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ABSTRACT
The novel coronavirus disease (COVID-19) was declared
a pandemic by the World Health Organization. The cu-
mulative number of deaths is more than 4.8 million. Epi-
demiology experts concur that mass testing is essential for
isolating infected individuals, contact tracing, and slowing
the progression of the virus. In recent months, some ma-
chine learning methods have been proposed utilizing audio
cues for COVID-19 detection. However, many works are
based on hand-crafted features and deep features to detect
COVID-19. There is no evidence that these features are
optimal for COVID-19 detection. Therefore, we proposed
an end-to-end network based on transformer for automatic
detection of COVID-19. It directly learns features from the
raw waveform for end-to-end learning, rather than extract-
ing features in advance. We propose a feature extraction
module to automatically extract features. And we use the
transformer architectures to model the dependencies between
the extracted features. It is the first end-to-end learning based
on raw waveform for COVID-19 detection. Experiments
on COUGHVID dataset show that our method has achieved
competitive results.

Index Terms— COVID-19, Digital Health, Speech Pro-
cessing, End-to-End, Deep Learning

1. INTRODUCTION

The novel coronavirus disease (COVID-19), declared a pan-
demic by the World Health Organization on March 11, 2020.
The cumulative number of confirmed cases reported globally
is now over 234 million and the cumulative number of deaths
is more than 4.8 million as of 5 October 2021 Epidemiol-
ogy experts concur that mass testing is essential for isolat-
ing infected individuals, contact tracing, and slowing the pro-
gression of the virus [1, 2]. Reverse transcription-polymerase
chain reaction (RT-PCR) tests are the gold standard for de-
tecting COVID-19 in clinical practice, due to their high sen-
sitivity and specificity. However, they present several disad-
vantages: uncertain diagnosis time, expensive and collecting

samples requires professionals. Therefore, an inexpensive,
rapid, and extensible screening test for COVID-19 is neces-
sary to help limit its spread.

Deep learning and machine learning technology provide
solutions to this problem, which could be used to analyze
cough sounds of infected patients and infer predictions [3].
In recent months, a variety of cough recording datasets have
been collected by various groups and used to train machine
learning models for COVID-19 detection. For example,
Coughvid [4], Coswara [5] and Virufy [6]. Moreover, the IN-
TERSPEECH 2021 holds two COVID-19 detection competi-
tions: the INTERSPEECH 2021 Computational Paralinguists
Challenge (ComParE) [7] COVID-19 Cough Sub-Challenges
(CCS), and Diagnosing COVID-19 using acoustics (Di-
COVA) [8]. Ruben et al. [9] leverage transfer learning to
develop a set of three expert classifiers, and win the champi-
onship in the ComParE CCS. And Mahanta et al. [10] use the
CNN network to classify COVID-19 positive and negative,
and on top of the leaderboard of DiCOVA.

However, previous work is based on spectrogram or hand-
crafted features, there is no evidence that these features and
transformations is optimal for COVID-19 detection. An al-
ternative method is to directly model the raw waveform sig-
nals, which can automatic extract features and do end-to-end
learning. This method has achieved outstanding performance
in depression detection [11].

To solve the high-dimensional sparse problem, Bai et al.
[12] proposed the temporal convolutional network (TCN).
Its dilated convolution architecture can increase the receptive
field exponentially to capture long-term dependence.

The most used architecture from the range of image pro-
cessing is the convolutional neural network (CNN). Akman
et al. [13] employ the ResNet to classify the COVID-19 posi-
tive and negative based on mel-spectrogram or Mel Frequency
Cepstral Coefficients (MFCCs). The Transformer [14] has
achieved impressive results in natural language processing.
Recently, it has been shown that transformer can be a com-
petitive approach to CNNs in the field of image processing
[15]. In this paper, we evaluate the performance of the trans-
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former architecture in the field of speech signal processing.
Different from the mel-spectrogram and Vision Transformer
(ViT) used in [16], we utilize the transformer architecture to
model features extracted from the raw waveform.

Our main contributions can be summarized as follows: 1)
We propose an end-to-end model to extract features from the
raw waveform for COVID-19 classification. Compared with
other hand-crafted features and deep features, the extracted
features can play the role of transformer architectures to a
greater extent. 2) We employ the transformer architectures to
model the dependencies between feature sequences. We val-
idate several different transformer classification methods in
speech signals: class token and global average pooling. 3)
The experimental results on the COUGHVID dataset demon-
strate the effectiveness of our method.

2. DATASET AND PROCESS

To the best of our knowledge, as at the time of conducting
this research, the largest publicly available cough dataset of
COVID-19 patients was the COUGHVID dataset [4]. It in-
cludes a total of more than 20000 cough records, and the label
includes participants’ self-reports and expert annotation. In
this paper, we utilise the COUGHVID dataset to validate our
method. It contains three status: COVID, symptomatic, and
healthy. We assign them into two groups, positive: COVID,
negative: symptomatic and healthy.

First, We filter all audio recordings that have a degree
of certainty below 0.9, and use the XGB model provided by
official COUGHVID organizer to extract cough from audio
recordings, namely voice activity detection. Due to the highly
imbalanced dataset, we have applied data augmentation tech-
niques to create a more balanced training dataset. By adding
gaussian noise, shifting the time signal and stretching the
time signal, we double the number of positive samples (only
training set). And part of negative samples are randomly
selected. To reduce the input dimension, we down sample
the raw waveform to 16 kHZ for each audio recordings. We
fix the audio length at 6 seconds, and the sample is padded
with repeated versions of itself if length is less than 6s. Last,
we divide dataset into three parts: training set, development
set and test setthe amount of data is shown in Table 1. And
oversampling technology is adopted to keep the number of
positive and negative samples is the same during training.

Table 1. The number of the training set, development set and
test set.

Partition Positive Negative Total

Training 1000 3000 4000
Dev 100 300 400
Test 100 300 400

Total 1200 3600 4800

3. METHODOLOGY

As shown in Figure 1, our method consists of a one-dimension
convolution, the feature extraction module, transformer,
global average pooling and fully connected layers. First a
one-dimension convolution is used to reduce the input di-
mension. The feature extraction module is used to extract
features from raw features. And we employ the transformer
to model the dependencies of extracted feature sequences.
Finally, a global average pooling and two fully connected
layers are used to predict final result.

3.1. Feature Extraction Module

The feature extraction module consists of N1 dilated convo-
lution blocks.

3.1.1. Dilated Convolution

The traditional convolution is difficult to process temporal se-
quence and capture long-term contextual information due to
the limitation of convolution kernel size. So Yu et al. [17] pro-
posed the dilated convolution, which can aggregate multiscale
contextual information because of its exponentially growing
receptive field. The filter of dilated convolution is applied
over an area larger than its length by skipping input values
with a certain step. It is equivalent to a convolution with a
larger filter derived from the original filter by dilating it with
zeros, but the dilated convolution is more efficient.

In this paper, we use the dilated convolution to make the
receptive field expand exponentially and the number of pa-
rameters only increase linearly. The cough in patients with
COVID-19 may last long, so dilated convolution is capable of
aggregating contextual information related to cough at multi-
ple scales.

3.1.2. Dilated Convolution Block

Motivated by the temporal convolution network (TCN) [12],
we propose the dilated convolution block to extract features.
Figure 1 shows the structure of dilated convolution block.
First the dilated convolution is used, and the batch normaliza-
tion and the nonlinear activation function ReLU are followed.
Then a 1×1 convolution (pointwise convolution) changes the
number of output channels to make it consistent with the in-
put channels. Finally we use the residual path to speed up
convergence and enable training of much deeper models. The
output of each block is the input of the next block.

The dilation factor is doubled for every block up to a limit
and then repeated: e.g. 1, 2, 4,..., 2n,1, 2, 4,..., 2n. The
dilation factor increases exponentially to ensure to capture
sufficiently large temporal contextual information related to
COVID-19. It expands the network’s receptive field and cap-
tures the COVID-19 cough features of the entire speech with
fewer layers of stacking.
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Fig. 1. Overall framework of proposed method. It contains a one-dimension convolution, the feature extraction module,
transformer, global average pooling and fully connected layers.

3.2. Transformer

We use transformer [14] to model the context relationship be-
tween feature sequences. Specifically, we only use the en-
coder part of the transformer. It is based on multi head atten-
tion mechanism. Multi head attention operates multiple self
attention operations in parallel. The formula is as follows:

Attention (Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where dk is the key dimensionality. In self-attention,
queries, keys and values come from the output of the previous
layer. The multi-head attention mechanism obtains h different
representations of (Q, K, V ), computes scaled dot-product
attention for each representation, concatenates the results,
and projects the concatenation through a feed-forward layer.
It can be defined as:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (2)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

Multi-head attention runs multiple self-attention opera-
tions in parallel, then subsequently fusing the individual em-
beddings into a single embedding. This style of architecture
was first seen in form of the Transformer neural network [14],
which relates a single sentence (sequences of word embed-
ding) to it self.

Recently in the image processing, a new transformer ar-
chitecture for classification has emerged [15]. Specifically,
they use a learnable class token and the input feature se-
quences for multi-head attention calculation, and then use the
output class token for subsequent classification. And Chu
et al. [18] demonstrate that class token can be replaced by

global average pooling (GAP). Therefore, we use the GAP
following by the transformer.

And two fully connected layers are used to predict final
results.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

We down sample the raw waveform to 16 kHZ and fix the au-
dio length at 6 seconds for each audio recordings. Therefore,
the input dimension of the model is 96000. To reduce the in-
put dimension, there are 32 kernels in the first one-dimension
convolution layer, whose size is 100 and stride is 50. For the
first 1-dimension convolution, the size of the convolution ker-
nel is 100 and the stride is 50. For feature extraction module,
there are 24 dilated convolution blocks in total and the high-
est dilation factor is 32. The dilation factor is doubled for
every block up to a limit and then repeated:1, 2, 4,..., 32,1, 2,
4,..., 32. And there are 64 convolution kernels with size of 3
and stride of 1 in the dilated convolution block. The last 1×1
convolutional layer has 32 kernels, whose size and stride are
the same as the previous one. For the transformer network,
we stack 6 encoded blocks, and the number of heads in the
multi-head attention layer is 8, the number of nodes in the
fully connected layer is 256.

To train the model, we use Adam optimizer [19] with
learning rate of 0.0001 and batch size of 300, which is also
dependent on the size of the input features. And our loss func-
tion is focal loss [20], which is proposed for the problem of
unbalanced data. The training set is used to train model. The
development set is used to adjust the experimental parameters
and verify the effectiveness of each module in the model. The
test set is used to compare our method with expert.
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Table 2. Performance comparison between the features ex-
tracted by the proposed method and other features on the de-
velopment set.

Features AUC

Raw Waveform 72.1%
Wav2vec 78.6%
MFCC 81.5%

Proposed Method 83.2%

Table 3. Performance comparison of different transformer
classification methods on the development set.

Metheds AUC

ResNet-50 82.5%

Transformer
None 81.6%
Class Token 82.8%
GAP 83.2%

4.2. Comparison with Other Features

We compared the hand-crafted feature MFCC and the deep
feature Wav2vec [21] to compare our methods. Specifically,
these features are input into the transformer model for clas-
sification. The performance is shown in Table 2. It can be
found that the effect of MFCC is better than wav2vec. It may
be because the MFCC is designed from perceptual evidence.
And Our method surpasses MFCC and achieves the best per-
formance, which shows that it is feasible to classify COVID-
19 by end-to-end learning features. This may be because the
hand-crafted features may lose some useful information re-
lated to COVID-19 when transforming. And the feature of
unsupervised representation learning, like Wav2vec, may not
be suitable for COVID-19 classification.

In addition, we directly input the raw waveform to the
transformer (reshape into two-dimensions), that is, without
the feature extraction module. The experimental results show
that our feature extraction module does learn useful knowl-
edge from the raw waveform.

4.3. Transformer Classification Strategy

Recently, in the field of computer vision, transformer has
different uses in classification. Dosovitskiy et al. [15] use
a learnable class token and the input feature sequences for
multi-head attention calculation, and then use the output class
token for subsequent classification. And Chu et al. [18]
believe that class token can be replaced by global average
pooling (GAP). Therefore, We verified the class token, GAP,
and direct use of two full connection layer classification. The
results are shown in Table 3. The ”None” means to directly
use two full connected layers to classification. It can be found

Table 4. Performance comparison between the proposed
model and expert diagnosis on the test set.

Metheds Specificity Sensitivity AUC

Expert 79% 25% /
Proposed Method 87% 63% 78.4%

that there is little difference between using GAP and class
token, but GAP is slightly better. Both GAP and class token
significantly better than direct classification. This result is
consistent with [18]. We infer that class token may need a
larger dataset to perform well.

Moreover, we compared the performance of CNN. Specif-
ically, we use ResNet-50 instead of transformer for classifica-
tion. It can be found that the performance of CNN is not bad,
but it is slightly inferior to transformer.

4.4. Comparison with Expert

Because COUGHVID dataset does not divide the training set
and development set, some researches test performance in
their own division set. Therefore, our method is not com-
parable with other work. Therefore, we compare it with the
expert diagnosis in the COUGHVID dataset, and the results
are shown in Table 4. Our method outperforms expert diag-
nosis in detecting COVID-19 from cough audio recordings.

5. CONCLUSIONS

Hand-crafted features and deep features may not be optimal
for COVID-19 detection. Motivated by this speculation, we
propose an end-to-end network based on transformer for au-
tomatic detection of COVID-19, which uses the feature ex-
traction module based on temporal convolutional network to
directly extract features from the raw waveform. The trans-
former is used to model the dependencies of extracted fea-
ture sequences. In addition, We verified the different meth-
ods used by transformer for classification. It is found that the
GAP achieves the best performance. The experimental results
on COUGHVID dataset show that our method has achieved
promising performance in COVID-19 detection. In the future,
we will evaluate our method on other COVID-19 datasets to
improve the robustness and universality of our method.
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