estimation, which
stabilize the learning process. The formula for GAE with λ is as follows:

GAE(λ, t) = (1− λ)
∞∑

n=1

(λnδt+n−1), (2.10)

where δt+n−1 is the n-step advantage at time step t + n− 1. In addition, PPO is known for
being relatively sample-efficient compared with some other RL algorithms. It can learn
from fewer interactions with the environment, which can be crucial in situations where
collecting data is expensive or time consuming.

The PPO follows the actor–critic framework in RL. The actor π(a | o, b), parameterized
as θ , interacts with the environment, while the critic V(s), parameterized as φ, predicts
the onward cumulative reward. For the actor, PPO maximizes a clip objective to penalize
changes to the policy that move rt(θ) far away from the old policy,

Lactor(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1+ ε)Ât)], (2.11)

where rt(θ) = πθ (at | st)/πθold(at | st) denote the probability ratio, ε is a hyperparameter
to constrain the change of policy and At is the advantage to reduce policy gradient variance
(Sutton & Barto 2018). The clip function is defined as follows:

clip(x, l, u) =

⎧⎪⎨
⎪⎩

u, x > u
x, l ≤ x ≤ u
l, x < l

. (2.12)

For the critic, PPO minimizes the temporal difference loss as follows:

Lcritic(φ) = rt + γ V(st+1;φ)− V(st;φ). (2.13)

Therefore, the learning objective for PPO is defined as follows:

L(θ, φ) = Lcritic(φ)+ Lactor(θ). (2.14)

Transformer. As POMDP problems assume that the agent does not have full information
about the state of the environment, the agent is required to maintain a belief state over the
hidden state of the environment. This can be thought of as a summary of the agent’s
knowledge about the state of environment. The process of maintaining a belief state over
the states necessitates the information of the previous state. Therefore, maintaining a
belief state requires the model has the ability to model the time-dependent behaviour (Ni,
Eysenbach & Salakhutdinov 2022).

There are two widely applied neural network architectures to model the time-dependent
behaviour. Recurrent neural networks (RNNs) (Medsker & Jain 2001) are a type of
neural network that have the ability to model long-term dependencies in data. The RNNs
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have a recurrent hidden state, which allows them to learn how to model the sequential
relationships between the data points. Another one is the transformer architecture
(Vaswani et al. 2017) which is a deep learning model that has revolutionized sequence
modelling, particularly in natural language processing (NLP) and beyond (Gillioz et al.
2020; Khan et al. 2022). Its core innovation lies in its ability to efficiently capture
long-range dependencies in sequences through self-attention mechanisms, enabling
parallel processing and scalability.

In the context of POMDP problems, RNNs can be used to learn the belief state of
the agent. The RNN can be trained on a dataset of past observations and actions, and
the agent’s belief state can be initialized to the output of the RNN. The agent can then
use the RNN to update its belief state at each time step based on its new observation
and its current action. However, a notable limitation of RNNs lies in their inherent
sequential processing paradigm. RNNs, by design, operate sequentially, processing input
data one time step at a time. This sequential nature can present challenges when
dealing with lengthy sequences, as it results in linearly increasing computation time
proportional to the sequence length. Consequently, for tasks characterized by extensive
temporal dependencies or extended input sequences, RNNs may suffer from slower
training and inference times. Furthermore, RNNs are susceptible to the vanishing gradient
problem when confronted with prolonged sequences, potentially impeding their capacity
to effectively capture long-range dependencies. In contrast, the transformer architecture
has proven highly parallelizable, enabling the efficient processing of sequences in parallel,
a significant departure from the sequential nature of recurrent neural networks. This
parallelism contributes to the model’s superior scalability and faster training times,
making it particularly appealing for handling long sequences and large datasets (Vaswani
et al. 2017). This advantage becomes particularly pertinent in applications where the
modelling of extensive temporal relationships is imperative.

In order to effectively model the time-dependent behaviour of foil flapping, we employ
the transformer architecture, which has been demonstrated to excel in capturing long-term
interactions and supporting high training throughput (Brown et al. 2020; Esslinger, Platt &
Amato 2022). At the heart of the transformer is the self-attention mechanism, which allows
each element in the input sequence to attend to all other elements, capturing complex
contextual relationships. The self-attention mechanism computes weighted sums of all
elements in the sequence, with weights determined dynamically for each element. This
attention mechanism is computed in parallel for all elements, leading to highly efficient
and scalable processing. The self-attention mechanism can be expressed by the following
equation:

Attention(Q, K , V ) = softmax
(

QKT
√

dk

)
V , (2.15)

where Q, K , V are vectors of queries, keys and values, respectively, which are learned
during training, and dk is the dimension of Q and K . In self-attentions, Q, K , V share
the same set of parameters. The attention mechanism allows for the estimation of
P( y | x) or P(yn | x1, . . . , xn) without the need for recursive processes, as in RNNs,
which results in higher computational efficiency and long-term interaction modelling
ability.

Our customized transformer architecture uses the history sequence as the belief about
the state, which comprises two primary components: a two-layer encoder and a linear layer
as the decoder. Each encoder features a self-attention structure and a feed-forward neural

984 A9-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1096


Z.P. Wang and others

network layer. The self-attention structure incorporates two attention heads, a hidden state
dimension of 32, and a query dimension of 128.

Pretraining on expert demonstration. The foil action’s cause-and-effect relationship is
non-instantaneous and the complete motion pattern consists of thousands of steps. This
vast policy space enables the potential discovery of superior foil motion control policies.
However, the exponentially expanding exploration space as a function of the simulation
length poses challenges to the learning performance. Although the PPO algorithm has
mitigated this problem, we find that it still struggles to explore in the exploration
space.

To address the substantial exploration space, we use a pretrained model, imitated from
sinusoidal expert policies, as an initial starting point in the high-value subspace of the
overall policy space. We chose 20 expert policies on the Pareto frontier in § 3.2. We then
collected 10 trajectories using each expert policy, ensuring that the trajectories span a
diverse range of expert policies and performance outcomes. These trajectories serve as a
valuable dataset for fine-tuning our pretrained model using RL techniques. Note that the
pretraining differs from imitation learning, because these trajectories are a sample from
the sine policies lying on the Pareto frontier. The use of this pretrained model prevents
unnecessary and meaningless exploration in the vast exploration space, leveraging the
knowledge captured from expert policies while still enabling exploration beyond their
capabilities. The learning objective of the pretraining is defined as follows:

Lpretrain(θ) = Es,â∼D[(a− π(s))2], (2.16)

where state s and the expert action â are sampled from the buffer storing the collected
expert trajectories.

Diverse reward functions. The foil motion optimization objectives are the efficiency
coefficient and the thrust coefficient, thus designing diverse reward functions to boost the
diversity of motion patterns is essential. The reward function applied in the present work
is

rt = βC clip(Ct
T ,−Cm

T , Cm
T )− βP clip(Ct

P,−Cm
P, Cm

P) (2.17)

to balance the maximization of thrust and energy consumption of foil motion. Optimizing
the cumulative reward is equivalent to integrating the two terms in the equation with
respect to time. The integration of the first terms in the equation with respect to time
is an approximation of propulsive impulse while the integration of the second terms in the
equation with respect to time is an approximation of energy consumption. Therefore, this
reward function encourages the foil to find a policy to maximize the thrust and minimize
energy consumption. The clip parameters Cm

T , Cm
P alleviate extreme value of CT and CP,

and linear weight βC, βP balance the importance between thrust and energy consumption.
The parameter tuple (βC, βP, Cm

T , Cm
P) describes a specific reward function, which is

initialized as (0.1, 1/3000, 10, 3000), respectively.
Training pipeline. To enhance data interaction throughput, we employ 10 parallel

simulations, serving as the environment to interact with the transformer agent to minimize
training time. Communication sequences and data flow are shown in figure 1. Agents are
initialized from a fully developed simulation in which the foil remains stationary and void
of DRL interference, ensuring a stable vortex shedding state at the onset of training. The
pretrained transformer receives 24 observation signals, normalized to [0, 1], and outputs
normalized rotational and vertical velocity, V̂θ and V̂y. These output actions are then scaled
by L̂ for amplitude adjustment. Initialized at [0.5, 0.5], L̂ remains constant throughout
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Algorithm 1 The DRL-based foil non-parametric path planning with PPO

Initialize actor network πθ with random parameters θ

Initialize critic network Vφ with random parameters φ

Initialize target network θ ′ ← θ

Initialize done = false, k ∈ N+
Initialize replay bufferD, observation buffer O ∈ R

k

for e = 1 in Ne do
reset CFD environment;
i← 0;
while done = false do

collect the observation oi;
store oi into O, state si = O[i : i+ k];
call an action:
ai ← πθ (si);
implement ai in the CFD environment;
get next state si+1, calculate reward ri;
i = i+ 1, si = si+1;
store transition (si, ai, ri, si+1) intoD;
if CFD stop then

done = true;
for j = 1 in Nj do

sample N transitions (s, a, r, s′) fromD;
calculate advantage estimates Ât using GAE;
update actor network πθ using PPO update rule:
θ ← θ + clip(

πθ (a | s)
πθ ′ (a | s) Ât, 1− ε, 1+ ε)∇θ log πθ (a | s);

update critic network Vφ by minimizing the value loss:
LV(φ) = 1

N
∑

t(Vφ(st)−
∑T

t′=t γ
t′−trt′)

2;
update the target network:
θ ′ ← τθ + (1− τ)θ ′;

training, and its effects will be discussed in § 3.2. The interactions and updates will be
repeated at every time step between agents and the environment.

Our experiments employed the PPO algorithm within the foil scenario, using the
following hyperparameters: we utilized a batch size of 256, and set the critic’s learning
rate at 0.001 and the actor’s learning rate at 0.0001. The context length was 50 with a
network configuration of two layers, two attention heads and an embedding dimension of
32. Our RL parameters included a discount factor (gamma) of 0.9, 10 PPO inner epochs, a
PPO clipping value of 0.2 and an entropy coefficient of 0.01. Additionally, we employed a
gradient clipping norm of 0.5 and a GAE lambda of 0.9. For the expert policy pretraining,
we use the offline data from sine policies lying on the Pareto frontier discussed in § 3.2.
The pseudocode is shown in Algorithm 1.

For reproducibility, we standardized our seed values across the board: neural network;
numpy; and random seeds were all set to unity. Our training process was executed over 200
episodes, with evaluations occurring every 50 episodes. Model checkpoints were saved at
intervals of two episodes, and rendering was disabled for the duration of training. Our
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experiments are conducted on a server with 2 Nvidia A100 GPU and AMD EPYC 7742
CPU, and each experiment lasts for around 13 h.

3. Results and discussion

We divide this section into three parts, each designed to examine a particular aspect
of the DRL-controlled flapping foil performance: (i) the effectiveness of the proposed
DRL framework, (ii) the enhanced performance of the DRL optimized trajectory
compared with sinusoidal motions and (iii) physical insight on the benefit of DRL
optimization.

3.1. Whether it can flap: the DRL training process of different agents
To demonstrate the effectiveness and efficiency of the proposed learning framework
for flapping foil problems, we compare the reward over 200 training episodes (set
(βC, βP, Cm

T , Cm
P) = (0.1, 1/3000, 10, 3000) in (B1)) for selected different combinations

of RL algorithms and neural network (NN) structures, including RNN+soft
actor–critic (SAC), multilayer perceptron (MLP)+PPO and transformer+PPO.

To ensure fair comparison, we apply the same environment parameters for
all algorithms, including reward function parameter tuple as (βC, βP, Cm

T , Cm
P) =

(0.1, 1/3000, 10, 3000). However, different training parameters are selected for each
baseline algorithms to guarantee convergence as follows.

(i) Transformer+PPO (TP) adopts the training setting already described in 2.3.
(ii) RNN+SAC. The learning rates for the actor and critic networks were set to 0.003

and 0.001, respectively. The value of epsilon ε, crucial for exploration–exploitation
balance, started at 0.5 and decayed to 0.05. The batch size was set to 256. A clipping
parameter of 0.2 was used to mitigate exploding gradients. The learning frequency
was set to 1. The networks comprised two hidden layers each with 64 hidden state
units. A Gaussian policy was employed for action selection. Training was conducted
over 200 episodes. Entropy tuning was enabled. Target networks were updated every
30 steps. The capacity of the replay buffer was 10 000. Lastly, the target entropy
ratio was set to 0.7. These settings were chosen empirically to ensure effective policy
learning while maintaining a balance between exploration and exploitation, stability
and computational efficiency.

(iii) MLP+PPO. Our actor and critic use the same MLP network architecture as
backbone, which consists of three hidden layers and the hidden state size in each
layer is 32. The input dimension of MLP depends on the input history time steps
as diminput = dimobs × steps. We utilized a batch size of 256, and set the critic’s
learning rate at 0.001 and the actor’s learning rate at 0.0001. Our RL parameters
included a discount factor (gamma) of 0.9, 10 PPO inner epochs, a PPO clipping
value of 0.2 and an entropy coefficient of 0.01. Additionally, we employed a gradient
clipping norm of 0.5 and a GAE lambda of 0.9.

The comparison result is shown in figure 2. Figure 2(a) shows different learning trends
that each framework manages to optimize foil flapping motion. The performance of the
RNN+SAC agent (depicted in blue) is notably below par. It commences its training with
the lowest recorded initial reward of −750, a stark contrast to the other agents. Soon after,
it experiences a significant drop in reward, descending into a lower reward range. Over
the course of training, the RNN+SAC agent makes efforts to enhance its performance
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by aiming for higher rewards and learning from formal training episodes. However,
its reward trajectory demonstrates large oscillations, consistently hovering around the
initial starting point with substantial variance, as indicated by the shaded blue region
in the plot.

In contrast, the two agents MLP+PPO, represented by the purple and red lines, exhibit
distinct patterns. Both MLP+PPO agents start their training with relatively high initial
rewards of−400. The MLP+PPO 1 agent (purple) gradually approaches a reward of−100
by episode 200, showing slow but steady progress with minimal variance (indicated by the
purple shadow). Meanwhile, the MLP+PPO 50 agent (red) makes rapid progress within
the first 30 episodes, reaching a reward of 0 at episode 50. This ascent is characterized by a
steady rate of increase, although it has relatively high variance (shown by the red shadow),
compared with the MLP+PPO 1 agent.

On a different note, the two TP agents (depicted in green and yellow) excel in
learning the oscillatory flapping motion, achieving the highest rewards among the selected
algorithms. The TP agent initialized with a random policy (yellow) exhibits rapid learning,
with its reward rapidly ascending and surpassing other agents before episode 60. However,
around episode 140, it experiences a decline in reward, eventually reaching zero. This
descent is accompanied by pronounced oscillations in variance, denoted by the yellow
shadow. In contrast, the pretraining TP agent (TPPT) quickly reaches its maximum
convergence reward of 100 before episode 40. It exhibits minimal fluctuations with reduced
variance (as indicated by the green shadow) throughout repeated training processes, in
contrast to the TP agent initialized with a random policy.

To visually illustrate the enhanced process and the convergence of hydrodynamic
performance with respect to C̄T and η, we have included subfigures for the TPPT agent. In
the process of optimizing C̄T and η, thrust shows a notable improvement increase before
the 50th episode, followed by oscillations and a subsequent decline to a relatively stable
value around 3.5. In contrast, efficiency experiences an initial rapid increase prior to the
50th episode, followed by a steady rise towards its convergence value of 0.15.

In figure 2, we have chosen three specific cases (indicated by red dots) to elucidate
the evolution of the TPPT agent, and we have plotted their mean wake velocity profiles,
instantaneous vorticity, as well as the time history of actions and forces (as shown in
figure 2b from left to right).

Starting with case A, it is evident that the action curves closely resemble a
sinusoidal motion with minor oscillations. This behaviour can be attributed to the expert
demonstrations provided during the pretraining phase. The hydrodynamic force curves
exhibit simple sinusoidal undulation, with the exception of CT , which displays double
peak values.

As we transition to case B, the action curves become clearly non-sinusoidal, although
they still exhibit oscillatory behaviour. However, they gradually evolve into a phase with
sudden changes, spikes and plateaus, resulting in higher spikes and more pronounced rates
of change in generated values for both CT and CL. Notably, CT exhibits a more pronounced
double-peak characteristic with higher values, and the rate of change in CL becomes more
substantial. Similarly, a comparison of mean velocity profiles in the wake between cases
A and B reveals the emergence of a stronger jet, indicating that the TPPT agent has
learned to achieve a higher CT for improved hydrodynamic performance. Despite minimal
changes in reward during continued training, we observe that in case C, the pitching
velocity and its rate of change become smoother, while the heaving velocity still exhibits
significant variation. This leads to more moderate, stable and less spiky force profiles,
where the double-peak characteristic of CT weakens with the plateaus becoming evident.
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Figure 2. (a) Reward over 200 episodes of different combinations of RL algorithms and NN structures, and
the parameters in the reward function are selected as (βC, βP, Cm

T , Cm
P) = (0.1, 1/3000, 10, 3000). The solid

line and shadow represent the mean and variance of three repeated training results, respectively. The inset CT
and η plots are selected for the TPPT agent. Note that the agents of MLP+PPO 1 and MLP+PPO 50 have
the same NN structure but use the current observation or 50 history data collection as the state, respectively.
(b) From left to right: the mean wake velocity profiles; instantaneous vorticity magnitude; the time traces (same
time interval of 1) of actions (V̂y, V̂θ ); and forces coefficients (CT , CL) for three cases denoted as red dots in
panel (a) where (A) is the 14th episode, C̄T = 1.93 and η = 0.12; (B) is the 104th episode, C̄T = 4.0 and
η = 0.13; (C) is the 182th episode, C̄T = 3.52 and η = 0.16.
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Figure 3. Scatters of C̄T and η for sinusoidal (blue) and TPPT agent (red) optimized motions. Note that
the big red dots have different rewards tuples and the small red dots are acquired by adjusting L̂ after the
training is finished. The inset figures plot instantaneous vorticity, the V̂y (red) and V̂θ (blue) time trace of
the selected three cases. In scenario I, C̄T = 0.562, η = 0.28, the reward tuple is (0.08, 1/3000, 8, 3000) and
L̂ = [0.49, 0.49]. In Scenario II, C̄T = 4.40, η = 0.184, the reward tuple is (0.1, 1/3000, 10, 3000) and L̂ =
[0.5, 0.5]. In Scenario III, C̄T = 14.3, η = 0.14, reward tuple is (0.1, 1/3000, 10, 3000) and L̂ = [0.58, 0.58].
In Scenario IV, C̄T = 25.7, η = 0.08, the reward tuple is (0.1, 1/3000, 30, 3000) and the L̂ = [0.5, 0.5].

Although there is a decrease in CT from case B to case C, it is worth noting that η increases
by 23 % from case B to C, as depicted in figure 2(a).

3.2. How well it flaps: the hydrodynamic outperformance through reward shaping
After showcasing the effectiveness of the TPPT agent, to highlight its superiority in foil
trajectory optimization, we compare the hydrodynamic performances of various TPPT
agents’ optimized trajectories with the results of a brute-force search for sinusoidal motion
in C̄T and η. Some of these results also serve as expert policies and initializations for the
TPPT agent, as illustrated in figure 3.

Figure 3 presents a visual representation of the results obtained from brute-force
search, indicated by small blue dots, alongside the cases trained using TPPT agents.
In a brute-force search, we systematically explored the parameter space associated with
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sinusoidal flapping motion, defined by the ranges Sr ∈ [0.1, 0.4], h0 ∈ [0.1, 0.6], θ0 ∈
[5◦, 70◦] and φ ∈ [0◦, 180◦]. It’s important to note that, out of the 3156 trials conducted
in the brute-force search, only cases resulting in positive values for both C̄T and η are
displayed in figure 3 for clarity.

Within figure 3, the small blue dots are distributed in an area where the highest C̄T and
η values are 26.683 and 0.224, respectively. Their spatial distribution forms a triangular
pattern with a subtly curved front sideline. Most of these blue dots cluster in the region
characterized by high values of η, and as the value of CT increases, the density of the
dots gradually decreases. The curved front sideline distinctly outlines a Pareto front,
a well-recognized reference line in multiobjective optimization (Marler & Arora 2010;
Preparata & Shamos 2012). In the context of multiobjective optimization, any trained
results that surpass the Pareto front are considered optimized ones.

Among the results of TPPT-trained cases, represented by both large and small red dots,
two TPPT agents with different reward tuples (large red dots) and five evolved TPPT
agents with varying L̂ (small red dots) achieved results clearly superior to the Pareto
front established by the brute-force search. It is important to highlight that, within the
parameters of our simulation setting (with Re = 1173), the highest efficiency achieved
among the brute-force search results stands at 0.224, clearly lower than the results of over
0.7 acquired in the experiments by Streitlien & Barrett (1998) and Hover & Triantafyllou
(2003) at high Reynolds number Re over 10 000. However, it is important to note that
the efficiency η of the flapping foil is highly influenced by the Reynolds number and
shape of the foil. For instance, Schouveiler, Hover & Triantafyllou (2005) observed a
peak efficiency of η = 0.8 at Re = 40 000, while Dong, Mittal & Najjar (2006) reported
a maximum efficiency of η = 0.18 at Re = 200 for a rigid flapping panel. Moreover,
Buchholz & Smits (2008) mentions that increasing the Reynolds number from 100 to 400
would lead to the propulsive efficiency of the pitching panel increasing approximately
twice because there is correspondingly substantial shear drag under the relatively low
Reynolds number (Dong et al. 2006). Therefore, this study focuses primarily on motion
optimization instead of Reynolds number, which we will discuss in subsequent sections.

We have selected four scenarios to clearly illustrate the improvements in C̄T and η

introduced by changes in actions, and we have plotted their instantaneous vorticity and
the time history of actions. In the first scenario (Scenario I), the primary objective is to
optimize and enhance the flapping efficiency η by reducing βC to 0.08. On the contrary,
Scenarios II and III aim to strike a balance in optimizing objectives between C̄T and η.
Scenario III has slightly higher action limits (L̂), allowing it to achieve a higher C̄T without
a significant compromise in η. In contrast, Scenario IV prioritizes thrust optimization by
increasing Cm

T in its reward tuple, emphasizing thrust production.
In Scenario I, the action curves resemble sinusoidal motion, but the mean value of

heaving velocity deviates significantly from zero. On the other hand, Scenarios II to
IV exhibit non-sinusoidal actions, sharing similar features with the case C in § 3.1. In
Scenario II, C̄T and η improve compared with case C in § 3.1, but the action history differs
due to an extended total training episode.

Comparing Scenario II with Scenario III, where the L̂ value is increased, the C̄T

of Scenario III experiences a remarkable enhancement, with increased amplitude of V̂θ

and V̂y, along with the appearance of spikes and plateaus. Compared with Scenario II,
Scenario IV places greater emphasis on optimization C̄T by increasing Cm

T , further
improving C̄T . In Scenario IV, the actions evolve into more complex forms with higher
spikes and greater velocity variation at higher action frequencies. Notably, we observed
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Figure 4. Instantaneous vorticity, pressure distributions and time trace of action and force over three vortex
shedding periods for (a) the TPPT Scenario I and (b) its statistically equivalent sinusoidal motion. (c–f ) Four
foil posture moments are selected to show complete pressure distribution change along the foil (the blue arrow
represents the negative pressure region, while the red arrow represents the positive pressure region). For better
visualization, the foil shown here is NACA 0020 instead of NACA 0016, and the Cp is scaled to 1/2 from its
original value.

that from Scenario I to Scenario IV, the amplitude of the velocity of the pitching actions
increases as the agent’s corresponding C̄T is enhanced. It is important to note that although
η decreases from Scenario I to Scenario IV, the overall hydrodynamic performance still
surpasses the Pareto front of the Brute Force search.

3.3. Why it flaps better: the physical insight of DRL optimization strategy
To illuminate the underlying mechanism behind the improvement in flapping performance
by the TPPT agent, we conduct an analysis and present plots in figures 4, 5, 6 and 7.
These figures provide insights into the vorticity (figures 4a,b, 6a,b and 7a,b), pressure
distributions around the foil (figures 4c,e, 6c,e and 7c,e), and the time history of actions
and forces (figures 4d,f , 6d,f and 7d,f ) for Scenario I, Scenario III and Scenario IV (as
shown in figure 3), along with their statistically equivalent sinusoidal motion counterparts.
In our study, the sinusoidal counterparts share statistically identical velocity amplitudes
for both heaving and pitching motions, Strouhal number Sr and phase shift φ, between
the two motions. These consistent amplitudes are obtained by multiplying the standard
deviation of the TPPT-controlled motion by the square root of two. Additionally, the phase
shift for pitching and heaving motion is determined by subtracting the unwrapped value
obtained after applying the Hilbert transformation. Lastly, the statistical value of Sr is
straightforwardly calculated by dividing the velocity circle by the non-dimensional time.

In the three selected scenarios,

(i) Scenario I (emphasizing on η) focuses on maximizing flapping efficiency while
ensuring thrust remains substantial by slightly decreasing βC in the reward tuple;
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Figure 5. (a) Vorticity plot of one entire vortex shedding and motion period of TPPT Scenario I. (b) Vorticity
plot of one entire vortex shedding and motion period of sinusoidal counterpart. (c) The foil posture versus its
pitching velocity for TPPT Scenario I. The blue quivers represent hydrodynamic force at that moment. (d) The
foil posture versus its pitching velocity for sinusoidal counterpart of Scenario I. The blue quivers represent
forces’ magnitude and direction at that moment. (e) Time trace of motion (V̂θ and V̂y) and power coefficient
(CP) for (i) TPPT Scenario I and (ii) its statistically equivalent sinusoidal motion.

(ii) Scenario III (balancing between η and CT ) achieves an equilibrium in the
optimization process, giving equal consideration to both η and CT by slightly
increasing L̂;

(iii) Scenario IV (emphasizing on CT ) prioritizes maximizing thrust by significantly
increasing Cm

T in the reward tuple.

Figure 4 presents the comparison between Scenario I (figure 4a) and its equivalent
sinusoidal motion counterpart (figure 4b). When comparing the instantaneous vorticity
in figure 4(a,b) (also depicted in figure 5a,b), it becomes evident that despite sharing
the same Sr, the TPPT-controlled Scenario I exhibits a lower vortex shedding frequency.
However, the strength of the vortex pairs is more pronounced in the far wake of the foil
for this scenario. This difference is also reflected in the comparison of thrust coefficient
(CT ), lift coefficient (CL) (as shown in figure 4d,e), and power coefficient (CP) (depicted in
figure 5). In figure 4, both scenarios exhibit similar pressure distributions around the foils.
However, the TPPT-controlled Scenario I outperforms its sinusoidal counterpart, with a
peak CT of 2.67 compared with 1.24 and a mean CT of 0.719 compared with 0.416.
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Figure 6. Instantaneous vorticity, pressure distributions, mean wake velocity at three chord lengths away from
trailing edge, time trace of action and force over four vortex shedding periods for (a) TPPT Scenario IV and
(b) its statistically equivalent sinusoidal motion. (c–f ) Four foil posture moments are selected to show complete
pressure distribution change along the foil (the blue arrow represents the negative pressure region, while the
red arrow represents the positive pressure region). For better visualization, the foil shown here is NACA 0020
instead of NACA 0016, and the Cp is scaled to 1/10 from its original value. The plots of foil posture versus
pitching velocity for (g) Scenario IV and (h) its counterpart are shown here. Note that the blue quivers represent
scaled forces’ magnitude and direction at that moment.

To clearly understand the enhancement, we plot the instantaneous power coefficient
in figure 5. The TPPT-controlled Scenario I also outperforms its sinusoidal counterpart.
Although it has a higher peak power coefficient (CP), with a mean CP of 29.8, it remains
lower than its counterpart, which has a mean CP of 37.2. This performance pattern aligns
with the optimization goal outlined in (2.4), where the TPPT-controlled Scenario I aims
to achieve a higher mean thrust while maintaining a lower power coefficient by decreasing
vortex shedding frequency, ultimately optimizing its flapping efficiency.

Figure 6 presents the comparison between Scenario IV (figure 6a) and its equivalent
sinusoidal motion counterpart (figure 6b). When comparing the instantaneous vorticity
in figure 6(a,b), it shows a more regulated vorticity pattern behind the foil of the DRL
optimized motion. In addition, from figure 6(c,e) of the pressure distribution along the foil
at four instants, we can quantitatively observe the effects of a strengthened separated wake
through pressure distributions around the foil. Depending on the orientation of the foil
surface, the pressure acting perpendicularly to the surface can either contribute to thrust
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or drag forces (Lucas, Lauder & Tytell 2020). When comparing the values of positive and
negative pressure around the foil trailing edge in D2 and D3 moments with those in S2 and
S3, it is evident that they are significantly increased. This increase in pressure functions to
directly boost CT . Notably, the D3 moment, characterized by the maximum acceleration,
stands out in this regard.

In the time traces of CT and CL (figure 6d,f ), a distinct difference becomes evident.
Scenario IV displays a CT curve that reaches a higher peak value and exhibits slower
cycles, resulting in an impressive C̄T value of 25.7. In contrast, its counterpart achieves a
relatively modest C̄T of 16.5.

To further elucidate the thrust superiority of Scenario IV, we present a comparison of
mean wake velocity profiles and pitching velocity versus its forces in figure 6. At three
chord lengths away, Scenario IV exhibits three distinct peaks in mean wake velocities,
with larger peak values compared with its counterpart. These mean wake velocity profiles
align with the vorticity plot, highlighting Scenario IV’s advantage in generating a more
regular backward shed vortex, contributing to increased thrust. In contrast, its counterpart
experiences complex and irregular vortex shedding, which introduces drag and diminishes
thrust. In figure 6(d, f ), it is evident that Scenario IV produces less reduced drag force, as
evidenced by the fewer backward blue quivers for Scenario IV.

Figure 7 illustrates the comparison between Scenario III (figure 7a) and its equivalent
sinusoidal motion counterpart (figure 7b). A pattern reminiscent of Scenario IV emerges,
where the positive and negative pressure values surrounding the trailing edge of the
foil experience a significant increase during the D3 moments. This phenomenon directly
contributes to the enhancement of CT , the mean thrust coefficient. It is noteworthy that
the D3 moment coincides with the instance of maximum rate of change in pitching and
heaving velocities.

In contrast to Scenarios I and IV, Scenario III adopts a more balanced approach
to optimization, aiming for equilibrium between C̄T and η. As a result, its actions
are positioned at an intermediate point between the two extremes. Consequently,
the peak value of CT achieved in Scenario III falls within the range observed in
Scenarios I and IV.

By combining the visualizations of vorticity in figure 7(a,b), pressure distributions
around the foil in figure 7(c,e) and the time history of actions and forces in figure 7(d, f )
in Scenarios I to IV, we show that under the dual objectives of maximizing C̄T and
minimizing η, the TPPT agent demonstrates the ability to discern the presence of
separated vortices near the foil body through pressure cues. It then actively adjusts
its kinematics to exploit these vortices, thereby enhancing the overall hydrodynamic
performance. This hypothesis aligns with the notion presented in previous research
(Müller et al. 1997), suggesting that fish possess the capability to adapt their
kinematics to control near-body flow, ultimately leading to improvements in swimming
performance.

4. Conclusion

In the present work, our aim is to answer whether the DRL agent can learn a reasonable
strategy for complex unsteady fluid control problems such as foil flapping, how well it
performs compared with the sinusoidal motion, and if so why the agent can learn better.

By carefully devising the training framework (TPPT in our case) and comparing it with
other popular training frameworks (RNN+SAC, MLP+PPO), the agent can outperform
the Pareto front, multiobjective optimization baseline, of a brute force search for the

984 A9-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1096


Learn to flap

CP = 10
(–) (+) CP = 10

(–) (+)

D4

D3

D2

D1

S4

S3

S2

S1

Non-dimensionalized time

–20 –200

–100

0

100

200

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CT CL

CL
CT

–0.1

0

–0.5

0

0.5

–0.2

0.2

0.1

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

V̂θ

V̂θ

V̂y

V̂y
D1 D3

D4

D2

Non-dimensionalized time

–20 –200

–100

0

100

200

0

60

40

20

100

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CT CL

CL
CT

–0.2
–1.0

–0.5

0

0.5

1.0

–0.1

0.1

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

V̂θ

V̂θ

V̂y

V̂yS1
S3

S4

S2

(a) (b)

(c) (d) (e) ( f )

–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0
ω

Figure 7. Instantaneous vorticity, pressure distributions and time trace of action and force over two vortex
shedding periods for (a) TPPT Scenario III and (b) its statistically equivalent sinusoidal motion. (c–f ) Four
foil posture moments are selected to show complete pressure distribution change along the foil (the blue arrow
represents the negative pressure region, while the red arrow represents the positive pressure region). For better
visualization, the foil shown here is NACA 0020 instead of NACA 0016, and the Cp is scaled to 1/10 from its
original value.

sinusoidal motion by taking advantage of the vortex–foil interaction and learning coherent
non-parametric trajectories. In addition, by adding expert data as the initialization, the
agent can reach convergence rapidly with the highest reward value in a relatively low
repeat variance.

Furthermore, with a close look into the wake morphology, instantaneous pressure
distribution, mean wake velocity profiles and the time trace of the power coefficient of
the foil’s trained motion, the agent can adaptively adjust the statistically similar sinusoidal
motion, generating stronger vortices and alternating phases between the motions of the foil
and shedding vortices, thus leading to an improvement in hydrodynamic performance.

It is noted that in the current work, we select the simulation environment of low mesh
density and the Reynolds number for the proof-of-concept demonstration of DRL with
unsteady flapping foil flow control. We believe that our result, for the first time, shows the
potential of DRL in complex and time-variant flow control, providing a feasible method
to reproduce animal-similar flapping motion and solve other complex flow manipulation
tasks.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Z.P. Wang https://orcid.org/0009-0007-3589-0380;
P.M. Guo https://orcid.org/0000-0002-2867-052X;
D.X. Fan https://orcid.org/0000-0002-6201-5860.

984 A9-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0009-0007-3589-0380
https://orcid.org/0009-0007-3589-0380
https://orcid.org/0000-0002-2867-052X
https://orcid.org/0000-0002-2867-052X
https://orcid.org/0000-0002-6201-5860
https://orcid.org/0000-0002-6201-5860
https://doi.org/10.1017/jfm.2023.1096


Z.P. Wang and others

(b)(a)

0
–4.0

–3.5

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

20 40 60 80

Mesh density
100 120 140

C
T,

 η

eta
ct
cp

0.1
0

0.5

1.0

1.5

2.0

0.2 0.3

Sr

0.4 0.5

AC

Lagopoulos (2019)
Present work

Figure 8. (a) Mesh convergence results of C̄T , C̄p and η. Simulation is conducted under θ0 = 10◦, AC = 0.2,
φ = π, Sr = 0.25. The mesh density is defined by how many grids per foil chord. (b) The comparison result of
thrust coefficient neutral line between our simulation and Lagopoulos et al. (2019).

Appendix A

We conducted a series of computations with parameters set to St = 0.25, Ac = 0.2,

θ0 = 10◦ and φ = 180◦ using different mesh densities to validate the accuracy of our
simulations and assess mesh density convergence. The results of mesh convergence are
presented in figure 8(a). In this figure, the horizontal axis represents the resolution in
terms of grid points per chord length, while the vertical axis depicts the values of CT
and η obtained from the simulations. It is evident that both CT and η converge as the
mesh density increases, affirming the convergence of our simulation results. Considering
the trade off between computation time and error control, we selected a mesh density of
32 points per chord length for the present study.

To further validate the computational accuracy of our simulations, especially concerning
hydrodynamic force coefficients, particularly the thrust coefficient, we conducted a series
of simulations using the same parameters as Lagopoulos et al. (2019). These simulations
covered a range of Sr values within [0.2, 0.5] and scaled pitching amplitudes within
[0.2, 2]. The comparison results are displayed in figure 8(b). In this figure, the blue line
represents the thrust neutral line from the results of Lagopoulos et al. (2019), where
the corresponding thrust coefficient equals zero. The red dots represent the results of
our simulations. Our results closely match those from the referenced study, with minor
discrepancies that can be considered negligible given that our primary focus is on
optimizing flapping trajectories.

Appendix B

In this section, we manage to enhance the hydrodynamic performance of the foil by
incorporating a lift force restriction term into the reward function. The revised reward
function is defined as follows:

rt = βC clip(Ct
T ,−Cm

T , Cm
T )− βP clip(Ct

P,−Cm
P, Cm

P)− ypenalty. (B1)

In this revised reward function, the supplementary term serves as a means to mitigate
the occurrence of asymmetric vortex shedding. If the current position of the foil deviates
significantly from its initial vertical position, a progressively escalating penalty is applied
to discourage sustained deviations. This penalty is designed to deter instances of foil
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Figure 9. The identical Pareto front as figure 3. Addition of new TPPT training cases (green) of the adding
lift force constraining term in the reward function.

spiking and continual deviations in the heaving direction. By doing so, it incentivizes
the foil’s motion to induce more symmetric vortex shedding patterns towards the rear of
the foil, contributing to an overall enhancement of hydrodynamic performance.

The new training results are presented in figure 9 as green dots, while the blue and
red dots are the same as those shown in figure 3. Notably, most of the green dots do not
surpass the formal TPPT-optimized performance. Only three of the green dots exhibit a
slight improvement in efficiency, lightly exceeding the TPPT-optimized performance.
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