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Abstract. Around-view multi-camera 3D object detection in BEV (Bird's-Eye-View) space has
been a research focus over the past few years. As a typical supervised training task, many
researchers promote this area with different task-specific key designs, such as exploiting
temporal information and correspondence of perspective image plane and BEV space. Most of
these works follow the DETR detection framework, yet the nature of learnable queries in
DETR, the encodings of objects' center and bounding box information, have not been discussed
in previous studies. In this paper, we take advantage of this prior and further extend it to 3D
detection tasks. In 3D object detection, the ground-truth bounding boxes are hardly
overlapping. Therefore, the queries should be more diverse under this hypothesis. To achieve
this goal, we propose a Plug-in Discrimination Module (PDM) to discriminate learnable
queries from all the other queries with a discrimination loss to ensure the diversity of queries.
The PDM is a simple train-time-only module. It contains a query projection head to project all
the object queries into a common latent space. In the latent space, the discrimination loss is
conducted on all the queries. Experimental results show that this design can directly improve
the 3D detector's performance without modifying the detector's architecture and adding extra
inference costs. The NDS improvement on the nuScenes dataset is up to a maximum of 1.62%
in the 8th training epoch and remains an average 0.64% improvement in the following epochs,
compared with the baseline model.

1. Introduction
In the world of computer vision, the ability to accurately identify and locate objects within a three-
dimensional space is a critical step toward machine perception that mirrors human visual
understanding. This technology, known as 3D object detection, is pivotal in various applications
ranging from autonomous driving to augmented reality. 3D object detection refers to the process by
which computers recognize and precisely determine the position and orientation of objects in 3D space.
Unlike its 2D counterpart, which can only provide information about objects in the plane of the image
(height and width), 3D detection adds a crucial depth component, offering a complete spatial
representation.

The fundamental mechanics involve the use of sensors like LiDAR (Light Detection and Ranging),
stereo cameras, or even single monocular cameras to capture environmental data. 3D detectors are to
process the data, extract features, identify object classes, and localize objects, providing position,
shape, and orientation information. Several challenges arise with visual perspective 3D object



detection. First, the association of multi-cameras is difficult in surrounding scene perception. Second,
the combination of camera and LiDAR is restricted in perspective view.

To address these challenges, researchers start to transform the image from a perspective plane to a
Bird's-Eye-View (BEV) space. BEV space is a view of 3D space from above as if one is looking down
from the sky. This view flattens the three-dimensional world onto a two-dimensional plane while
preserving the spatial relationships between objects. It provides a clear and intuitive layout of the
environment, making it especially useful for tasks such as path planning and navigation in autonomous
vehicles. The Bird's-Eye-View simplifies complex scenes by removing the effects of perspective, such
as the foreshortening seen in images captured from ground level. This makes it easier to measure
distances between objects and understand their relative positions. Moreover, BEV can unify the data
coming from multiple sensors, creating a comprehensive and actionable map of the surroundings.

In practical applications and current research focus, 3D detection in BEV space generally follows
DETR[1] architecture, a transformer-based encoder-decoder architecture. Related researchers have
devoted many efforts to improve 3D detection performance in BEV space, such as various approaches
to exploiting temporal information[2, 3, 4] and projection between 2D plane and BEV space[5]. How
to propose an efficient set of object queries has been investigated in a series of 2D DETR detection
work, but the design of object queries in 3D detection generally follows previous perspective work[6]
and is not well discussed in a 3D context. Given a set of object queries that encode the objects'
position and bounding box information around several predefined anchors, one main difference from
detection in the real-world coordinate to detection in the perspective image plane is that objects are
hardly overlapping in 3D space. There is only one object in one 3D position, therefore the rivalry of
multiple queries detecting multiple objects in one position does not exist in the detection task for the
object's real-world coordinates. Each object query only needs to be in charge of its area. By this
intuition, we design a Plug-in Discrimination Module (PDM), a projection head, to discriminate the
embeddings of various object queries. In particular, we introduce discrimination loss, a loss function
mimicking the design of contrastive loss.

Our contributions can be summarized as follows.
 We propose a Plug-in Discrimination Module (PDM) to improve the performance of the 3D

detector. Though the PDM is a simple design, a two-layer non-linear projection head, it still
helps improve SOTA 3D detectors without modifying the network architecture.

 We propose to conduct a discrimination loss on a set of learnable parameters, i.e. object
queries, unlike traditional unsupervised learning tasks to discriminate samples. Also, we
exploit the unsupervised learning loss to aid supervised 3D detection tasks, filling the gap
between these two kinds of tasks.

2. Related Work
Object queries in DETR: In the realm of object detection, CNN-based backbone, and anchor- based
design are popular choices of early classical detectors[7, 8]. In contrast to previous detectors, DETR[1]
is fully anchor-free by detecting objects with a set of learnable queries. However the limitations of
DETR are still obvious: (1) The convergence speed of DETR is slow, DETR takes 500 epochs to reach
a competitive performance to FasterRCNN[7] trained in less than 100 epochs. (2) The physical
meaning of object query, a key design in DETR, is not clear. (3) The attention computation
complexity is O(n2 ), bringing difficulty to leverage high- resolution feature maps. (4) DETR requires
a preset large number of queries to detect objects in crowded scenes, which causes high computation
complexity of cross-attention and bipartite graph matching. To mitigate these limitations, Deformable-
DETR[9] introduces the concept of reference points as a prior of central points of objects, while the
queries are in charge of predicting offset from reference points to object center. They also introduce a
deformable attention module to efficiently leverage multi-scale feature maps. Similarly, conditional
DETR[10] uses position embeddings encoded from reference points. They further decouple and divide
the object query into a content query and a spatial query, forcing the spatial query to identify the
object's center and bounding box. Anchor DETR[11] exploits spatial information more explicitly. The



queries in Anchor DETR are directly encoded from learned reference points. Apart from reference
points, DAB-DETR[12] constrains the query generation with both learned reference points and
bounding boxes. These previous studies have extensively clarified that the queries are encodings of
objects' position and bounding box information.

3D Detection in BEV space: Early 3D detection work[13] explicitly predicts object's 3D position
given perspective view and camera extrinsic. Further, the concept of Bird's-Eye-View is introduced
into 3D detection. By transforming features from perspective view onto BEV space, models can
associate image features to real-world 3D coordinates. There are generally two kinds of 3D detection
in BEV space, forward and backward[5]. The forward approaches lift the image features from the
perspective plane to the BEV space, such as LSS[14] and BEVDepth[15]. LSS predicts a depth
distribution of the image plane with a depth network. The feature of a pixel is the outer product of
depth distribution and CNN feature. In this way, LSS 'lifts' a flat feature map to a depth feature map.
Then the features from pixel coordinates are transformed to world coordinates by camera intrinsic and
camera extrinsic. BEVDepth[15] follows this idea and further improves the critical depth network.
They exploit point clouds as explicit depth supervision to train a depth network instead of using a
fixed pre-trained depth network as in LSS. This line of BEV approaches usually relies heavily on the
accuracy of the depth network. The accumulated error from the depth network is difficult to avoid. So
some researchers developed another line of BEV approaches that directly pre-define dense voxel
locations in BEV space and project these 3D points onto the perspective plane to fetch image features.
The DETR3D[16] predicts 3D reference points in world coordinates based on learnable queries, then
projects these reference points onto perspective views. The initial predictions of 3D reference points
are inefficient. So the PETR[17] generates queries from 3D mesh grid points. With a predefined mesh
grid as initialization, the queries are iteratively updated and refined. Apart from the 3D position used
for query generation, sparseBEV[6] further takes more information to initiate queries, including 3D
bounding box, orientation, and velocity, mimicking the evolution from Anchor DETR to DAB-DETR.
BEVFormer[2] exploits this projection further, after the features are fetched from the perspective view,
the detection is not directly performed. The features contained in 3D mesh grid points are pooled to
form a 2D BEV space feature map. The obtained feature map is further exploited as the context of the
detection head.

Figure 1. A simplified diagram of DETR-like detector head.



Figure 2. A diagram of how discrimination loss affects detection in BEV space.

3. Method
The general DETR detection head can be diagrammed in the left part of Figure.1. In the decoder,
multi-head self-attention and cross attention with image feature are performed on queries. The outputs
of the decoder are to predict the object's position and bounding box. A hungarian match is conducted
to activate the closest prediction to the ground truth and suppress unmatched predictions. We propose
to add a simple auxiliary plug-in discrimination module before queries are sent to the decoder, as
depicted in the right part of Figure.1. It's a train-time-only module and contains a simple 2-layer non-
linear MLP with GeLU activation to project queries into a shared latent space. The discrimination loss
will be conducted on the output of the projection head.

Following the definitions of contrastive learning, we define concepts in our discrimination loss. For
a predefined set of N object queries, each query �� is a positive pairing of its own. While all the other
queries {qj | j ≠ i} are the negative pairings of �� . Suppose the embedding �� of the query �� is
obtained by projection head f , and the discrimination loss L is conducted on the embedding with a
cosine similarity function. The loss function can be expressed as follows.

ei = f(qi) (1)

l(ei) =−
1

j=1,j≠i
N sim(ei, ej)�

(2)

sim(ei, ej) =
< vi, vj >
||vi|| × ||vj||

(3)

L =
i=1

N
l(ei)� (4)

An intuitive illustration of how the loss function works is shown in Figure.2. As the discrimination
loss separates queries in the latent space, the position encodings of queries in the BEV space are also
diverse. This design would help 3D detectors accommodate difficult driving scenes, such as crowded
urban streets and crossroads.

From the perspective of unsupervised learning, the discrimination loss is different from traditional
contrastive learning conducted on the embedding of samples. We discriminate all the queries to force
them to attend to different real-world areas. The queries are forced to be diverse during training by our
designed PDM. In inference time, the projection head is removed. Such an approach to contrast on a
set of learned parameters has the following advantages:



 Easy to deployed in training progress: Classical contrastive learning relies on special designs
like large batch size[18], momentum encoder[19] or memory bank[20] to ensure there are
plenty of negative pairings to ensure model optimizing in a right direction. Yet switching
dimensions to contrast from sample level to learned parameters releases the learning difficulty
in contrastive learning.

 A plug-in training module: The projection heads along the discrimination loss are all auxiliary
components. They would not introduce any extra costs to inference or modify network
architecture. Therefore, our approach is a general plug-in module for any 3D

4. Experiments

4.1. Implementations
Experiments are conducted with the SOTA methods, SparseBEV[6], on nuScenes dataset[21]. As
described above, the network architecture is not modified, except that the PDM, a two-layer MLP with
GeLU[22] activation is introduced. All the hyper-parameters and configurations are set to the same as
in SparseBEV. To better fit our servers, among the settings SparseBEV supports, we choose the
setting of ResNet-50 as the perspective image encoding backbone, 704 × 256 as the input image size,
and a total of 24 training epochs. Under such settings, the GPU memory consumption is about
5634MB for one sample per GPU. Total training time is less than 12 hours with an 8-RTX3090 server.
The results of the test set will be reported.

Table 1Main experiment results of SparsBEV baseline and SparseBEV with
Discrimination Module

Epoch NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
SparseBEV Baseline

4 44.54% 33.09% 70.23% 28.66% 69.70% 31.49% 19.92%
8 48.14% 36.94% 67.14% 27.48% 57.92% 31.20% 19.49%
12 52.10% 41.52% 64.73% 27.47% 48.79% 26.18% 19.44%
16 53.16% 42.61% 62.18% 27.08% 47.93% 25.01% 19.27%
20 54.10% 43.82% 61.46% 27.33% 45.42% 25.27% 18.60%
24 54.68% 44.49% 60.38% 27.15% 44.56% 24.90% 18.69%

SparseBEV+Plug-in Discrimination Module
4 44.63% 33.15% 70.21% 29.27% 69.45% 29.45% 21.14%
8 49.76% 39.10% 64.78% 27.31% 57.02% 28.18% 20.63%
12 52.49% 41.98% 60.91% 27.07% 51.70% 25.65% 19.71%
16 53.77% 42.89% 62.18% 26.87% 43.74% 24.06% 19.88%
20 54.95% 44.54% 59.56% 26.88% 43.61% 24.44% 18.71%
24 55.39% 45.09% 58.64% 26.84% 43.06% 24.05% 18.98%
↑means the greater value the better performance.
↓means the smaller value the better performance.



4.2 Dataset and Metircs
The experiments are conducted on the nuScenes dataset, a public large-scale dataset for autonomous
driving. The dataset consists of 1000 driving scenes in Boston and Singapore. Every scene is a multi-
modal data sequence of 20 seconds, containing 6 surround-view cameras, 1 lidar, and 5 radars. The
1000 scenes are split into 700/150/150 for training/validation/testing.

The nuScenes dataset supports 3D detection tasks. Approximately 1.4M object bounding boxes are
annotated in 40k keyframes. The annotated objects include 10 classes: barrier, bicycle, bus, car,
motorcycle, pedestrian, traffic cone, trailer, truck, and construction vehicle, which are all common
objects in driving maneuvers.

The evaluation metrics for 3D detection include 7 metrics:
 AP: Average Precision for detection;
 ATE: Average Translation Error;
 ASE: Average Scale Error;
 AOE: Average Orientation Error;
 AVE: Average Velocity Error;
 AAE: Average Attribute Error;
 NDS: nuScenes Detection Score, a composite metric of metrics above.

4.2. Dataset and Metircs
The main results are shown in Table.1 The experiment is conducted with 900 object queries. In a total
of 24 training epochs, we evaluate the model on a validation set every 4 epochs and record the
performance of the model. The best results are emphasized. In almost all metrics, SparseBEV with
PDM is superior to the baseline. The average attribute error (ATE, indicating the accuracy of
classification) of SparseBEV with PDM is slightly inferior to the baseline. This is because
discrimination learning is conducted on all the channels of queries, given the attributions of the object
is limited to the 10 classes, it might not need to be discriminated too much.

Figure 3. Average metrics improvement after baseline equipped with the PDM on test set during
training time. The left part contains the NDS and mAP, which are the greater the better. The right part

contains the mATE, mASE, mAOE, mAVE, and mAAE, which are the smaller the better.

4.3. Ablation on number of query
We conduct an ablation study on the number of queries to check out the effect of the PDM under
different query settings. We record metrics during training and use the metric from the model with the
PDM to minus the metric from the baseline. The number of the query is set from 100 to 1600, results
can be seen in Figure.3.



In general, the PDM contributes to more NDS improvement as the number of queries increases.
But we notice a drop in 400 queries. We suspect that the setting of 400 queries is a suitable hyper-
parameter for the nuScenes dataset. With fewer queries, i.e. 100 queries, the PDM makes the small
number of queries able to attend to the overall detection space. On the other hand, when the number of
queries is greater, i.e. 900/1600 queries, the queries are crowded in the detection space, and the PDM
further forces queries to attend to much more detailed information, such as orientation and velocity.

Further, we look into more detailed components of NDS. The mAP improvement is correlated to
the number of queries which verifies our hypothesis, that discriminating queries in 3D detection helps
detection. On the other hand, for the detailed information of objects, the mATE and mASE are
correlated to mAP, they are generally better than baseline. The mAOE, mAVE, and mAAE are not
quite directly related to position information, discriminating queries will not help improve them, thus
leading to diverse results.

5. Conclusion
In this paper, we propose a Plug-in Discrimination Module (PDM). This discrimination design
originates from the observation that in 3D detection tasks, objects hardly overlap with each other.
Given object queries are encodings of object positions, discriminating queries contributes to making
them more diverse. Therefore, queries can attend to more areas in the BEV space and detect various
shapes of objects. Also, in contrast to previous contrastive learning work conducted on samples, the
PDM is conducted on a set of learnable parameters, extending the unsupervised learning to a more
general case. Experimental results show that under various number of query settings, 3D detector
trained with the PDM is superior to the baseline model on the NDS score and mAP. Yet the errors are
diverse and not prone to becoming better. The non-overlapping hypothesis is a distinct property for 3D
detection tasks. The more elaborate way to force the model to learn this hypothesis could be studied in
further research.
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