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ABSTRACT
Brain-computer interface (BCI) systems provide a direct connection
between the human brain and external devices. Visual evoked BCI
systems including Event-related Potential (ERP) and Steady-state
Visual Evoked Potential (SSVEP) have attracted extensive attention
because of their strong brain responses and wide applications. Previ-
ous studies have made some breakthroughs in within-subject decod-
ing algorithms for specific tasks. However, there are two challenges
in current decoding algorithms in BCI systems. Firstly, current de-
coding algorithms cannot accurately classify EEG signals without
the data of the new subject, but the calibration procedure is time-
consuming. Secondly, algorithms are tailored to extract features for
one specific task, which limits their applications across tasks. In
this study, we proposed a Temporal-Frequency Fusion Transformer
(TFF-Former) for zero-training decoding across two BCI tasks. EEG
data were organized into temporal-spatial and frequency-spatial
forms, which can be considered as two views. In the TFF-Former
framework, two symmetrical Transformer streamswere designed to
extract view-specific features. The cross-view module based on the
cross-attention mechanism was proposed to guide each stream to
strengthen common representations of features across EEG views.
Additionally, an attention-based fusion module was built to fuse
the representations from the two views effectively. The mean mask
mechanism was applied to adaptively decrease redundant EEG to-
kens aggregation for the integration of common representations.
We validated our method on the self-collected RSVP dataset and
benchmark SSVEP dataset. Experimental results demonstrated that
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our TFF-Former model achieved competitive performance com-
pared with models in each of the above paradigms. It can further
promote the application of visual evoked EEG-based BCI system.
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1 INTRODUCTION
The Brain-computer interface (BCI) system collects and decodes
brain neural activity information to build a direct information in-
teraction pathway between the brain and the external machine,
which has shown a variety of potential applications for communi-
cation, control, and rehabilitation [1]. Electroencephalogram (EEG)
-based BCIs have attracted extensive attention because of their non-
invasive technology, high temporal resolution and low equipment
cost [2].

Visual evoked BCI systems are widely used because of their
strong brain responses and wide applications. Representative visual
evoked EEG-based BCI paradigms include Event-related Potential
(ERP) and Steady-state Visual Evoked Potential (SSVEP). ERP is
a special type of evoked potential generated by multiple stimuli
with particular psychological meaning. Rapid Serial Visual Presen-
tation (RSVP) paradigms induce specific event-related potential
(ERP) components which can be used to recognize sonar images
to detect some objects [3] and implement speller [4] [5], image
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retrieval system [2], image classification system [6] [7] and abnor-
mal pattern recognition system [3]. SSVEPs are neural oscillations
from the parietal and occipital regions of the brain that are evoked
from flickering visual stimuli and have shown good performance
in various applications, such as spellers [8], [9], device control [10],
and games [11] [12].

Previous studies have proposed several classic and state-of-the-
art methods with calibration, which required training data were
obtained from the same subject on the same day as test data. These
methods can be divided into conventional methods and deep learn-
ing methods. In terms of ERP decoding methods, the conventional
methods include the Hierarchical Discriminant Component Anal-
ysis (HDCA) [6] and Minimum Distance to Riemannian Mean
(MDRM) [13] in RSVP task. With the great breakthrough of Convo-
lutional Neural Network (CNN) in image classification tasks [14],
CNN have been proven to be useful in decoding EEG signals of
RSVP tasks [15] such as MCNN [16], EEGNet [17], and OCLNN
[18] in RSVP task. However, the above methods require training
data obtained from the same subject on the same day as test data
and a large amount of calibration data is required to improve de-
coding performance [19], which is a time-consuming procedure
and limits the application of BCI. We call this kind of training
methods with calibration the within-subject method and methods
without calibration the zero-training method. Recently, Lee pro-
posed a CNN-based model training on a large amount of data from
other subjects [20], which showed no statistical difference com-
pared to within-subject methods. Therefore, this demonstrated the
potential of zero-training approach in ERP signals decoding. In
SSVEP task, the original methods including Canonical Correlation
Analysis (CCA) [21] and Filter Bank CCA (FBCCA) [22] belong to
zero-training methods. Many within-subject methods had also been
proposed such as multi-way CCA [23], multi-set CCA [24], Task-
Related Component Analysis (TRCA), ensemble TRCA (eTRCA)
[25] Compact-CNN [26], and Conv-CA [27]. Although they can
achieve higher classification accuracies in SSVEP task, they still
have the disadvantage of requiring individual calibration data.

Although these previous studies can improve the decoding per-
formance to a certain extent, they still have the following bottle-
necks: 1). There are great differences in EEG data among different
subjects, which is a major difficulty in achieving high performance
in zero-training. 2). The design of model structure is tailored to
extract features for one specific task, so that the models will ignore
the features related to other paradigms and cause the extracted
features to be not robust, which limits their applications across
tasks. Inspired by the multimodal pre-training transformers, which
can achieve competitive performance on downstream tasks even
without fine-tuning. One of the main reasons is that transformers
can be trained on large dataset to learn common representations of
data. We aimed to build a novel framework based on transformer
which can learn robust common features between subjects (i.e. task-
related features) from the data of many different subjects and can be
applied to zero-training tasks in different paradigms. In addition, the
multi-view learning of temporal-frequency fusion was also applied
to use multidomain information of EEG signals, which can realize
the complementary information of temporal and frequency views
to further improve the accuracy and thus improve the performance

in the zero-training task. Transformer is an attention-based struc-
ture whose self-attention has been shown to effectively learn global
interactions [28] [29], which can adjust on the local content while
modeling global relationships. Meanwhile, Multimodal Transformer
[30] can achieve interactions between multimodal sequences across
latently adaptive streams from one modality to another, which can
be used to achieve the feature fusion between temporal informa-
tion and frequency information. Therefore, Transformer has the
potential to be used to decode EEG signals.

In this paper, we built a Temporal-Frequency Fusion Transformer
(TFF-Former) to realize zero-training decoding for both RSVP and
SSVEP tasks. Data are organized into two views including raw EEG
signals as temporal view and frequency-spectrum data after Fast
Fourier transformation as frequency view. The model is composed
of two symmetrical Transformer streams which are designed to ex-
tract view-specific features. Firstly, we fed temporal and frequency
data slices into the model, each of them represented the information
of brain activity over a period of time or a frequency band. Sec-
ondly, we used encoder layers sharing parameters between the two
streams to extract view-specific features and projected them to the
same feature space, which can not only reduce parameters, but also
implement subsequent view interaction in the same space to maxi-
mize the extraction of common features. To fuse the representations
from two views effectively, we also proposed attention-based cross-
view module and fusion module. Finally, the decision module was
used to predict labels. We make the following contributions in this
work:

(1) We proposed a zero-training EEG decoding model Temporal-
Frequency Fusion Transformer (TFF-Former) which is appropriate
for both RSVP and SSVEP tasks. To our knowledge, this is the first
EEG temporal-frequency fusion framework based on transformer.

(2) The TFF-Former learn to extract subject-invariance and task-
related features by training with labeled data of many existing
subjects. We also proposed the cross-view module to guide each
stream to strengthen common representations across views and the
mean masked attention mechanism to increase the proportion of
relevant tokens in aggregation and ignore irrelevant information.

(3) We conducted a lot of experiments to verify the zero-training
performance of TFF-Former, which has a significant improvement
over the compared methods in two datasets. On the self-collected
RSVP dataset [31], the performance of TFF-Former is equivalent
to that of the calibration methods with four-block data. On the
SSVEP public dataset [32], the performance of TFF-Former is better
than other zero-training methods. The code has been released at:
https://github.com/lixujin1999/TFF-Former.

2 RELATEDWORK
We briefly review previous studies which are divided into RSVP
task studies, SSVEP task studies and the studies of decoding physi-
ological signals that introduce Transformer models.

RSVP Task In 2006, Gerson, A.D et al. proposed HDCA, which
introduced linear discrimination to reveal target images’ differences
[6]. Barachan et al. (2014) proposed the MDRM [13] method to
classify the covariance matrices transformed from original EEG
data according to the minimum distance to mean. In 2018, Lawhern
Vernon J et al. proposed EEGNet [17] with depthwise separable
convolution [33] which can simplify the structure and reduce the
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(b) (c)

Figure 1: The structure of the proposed TFF-Former model. (a).TFF-Former is composed of two symmetrical Transformer
streams including a feature extractor and a cross-view module followed by a fusion module and a decision module. (b).The
structure of the fusion module. (c).The structure of encoder layer and cross-attention layer.

number of parameters. Shan et al. proposed One Convolution Layer
Neural Network (OCLNN) [18] in P300 speller which achieved high
generalization performance. In 2020, Lee et al. proposed a zero-
training model [20] based on EEGNet for P300 BCI speller which
showed no statistical difference when compared to the within-
subject methods. In 2021, Zang et al. proposed PLNet which used the
phase-locked characteristic to extract spatiotemporal features for
classification [34]. Meanwhile, a phase preservation neural network
(PPNN) was also proposed to learn phase information which also
improved the classification performance in RSVP task [35].

SSVEP Task In 2006, CCA [21] was developed and adopted
in SSVEP classification tasks, which can efficiently identify the
targets in the time domain. In 2015, Chen et al. built FBCCA [22]
to decompose signals into several sub-band components and fuse
the classification results from all sub-bands, which obtained higher
classification accuracies than CCA. Compared with conventional
zero-training methods, involving individual calibration data can
achieve higher classification accuracies in SSVEP tasks such as
TRCA and eTRCA [25]. In 2018,Waytowich et al. proposed Compact
CNN to extract temporal and spatial feature separately [26] which
outperformed CCA on a 12-class SSVEP classification task.

Transformer-based Method In recent two years, Transform-
ers have been used to classify physiological signals. In emotion
recognition, Emotion Transformer Fusion (ETF) model has been
proposed for emotion recognition, which proved the capability of
Transformer based architecture on multimodal emotion recognition
with EEG and eye movement signals [36]. In 2022, Wang et al. also
proposed a transformer-based model to hierarchically learn the
discriminative spatial information from a brain-region-level [37]
for the same task. In order to classify the sleep stage in awake or
asleep, a network based on Temporal Convolutional Network and
Transformer using only HR signals [38] was proposed. However,
there have been no studies which apply the Transformers to the
ERP and SSVEP classification in zero-training. Our proposed TFF-
Former model is a zero-training framework using multi-view fusion
Transformer for visual evoked signals decoding.

3 METHOD
In this study, we proposed a Temporal-Frequency Fusion Trans-
former (TFF-Former) model for zero-training decoding of RSVP
and SSVEP tasks. Figure. 1.(a) demonstrates the architecture of
TFF-Former.

Our method is a two-stream symmetrical Transformer architec-
ture including a temporal stream and a frequency stream. The raw
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EEG signals (𝑺𝒕 ∈ R𝐶×𝑇 ) and the corresponding frequency-spectral
signals (𝑺𝒇 ∈ R𝐶×𝑇 ) which can be considered as two views were fed
temporal stream and frequency stream respectively. Each stream
had a feature extractor and a cross-view module. The feature extrac-
tor included a slice embedding layer and 𝑁 successive Transfomer
encoder layers in each stream sharing parameters between the
two streams. Then the extracted temporal and frequency features
were sent to a cross-view module which consists of𝑀 successive
cross-attention layers sharing parameters in each stream to improve
generalization performance with insufficiently large EEG datasets.
Meanwhile, an attention-based fusion module was also proposed
to achieve the interaction and complementary fusion between EEG
temporal and frequency features. In addition, in order to reduce
redundant aggregation for the integration of common representa-
tions, we employed the mean mask operation in each multi-head
attention mechanism in TFF-Former. Finally, the fusion features
obtained by the fusion module were sent to a decision module to
obtain the probability of different classes. The TFF-Former model
was trained end-to-end using cross-entropy loss.

3.1 Multi-Head Mean Masked Attention
The mean masked attention mechanism (See Figure. 2.[39]) consists
of a linear projection layer and a mean masked attention layer.
The linear projection layer maps input sequences 𝑿 ∈ R𝑛𝑥×𝑑𝑚𝑜𝑑𝑒𝑙 ,
𝒀 ∈ R𝑛𝑦×𝑑𝑚𝑜𝑑𝑒𝑙 to three different sequential vectors (query 𝑸 , key
𝑲 , and value 𝑽 ), which are generated as:

𝑸 = 𝑿𝑾𝑸 , 𝑲 = 𝒀𝑾𝑲 , 𝑽 = 𝒀𝑾𝑽

where 𝑛𝑥 , 𝑛𝑦 and 𝑑𝑚𝑜𝑑𝑒𝑙 are the length and dimension of the input
sequences of 𝑿 and 𝒀 respectively and 𝑾𝑸 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑾𝑲 ∈
R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,𝑾𝑽 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 are linear matrices, 𝑑𝑘 is dimension
of query (𝑸) and key (𝑲 ), and 𝑑𝑣 is dimension of the value (𝑽 ). The
mechanism is called the self-attention mechanism when the query,
key and value are all projected from 𝑿 .

The mean masked attention layer computes attention weights
using the query and the corresponding key, then assigns them to
the value after mean masked to update the output vector. We can
formulate the process into a function as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸,𝑲 , 𝑽 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

[
𝑀𝑒𝑎𝑛𝑀𝑎𝑠𝑘

(
𝑸𝑲𝑇√︁
𝑑𝑘

)]
𝑽

where the attention weights are generated by a dot-product opera-
tion between the query and the key. Comparing each element of
attention matrix with the mean value of the row where the element
is located, we set the element which is smaller than the mean value
as negative infinity. In this way, we mask tokens that are uncorre-
lated to the query tokens to increase the weights of relevant tokens
and adaptively decrease redundant aggregation.

To tackle the issue that the modeling capability of a single-head
attention block is coarse, we use multi-head mean masked attention
mechanism that linearly projects the input into multiple feature sub-
spaces with dimension 𝑑𝑘 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ where ℎ denotes the number
of heads and processes them by several independent mean masked
attention heads parallelly. The resulting vectors are concatenated
and mapped to the final output with dimensions 𝑑𝑚𝑜𝑑𝑒𝑙 .

Figure 2: The structure of the mean masked attention layer:
Scaled Dot-Product Attention and Multi-Head Mean Masked
Attention Mechanism.

3.2 Feature Extractor
In order to extract view-specific features before view interaction, we
designed the feature extractor which can be grouped into two parts
which are the slice embedding layer and encoder layers. To handle
2D EEG signals, we sliced and reshaped the input signals 𝑺𝒕 , 𝑺𝒇 ∈
R𝐶×𝑇 into a sequence of flattened 2D slices 𝒙𝒔 , 𝒙𝒇 ∈ R𝑛×(𝐶×𝑡 ) each
represented brain activities in a period of time or a frequency band
respectively, where 𝐶 denotes the number of channels, 𝑇 denotes
the number of sampling points, 𝑡 is the slice length and 𝑛 = [𝑇 /𝑡]
is the number of slices, which also served as the input sequence
length for the encoder layers. The TFFformer used constant latent
vector size 𝑑𝑚𝑜𝑑𝑒𝑙 through all of its layers, so we flattened the slices
and map to 𝑑𝑚𝑜𝑑𝑒𝑙 dimensions with a trainable linear projection:

𝑿 = [𝒙1; 𝒙2, · · · ; 𝒙𝑛]𝑇 𝑬 + 𝑬𝑝𝑜𝑠

𝑬 ∈ R(𝐶×𝑡 )×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑬𝑝𝑜𝑠 ∈ R𝑛×𝑑𝑚𝑜𝑑𝑒𝑙

where the output of these EEG slice embeddings were refered as
EEG tokens. Learnable positional parameters (𝑬𝑝𝑜𝑠 ) were added to
the slice embeddings to retain positional information. The resulting
sequence of embedding vectors serves as the input to the encoder
layers. In our model, we adopt the slice length (𝑡 ) as 4.

An encoder layer is composed of two sub-layers (See Fig. 1.(b)). A
multi-head mean masked self-attention (MHMSA) layer aggregates
the relationship within input tokens. A position-wise Feed-Forward
Network (FFN) layer which is an MLP using one hidden layer with
ℎ × 𝑑𝑚𝑜𝑑𝑒𝑙 hidden dimensions extracts feature representation. All
of the sub-layers employ a residual connection and a Layer Nor-
malization to enhance the scalability of Transformer. Moreover, we
added a skip connection between the start and end of each encoder
layer. Because the original temporal and frequency tokens belong
to different feature spaces, there are semantic differences. There-
fore, we shared the encoder parameters between the two streams to
decrease the differences between views features, which maked the
view interaction more reasonable and feasible in the subsequent
cross-view module.

3.3 View Interaction
To realize view interaction and extract common representations of
view features, we employed the cross-view module which consists
of 𝑀 successive cross-attention layers which replaced the first
MHMSA layer in encoder layer with multi-headmeanmasked cross-
attention (MHMCA) layer and the rest of the structure is identical
(See Figure 1.(b)). In MHMCA layer, two views mutually guided
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interaction to each other according to the relationship between
their tokens to realize common feature extraction. In order to adapt
to the fact that the EEG dataset does not have massive samples, 𝑀
cross-view attention layers in the same stream sharing parameters
to improve the generalization performance of the model and we
also added a skip connection between the start and the end of 𝑀
cross-view attention layers to strengthen feature propagation and
feature reuse.

After cross-view module, we proposed an attention-based fusion
module (See Figure 1.(c)) after cross-attention layers to achieve
complementary feature fusion by fusing the temporal and frequency
tokens interacted across views into the high-order decision tokens.
Firstly, We token-wise concatenated the two view tokens together
and linear projected them into the 𝑑𝑚𝑜𝑑𝑒𝑙 dimension as the original
decision fusion tokens. Then we set them as query and set temporal
and frequency tokens both as key and value to feed a MHMCA
layer to obtain the decision tokens. The process can be formulated
as follows:

𝑿𝑑𝑒𝑐 = 𝐴𝑑𝑑&𝐿𝑁 [𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛( [𝑿𝑡 ;𝑿 𝑓 ]𝑾 , [𝑿𝑇
𝑡 ;𝑿

𝑇
𝑓
]𝑇 , [𝑿𝑇

𝑡 ;𝑿
𝑇
𝑓
]𝑇 )]

where 𝐴𝑑𝑑&𝐿𝑁 denotes residual connection and layernormaliza-
tion, 𝑾 ∈ R2𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 is a learnable parameter matrix and
𝑿𝑑𝑒𝑐 ∈ R𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑿𝑡 ∈ R𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 ,𝑿 𝑓 ∈ R𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 denotes the
decision tokens, temporal tokens and frequency tokens respectively.

3.4 Decision Module
At the end of the model, we designed a decision module which
consists of a convolution layer using 16 convolution kernels to
aggregate all tokens and a linear layer with softmax activation
function to classify the features. The convolution kernel size is
(16, 𝑑𝑚𝑜𝑑𝑒𝑙/8) with stride (16, 𝑑𝑚𝑜𝑑𝑒𝑙/8) and zero padding. All the
activation functions in the model adopt ReLU. The loss function
used cross entropy loss:

𝐿𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − 1
𝑁

𝑁∑︁
𝑛=1

𝑅∑︁
𝑟=1

𝑦𝑛,𝑟 log𝑦𝑛,𝑟

where 𝑅 denotes the number of classes. 𝑦 indicates the real label
and 𝑦 is the value predicted by the model.

4 EXPERIMENTS
4.1 Datasets
Our proposed TFF-Former model and the compared methods are
validated on two EEG datasets: 1 ) self-collected RSVP dataset [31].
2 ) the benchmark dataset [32] for SSVEP tasks.

RSVP Dataset: The experiment included 31 participants (19
males and 12 females; aged 24.9 ± 2.8, 28 right-handed). The visual
stimuli for our experiment included 1,400 images (500×500 pixels)
from the scene and object database [40] published by MIT CSAIL.
These images were divided into target images with pedestrians
and non-target images without pedestrians. Images were randomly
presented at a frequency of 10 Hz, where the probability of the
target image appearance was 4%. Each experimental session had
10 blocks, and each block contained 1400 images, divided into 14
sequences.

Benchmark Dataset: This SSVEP dataset has 35 subjects (17
females, aged 17-34 years), including 40 targets. The 40 targets were

coded using the JFPM method. The frequencies range from 8 Hz to
15.8 Hz with an interval of 0.2 Hz, and the phase difference between
two adjacent targets was 0.5 𝜋 . For each subject, the experiment
included 6 blocks, and each block contained 40 trials corresponding
to all targets indicated once in random order. In the public dataset,
the trial length of 6 s includes 0.5 s before stimulus onset, 5 s for
stimulation, and 0.5 s after stimulus offset.

4.2 Data Preprocessing
In the preprocessing stage, the RSVP dataset were down-sampled to
250 Hz. After that, a linear phase 3-order ButterWorth filter with a
bandpass between 0.5 and 15 Hz is used to filter the signal to remove
slow drift and high-frequency noise and prevent delay distortions.
Then the preprocessed data of each block were segmented into EEG
trials each containing 1 second EEG data. For each trial, data was
normalized to zero mean and variance one. The subsequent analysis
and classification of EEG were based on these segmented EEG trials
(samples). According to our experimental paradigm, each subject
had 10 (blocks) ×1400 (trials) EEG samples per session, where 560
are target samples and the rest are non-target samples. The SSVEP
recordings were passed through a Chebyshev Type I band-pass
filter with the range of 8 Hz to 90 Hz. We applied a notch filter at
50 Hz to remove the common powerline noise and also normalized
each trial to zero mean and variance one. We used data from 0.64
to 2.64 seconds in each trial which contains 500 sampling points.

We employed the Fast Fourier transform (FFT) on each channel
of raw data (𝑺𝒕 ∈ R𝐶×𝑇 ) and organized these frequency-spectrum
signals as the frequency view input (𝑺𝒇 ∈ R𝐶×𝑇 ). The calculation
was implemented based on the Python package numpy.

4.3 Experimental Setup
We conducted zero-training experiment in a Leave-One-Subject-
Out (LOSO) way. Each subject will be as the test set alone and
the rest as the training set. Especially in RSVP tasks, to overcome
the influence made by the extreme imbalance of two classes, we
adopt resampling. Down-sampling the non-target class to the same
number as the target class. This operation is limited to the training
set.

For convenience, we set 𝑑𝑣 = 𝑑𝑘 in the mean masked atten-
tion mechanism. Therefore, there are four hyperparameters in our
model, which are the embedding dimension (𝑑𝑚𝑜𝑑𝑒𝑙 ), the number
of heads (ℎ) in multi-head attention mechanism, the number of
successive encoder layers (𝑁 ) and the number of cross-attention
layers (𝑀). Since we do not have massive data to feed a huge model,
we appropriately reduced the size of the model. The parameters in
RSVP dataset are set as follows:

𝑑𝑚𝑜𝑑𝑒𝑙 = 128 ℎ = 4 𝑁 = 1 𝑀 = 2

In the benchmark dataset we use the same position encoding as [39]
and set𝑀 to 1. We use PyTorch framework. The overall network
is trained by minimizing the cross-entropy loss function. Adam
optimizer is adopted for model optimization and the learning rate
is 0.0005 in RSVP task and 0.001 in SSVEP task with a 20% decrease
every 40 epochs. The L2 regularization is adopted, and the weight
decay coefficient is 0.01. In SSVEP task we also used label smoothing
regularization with 𝜖 = 0.005. The batch size is set to 64 and the
maximum number of training epochs is set to 100.
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Table 1: CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON RSVP DATASET (mean ± standard deviation)
Method BA(%)↑ TPR(%) ↑ FPR(%)↓ Accuracy(%)↑ F1-score↑
HDCA 82.60 ±4.48 ∗∗∗ 80.48 ± 9.14 ∗∗∗ 15.29±2.93 ∗∗∗ 84.54 ± 2.76 ∗∗∗ 0.2979 ± 0.0445 ∗∗∗

MDRM 82.69 ± 6.84 ∗∗∗ 78.63±8.86 ∗∗∗ 13.25 ± 3.72 ∗∗∗ 86.43 ± 3.35 ∗∗∗ 0.3217 ± 0.0600 ∗∗∗

OCLNN 84.61± 4.05 ∗∗∗ 81.93 ± 8.06 ∗∗∗ 12.70 ± 0.97 ∗∗∗ 87.08 ± 0.97 ∗∗∗ 0.3369±0.0320 ∗∗∗

MCNN 83.05 ± 4.95 ∗∗∗ 79.16±10.77 ∗∗∗ 13.05±2.59 ∗∗∗ 86.65 ± 2.33 ∗∗∗ 0.3241±0.0413 ∗∗∗

EEGNet 79.99±3.97 ∗∗∗ 78.88±6.00 ∗∗∗ 18.89±1.27 ∗∗∗ 81.02 ± 1.39 ∗∗∗ 0.2501±0.0265 ∗∗∗

Lee 85.03±4.70 ∗∗∗ 80.60±9.90 ∗∗∗ 10.54 ± 3.23 ∗∗ 89.11 ± 3.00 ∗∗ 0.3823 ± 0.0562 ∗∗∗

PLNet 79.38±4.90 ∗∗∗ 78.21±9.17 ∗∗∗ 19.45±2.48 ∗∗∗ 80.46 ± 2.46 ∗∗∗ 0.2446±0.0354 ∗∗∗

PPNN 85.48 ± 3.69 ∗∗∗ 83.80 ± 7.34 ∗ 12.83±1.27 ∗∗∗ 87.03 ± 1.24 ∗∗∗ 0.3416±0.0316 ∗∗∗

Wang 86.33±4.38 ∗∗∗ 83.06±8.56 ∗∗ 10.38±2.35 ∗∗ 89.36 ± 2.62 ∗ 0.3887±0.0521 ∗∗∗

TCN-T 86.68 ± 4.23 ∗∗∗ 83.51 ± 8.47 ∗∗ 10.16 ± 2.20 ∗ 89.59 ± 2.09 0.3948 ± 0.0498 ∗∗

TFF-Former 88.05 ± 3.73 85.45 ± 7.85 9.34 ± 2.26 90.46 ± 2.09 0.4223 ± 0.0484

The asterisks in the table indicate significant difference between TFF-Former and the compared method by paired t-tests (∗𝑝 < 0.05, ∗ ∗ 𝑝 <

0.01, ∗ ∗ ∗𝑝 < 0.001).

4.4 Compared Methods
We compared our proposed network with the following methods:

• RSVP Task:
– Conventional Methods: HDCA [6], MDRM [13].
– CNN based Methods: OCLNN [18], MCNN [16], EEGNet
[17], Lee [20], PLNet [34], PPNN [35].

– Transformer based Methods: TCN-T [38], Wang [37].
• SSVEP Task:
– Conventional Methods: CCA [21], FBCCA [22].
– CNN based Methods: Compact-CNN [26].
– Transformer based Methods: TCN-T [38], Wang [37].

These methods are all used for zero-training compared methods,
and the experimental setup is consistent with the description in 4.3.
Meanwhile, HDCA, MDRM, OCLNN, MCNN, EEGNet, PLNet and
PPNN are also used for within-subject compared methods in RSVP
dataset and the training setting is as follows: for each subject who
has 10 blocks data, the data of 𝑏 blocks are selected as the training
set, and the data of the remaining 10 − 𝑏 blocks are used as the test
set (𝑏 = 1, 2, 3, 4).

4.5 Evaluation Metrics
We used balanced-accuracy (BA), true positive rate (TPR), false
positive rate (FPR), accuracy and 𝐹1-score to evaluate model per-
formance in RSVP task and accuracy in SSVEP task. The results are
expressed as mean ± standard deviation for all test subjects. The
calculation formulas are as follows:

𝐵𝐴 =

(
𝑇𝑃

𝑇𝑃+𝐹𝑁 + 𝑇𝑁
𝑇𝑁+𝐹𝑃

)
/2

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

𝐹𝑃𝑅 = 𝐹𝑃
𝑇𝑁+𝐹𝑃

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

𝐹1 = 2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑇𝑃𝑅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑇𝑃𝑅

Where TP represents the number of correctly classified positive
samples, and FN represents the number of incorrectly classified
positive samples. TN represents the number of correctly classified
negative samples, and FP represents the number of incorrectly
classified negative samples.

5 RESULTS AND DISCUSSION
The zero-training comparative experiment was conducted on RSVP
dataset and SSVEP benchmark dataset. Moreover, in order to eval-
uate the effectiveness of TFF-Former compared to within-subject
methods, we also conducted within-subject comparative experi-
ment on RSVP dataset. Then we conducted ablation experiments
to verify whether each module in TFF-Former contributed to classi-
fication. Finally, we visualized the latent features in various layers
of TFF-Former and the cosine similarity matrix between temporal
and frequency tokens before and after the cross-view module.

5.1 Classification Performance
The zero-training classification performance under various met-
ric on the RSVP dataset are summarized in Table 1. The one-way
repeated measures ANOVA showed a significant main effect of
method in all evaluation metrics (BA : 𝐹 (10, 300) = 52.23, 𝑝 < 0.001,
TPR : 𝐹 (10, 300) = 9.10, 𝑝 < 0.001, FPR : 𝐹 (10, 300) = 92.609,
𝑝 < 0.001, Accuracy : 𝐹 (10, 300) = 103.428, 𝑝 < 0.001 and F1-
score : 𝐹 (10, 300) = 69.299, 𝑝 < 0.001). For BA, TPR, FPR and
F1-score, the performance of our proposed TFF-Former model are
significantly higher than conventional methods (𝑎𝑙𝑙 : 𝑝 < 0.001),
CNN-based methods (𝑎𝑙𝑙 : 𝑝 < 0.05) and Transformer-based meth-
ods (𝑎𝑙𝑙 : 𝑝 < 0.05). For accuracy, our method is significantly higher
than that of compared methods (𝑎𝑙𝑙 : 𝑝 < 0.05) except for TCN-T,
but the accuracy of our method tends to be higher than TCN-T
(𝑝 < 0.1). This demonstrates that our TFF-Former is more effec-
tive in zero-training RSVP task, because compared to conventional
methods and CNN-basedmethods Transformer can effectively learn
global interactions and adjust on the local content while modeling
global relationships. And compared to Transformer-based methods,
TFF-Former achieved interaction and fusion between temporal and
frequency features of EEG signals.

It can be seen in Figure 3, the mean BA of within-subject methods
increasedwith calibration data size increasing, whereHDCAhas the
best performance for training data from one block to four blocks.
However, the mean BA of TFF-Former (88.05%) is significantly
higher than that of HDCA with two blocks (𝑎𝑙𝑙 : 𝑝 < 0.01) and
shows no statistical difference (𝑎𝑙𝑙 : 𝑝 > 0.4) compared with HDCA
using three and four blocks (three : 88.08%, four : 88.42%). Therefore,
we reduce the calibration time of at least four blocks, which shows
our zero-training method is effective in RSVP task.
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Figure 3: The comparison results between TFF-Former and
within-subject methods in RSVP task.

Table 2: CLASSIFICATION ACCURACY (%) OF DIFFERENT
METHODS ON BENCHMARK DATASET(mean ± standard
deviation)

Method Number of Classes
20 40

CCA 70.61±21.53 ∗∗∗ 63.20 ± 28.48 ∗∗∗

FBCCA 82.09±17.24 ∗∗∗ 77.92 ± 22.90 ∗∗∗

Compact-CNN 86.24 ± 16.08 ∗ 82.90 ± 17.25 ∗∗∗

Wang 83.02±17.05 ∗∗∗ 77.01±18.71 ∗∗∗

TCN-T 83.39±17.55 ∗∗∗ 77.88 ± 18.34 ∗∗∗

TFF-Former 88.21 ± 15.03 84.77 ± 16.93

Table 2. shows the classification accuracy on the SSVEP bench-
mark dataset with all 40 classes and 20 classes selected from 40
classes with the same frequency intervals. The one-way repeated
measures ANOVA showed a significant main effect of method both
in 20-class (𝐹 (4, 132) = 14.36, 𝑝 < 0.001) and 40-class (𝐹 (4, 132) =
19.22, 𝑝 < 0.001). In 20-class and 40-class SSVEP tasks, the perfor-
mance of TFF-Former are significantly higher than those compared
methods (𝑎𝑙𝑙 : 𝑝 < 0.05). Therefore, our proposed TFF-Former
model can not only achieve zero-training decoding in RSVP task,
but also achieved competitive performance across tasks in SSVEP
task. Because the input EEG signals contained multiple information
and task-related temporal-frequency information can be captured
through the two-stream architecture in both RSVP and SSVEP tasks.

5.2 Ablation Study
We conducted ablation experiments to evaluate the effectiveness
of two-view structure including frequency stream and temporal
stream, mean masked attention mechanism and cross-view module
in TFF-Former. The results are listed in TABLE 3, where the M1
and M2 indicate the model only uses frequency view and temporal
view of TFF-Former with mean masked attention mechanism re-
spectively. The M3 is TFF-Former without mean masked attention
mechanism, which is used to verify that mean mask are efficient for
classification.M4 is TFF-Former without cross-view module, which
directly token-wise concatenates two views tokens extracted from
encoder layer as decision tokens fed to decision module. The exper-
imental set of these four models is the same as that of compared
method in TABLE 1 and TABLE 2.

For the RSVP dataset, the one-way repeated measures ANOVA
showed a significant main effect of proposed modules in all evalua-
tion metrics (BA : 𝐹 (4, 120) = 267.411, 𝑝 < 0.001, TPR : 𝐹 (4, 120) =
24.41,𝑝 < 0.001 and FPR : 𝐹 (4, 120) = 156.497, 𝑝 < 0.001). The
classification performance of our proposed method is significantly
higher than that of the modals model (𝑎𝑙𝑙 : 𝑝 < 0.05), which indi-
cates that frequency stream and temporal stream are both useful
for classification and the two-view fusion Transformer can improve
the classification performance. The model with all modules sig-
nificantly outperforms the model without cross-view module in
BA and FPR (𝑝 < 0.05) and significantly outperforms the model
without mean masked attention mechanism (𝑝 < 0.05). Therefore,
each module in TFF-Former has been verified to improve the per-
formance of the RSVP classification task. Meanwhile, the above
conclusions are also tenabled on benchmark dataset, where the
one-way repeated measures ANOVA showed a significant main
effect of proposed modules (𝐹 (4, 132) = 11.13, 𝑝 < 0.001) and the
model with all modules also significantly outperforms the ablation
models (𝑎𝑙𝑙 : 𝑝 < 0.05). In addition, the ablation study of encoder
layer sharing parameters was conducted. The T-test revealed that
the mean BA of TFF-Former (88.05%) is significantly higher than
that of model without sharing parameters between streams in en-
coder layer (87.45%) in RSVP task and the accuracy of TFF-Former
(84.77%) is also significantly higher than that of ablation model
(83.8%) in SSVEP task (𝑎𝑙𝑙 : 𝑝 < 0.05), because the encoder layer
sharing parameters between two streams can project two view
features to the same feature subspace which is more suitable for
subsequent view interaction.

Therefore, all modules we involved in TFF-Former are verified to
be effective in classification across two BCI tasks, where two-view
architecture can simultaneously utilize temporal and frequency
information of EEG signals, mean mask mechanism can reduce
redundant aggregation of tokens by decreasing the weight of irrele-
vant tokens, and cross-view module can effectively extract common
representations of features through view interaction.

5.3 Visualization
We applied t-distributed Stochastic Neighbor Embedding (t-SNE)
to project the output of each layer into 2 dimensions and draw
scatter plots. Figure 4 shows the visualization of one subject in the
RSVP dataset. As revealed in Figure 4.(a), we can see maximum
overlap of two classes in t-SNE visualization in each view and
there are differences between the two views. After being projected
by slice embedding layer respectively, the samples of each class
keep the distribution form of original raw data well, which can
be seen in Figure 4.(b). Figure 4.(c) shows that as the temporal
tokens and frequency tokens are processed over the encoder layer
sharing parameters between two streams, the distance in feature
space between two views decrease. In Figure 4.(d), with the two
views features interacting with each other in the cross-attention
layers, the features of different views in the same class get closer.
Finally, the linear separation between fusion features in two classes
is clearly visible in Fig. 4.(e). Thus, the visibility of similarity in
two views features and separation in two classes increase from raw
data to the output of the model, which indicates that our model can
effectively extract common representations of two views features
and learn useful features for classification.
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Table 3: ABLATION STUDIES ON THE TWO DATASETS.

Model Proposed Module RSVP SSVEP

Frequency-view Temporal-viewMean Mask Cross-view BA (%) ↑ TPR (%) ↑ FPR (%) ↓ Accuracy (%) ↑
M1

√ − √ − 61.00±4.71 ∗∗∗ 70.23±11.92 ∗∗∗ 46.28±8.15 ∗∗∗ 68.90±20.17 ∗∗∗

M2 − √ √ − 86.73±3.80 ∗∗∗ 83.88±8.28 ∗ 10.41±1.72 ∗ 82.62 ±17.75 ∗∗

M3
√ √ √ − 87.18±3.52 ∗ 84.98±7.31 10.60±1.79 ∗∗ 83.19 ± 17.07 ∗

M4
√ √ − √

87.10±3.82 ∗∗ 84.53±8.21 ∗ 10.33 ± 2.33 ∗ 83.64 ± 17.30 ∗

TFF-Former
√ √ √ √

88.05 ± 3.73 85.45 ± 7.85 9.34 ± 2.26 84.77 ± 16.93

(a) Data (b) Slice Embedding Layer (c) Encoder Layer (d) Cross-attention Layer (e) Fusion Module

Figure 4: The t-SNE visualization results of different feature spaces in TFF-Former: (a) raw data, (b) the output of slice embedding
layer, (c) the output of encoder layer, (d), the output of cross-attention layer, (e) the output of fusion module. The red and
blue dots indicate temporal view of target samples and non-target samples respectively. The green and yellow dots indicate
frequency view of target samples and non-target samples respectively.

(a) RSVP task (b) SSVEP task
Figure 5: The cosine similarity between temporal and frequency tokens before and after cross-view module: (a) RSVP task, (b)
SSVEP task.

Meanwhile, to show the effect of cross-view module in view
interaction, we visualized the similarity matrix between temporal
tokens and frequency tokens before and after the cross-viewmodule.
We used cosine similarity to measure the correlation between each
pair of temporal and frequency tokens. As revealed in Figure 5.(a) ,
in the RSVP classification, after view interaction, the correlation
between token features from two views increased significantly. For
the typical ERP frequency band (< 15𝐻𝑧) the feature was enhanced,
for the frequency band that was silenced in the preprocessing (>
15𝐻𝑧), the features were learned with integrated information from
multi-time and multi-frequency. It can be seen from Figure 5.(b)
that the results also established. In particular, the temporal view
were more relevant to 8-90 Hz frequency tokens which are the
frequency band for SSVEP signals, which is consistent with SSVEP
signals characteristics. Indeed, the ablation study also proved the
effectiveness of cross-view module. Therefore, cross-view module
can achieve view interaction to increase the correlation between
view features and extract common representations of two views.

6 CONCLUSION
This study proposed Temporal-Frequency Fusion Transformer (TFF-
Former) to realize zero-training decoding across RSVP and SSVEP
tasks. We validated TFF-Former on the self-collected RSVP dataset
including 31 subjects and benchmark SSVEP dataset. The experi-
mental results showed that our model achieved significantly higher
decoding performance than the compared zero-training methods
and reduced calibration time of at least four blocks compared with
RSVP within-subject methods. This indicates that our method can
achieve superior performance in zero-training condition and further
promote the application of visual evoked EEG-based BCI systems.
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