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Real-time analysis of large-scale neuronal 
imaging enables closed-loop investigation  
of neural dynamics

Chun-Feng Shang1,2,3,8, Yu-Fan Wang    1,4,8, Mei-Ting Zhao5,6,8, Qiu-Xiang Fan5,6, 
Shan Zhao1,4, Yu Qian1, Sheng-Jin Xu1,4, Yu Mu    1,4 , Jie Hao    4,5,6  & 
Jiu-Lin Du    1,4,7 

Large-scale imaging of neuronal activities is crucial for understanding brain 
functions. However, it is challenging to analyze large-scale imaging data in 
real time, preventing closed-loop investigation of neural circuitry. Here we 
develop a real-time analysis system with a field programmable gate array–
graphics processing unit design for an up to 500-megabyte-per-second 
image stream. Adapted to whole-brain imaging of awake larval zebrafish, 
the system timely extracts activity from up to 100,000 neurons and enables 
closed-loop perturbations of neural dynamics.

Understanding the brain function relies on complete measurement 
and closed-loop perturbation of neural dynamics1,2. Advanced opti-
cal imaging realizes measurement of neural dynamics across large 
populations of neurons3–7—even at the whole-brain scale in small ver-
tebrate animals such as zebrafish5,8–10. For closed-loop perturbation, 
real-time analysis is a prerequisite for capturing the moment when 
the target neural dynamics emerge1,2,11–14. Although real-time analysis 
has been achieved for relatively small-scale optical imaging15,16, it is 
still unfeasible for large-scale imaging due to exponentially increased 
data stream rate. Therefore, existing techniques are insufficient for 
the implementation of closed-loop experimental paradigms impor-
tant for causal investigation of large-scale neural dynamics1,2. Here we 
developed a real-time system for analyzing large-scale imaging data 
and applied it to whole-brain imaging of awake larval zebrafish. With a 
customized field programmable gate array–graphics processing unit 
(FPGA-GPU) system, we could analyze the brain-wide neural dynam-
ics during acquisition and deliver optogenetic and sensory stimuli 
upon the occurrence of the target neural dynamics. Such a closed-loop 
strategy was exemplified by showing optogenetic manipulation and 
visual processing regulation locked to specific brain states, and a virtual  
reality (VR) directly driven by brain-wide neuronal activities.

Results
In real-time analysis of optical imaging, the main challenge is to speed 
up two processes: the assembling of images from the camera data 
stream and the massive structured computations in image registration. 
Similar requirements were met in astronomy studies. For example, in 
the real-time detection of fast radio bursts17, an analysis pipeline has 
been developed based on an FX design18. We employed the FX design, 
in which a customized field programmable gate array (FPGA) board and 
two graphics processing units (GPUs) work in series, to extract targeted 
neural dynamics from whole-brain imaging of awake larval zebrafish 
(Fig. 1a and Extended Data Fig. 1). The FPGA board acquires the data 
stream of the image sensor, a scientific CMOS camera (sCMOS; Orca 
Flash 4.0, Hamamatsu), assembles image frames from the data stream 
and feeds them to two GPUs via 10 gigabit ethernet ports (Extended Data 
Fig. 2). The two GPUs (P100, NVIDIA) are utilized to perform simultane-
ous registration of every two adjacent frames, correcting the drifting 
and distortion and minimizing possible artifact signals. The registration 
algorithm employed in our system is a piecewise rigid registration algo-
rithm that has been developed and introduced for whole-brain imaging 
of zebrafish8,19. Neuronal activities are then extracted from predefined 
regions of interest (ROIs). Finally, single-neuron activities are pooled 
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and is switchable between single-frame imaging and volumetric imag-
ing. The signals (∆F/F0), accessed by calcium-dependent fluorescence 
change (∆F) relative to its basal level (F0), from up to 100,000 ROIs 
across the whole brain of larval zebrafish can be continuously extracted 
in the volumetric imaging mode (Fig. 2a–d). In comparison with current 
state-of-the-art online imaging analysis systems, our system’s feedback 
latency (70.5 ms, primarily determined by the time for real-time image 
registration and cell response extraction) is much shorter than that of 
the volumetric light-sheet imaging reported9 (~480 s with 295 MB s−1, 
including a data transferring and computer cluster computing time 
in ‘(NV, 2018)’, Fig. 1d), enabling real-time processing. Furthermore, 
our data acquisition speed (~500 MB s−1) is 30 times faster than that  
of the point-scanning methods, including resonant-scanning 
two-photon fluorescent microscopy15 (~15 MB s−1, ‘(ZZ, 2018)’ in  
Fig. 1d), allowing flexible monitoring of activities from neuronal  
ensembles across the brain.

Neuronal ensembles, characterized by coordinated population 
activity patterns, are believed to play important roles in perception, 
decision-making, motor control and other neural processes. Here we 
monitored the activity of neuronal ensembles by pooling real-time 
extracted neuronal signals across the brain and performed closed-loop 
perturbations (Fig. 2 and Extended Data Fig. 3). Neurons were clustered 
into distinct ensembles and could be individually assigned weights 
based on experimental requirement. When the weighted average activ-
ity of a ‘seed cluster’ exceeded a predetermined threshold, a trigger 
signal was generated to initiate optogenetic or sensory stimulation 
(Fig. 2a–d). For closed-loop optogenetic perturbation, we used the 
triple-transgenic zebrafish line Tg(HuC:H2B-GCaMP6f);Tg(vglut2a: 
GAL4FF);Tg1(UAS:ChrimsonR-mKate2);nacre, which expresses the 
calcium indicator GCaMP6f in all neurons and the optogenetic actua-
tor ChrimsonR in glutamatergic neurons. The ensemble activity of a 
cluster in the optic tectum (‘seed cluster’) was then monitored and 
used to trigger optogenetic stimulation on the ipsilateral tegmentum 
(‘optogenetic target’, Fig. 2e–g). This closed-loop stimulation elicited 
neuronal responses in the tegmentum and other downstream brain 
regions (Fig. 2g–j).

Brain-wide neural functions, including response to environmental 
changes, are dynamically modulated by ongoing brain state. The syn-
chronous activation of norepinephrinergic (NE) neurons in the locus 
coeruleus (LC) tightly correlates with the arousal state and potentiates 
sensory responsiveness20,21. We imaged the neuronal activities across 
the whole brain and delivered sensory stimuli when LC-NE neurons 
displayed synchronous activities (Fig. 3a). Using the triple-transgenic 
zebrafish line Ki(dbh:Gal4-VP16);Tg(HuC:H2B-GCaMP6f);Tg(UAS:mC
herry);nacre, in which GCaMP6f is expressed in all neurons and the red 
fluorescent protein mCherry in NE neurons, the LC-NE neuronal activi-
ties were extracted from the whole-brain neuronal dynamics. Spon-
taneous activities of LC-NE neurons switched between synchronous 
activation and silence (Extended Data Fig. 4), indicating alternations 
between different brain states20,21. When light flashes were delivered 
without coupling to LC-NE activation, flash-evoked responses mainly 
localized in the optic tectum and the thalamus (Fig. 3b), consistent with 
the previous findings22. Interestingly, when sensory stimuli were deliv-
ered precisely upon the synchronous activation of LC-NE neurons, the 
same flash evoked larger responses and recruited more neurons (from 
9,907 to 21,357) in broader brain areas, including the cerebellum and 
the hindbrain (Fig. 3c–g). It is worth noting that a minority of neurons 
exhibited decreased responses (Fig. 3e), indicating diverse modula-
tory effects of LC-NE activation on neuronal activities. These results 
suggest that sensory-evoked response depends on the brain state, and 
closed-loop stimulus delivery can probe the interaction of the inner 
state and the external environment more precisely and efficiently.

We next exploited the real-time feedback for a neuronal 
activity-based brain–computer interface. Whole-brain neuronal 
activities encapsulate the information required for interacting with 

by a preset algorithm and the calculated population neural dynamics 
are used to update external stimuli used for closed-loop perturbation  
(Fig. 1b). The external stimuli were updated with a feedback latency of 
less than 70.5 ms, which consists of the time spent on the system initia-
tion, data transmission and data processing (Fig. 1c,d and Supplemen-
tary Table 1). The total data processing time per frame was measured 
to be ~15 ms. Therefore, the highest frame rate that supports real-time 
computation is ~65 Hz (that is 1/0.015 Hz), with the data stream rate up 
to 520 MB s−1 (Fig. 1c,d). As the axial position (layer ID in Extended Data 
Fig. 1) is appended with each image frame and the GPU computation is 
easily reconfigurable, the system can adapt to different microscopes 
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Fig. 1 | Stable real-time analysis of optical imaging of large-scale neuronal 
activities. a, FX design-based real-time analysis system for large-scale imaging, 
in comparison with traditional imaging analysis. In the FX design, a customized 
FPGA board and two GPUs work in series. b, Illustration of the whole-brain 
functional imaging and closed-loop delivery of feedback perturbation enabled 
by the real-time analysis system. Imaging data stream (binary bits) is assembled 
into image frames and registered by the customized FPGA-GPU system. 
Neuronal activities are extracted from predefined ROIs (green traces). The 
feedback perturbation (black trace) is delivered when the computed neural 
activity (red trace, computed with a preset algorithm, for example, averaging, 
interneuronal variance and so on) surpasses a threshold (dashed line). c, Stable 
generation of feedback signals with a latency of <70.5 ms, measured during 
single-plane imaging at various frame rates (determining data stream rates) or 
during volumetric imaging at 2.5 Hz (25 frames per volume). d, Feedback latency 
during stable imaging with various data stream rates, compared with previously 
reported data obtained with volumetric light-sheet microscopy (‘(NV, 2018)’)9 
or point-scanning two-photon microscopy (‘(ZZ, 2018)’)15. 10GbE, 10 gigabit 
ethernet.
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the environment, and could serve as an ideal source of inputs for a 
brain–computer interface11–16. We transformed a previously established 
‘motor-controlled’ VR paradigm23–25 into a ‘neuron-controlled’ version. 
Under ‘motor-control’, the locomotor drive (fictive swim recorded 
from the motor nerves of paralyzed larval zebrafish) is translated to 
visual feedback; under ‘neuron-control’, the population activity of a 
swimming-relevant neuronal ensemble updates the visual feedback 
in real time (Fig. 3h, Supplementary Video 1 and Extended Data Fig. 5). 
We compared the efficacy of the ‘neuron-control’ approach with the 
‘motor-control’ approach. Both the neuronal population activity and 
the locomotor drive faithfully recreated visual displacements during 
swimming, according to a feedback gain (Fig. 3i,j). We designed the 
feedback gain to periodically alternate between a high and a low level 
to evaluate if the animal could make compensatory changes to adapt 
to the virtual environment. Both inputs successfully established a 

closed-loop control (Fig. 3i–l). In the ‘motor-control’ mode, the animal 
engaged with the environment by increasing or decreasing the ‘fictive 
swims’ during the low- or high-gain conditions, respectively (Fig. 3j,l). 
Correspondingly, in the ‘neuron-control’ mode, the real-time popula-
tion activity from the selected neuronal ensemble showed similar com-
pensatory modulation (Fig. 3i,k) (gain adaptation index: 1.74 ± 0.085 
for the ‘neuron-control’ mode versus 1.70 ± 0.15 for the ‘motor-control’ 
mode; P = 0.15, Mann–Whitney test). Thus, this real-time analysis sys-
tem is fast and accurate for extracting neuronal dynamics and generat-
ing closed-loop control of the environments in VR.

Discussion
In summary, we introduce an FPGA-GPU-based system for the real-time 
analysis of near-gigbyte per second optical imaging of neuronal activi-
ties. In this system, the data interface modules are flexible and the 
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Fig. 2 | Real-time extraction of brain-wide neuronal activities enables 
ensemble activity-triggered optogenetics. a, Experimental design of ensemble 
activity-triggered closed-loop perturbations. Brain-wide neuronal activities 
are extracted in real time and the weighted sum of ensemble activities is used 
to trigger feedback stimuli, including optogenetics, sensory, VR and so on. 
Cluster (‘C’) identities are assigned to each neuron (‘N’) based on their functional 
diversities. b, Brain-wide neurons are shown for their anatomical positions in the 
zebrafish brain, with the cluster identity coded by color. Scale bar, 100 μm.  
c, Heatmap displaying spontaneous neuronal activities for approximately 
58,000 neurons sorted into 20 clusters across the brain. Neurons are ordered 
based on their cluster ID. d, Weighted average ensemble activity of representative 
clusters with their IDs coded by color. e, Functional clusters derived from 
spontaneous neuronal activities. The ensemble activity of a seed cluster (cyan) in 
the left lateral tectum was used for triggering optogenetic stimulation. f, Spatial 

location of both the seed cluster and optogenetic target in the left tegmentum. 
g, Ensemble activity of the seed cluster (top) triggers optogenetic stimulation 
(red dashed lines) when surpassing a preset triggering threshold (green dashed 
line). This strongly evoked the activity of the target cluster (middle) and across 
the brain (heatmap, bottom). Note that a minimum interval of 1 min is required 
for the nearest stimuli. h, Distinct temporal dynamics between the seed and the 
target cluster are revealed in both trial-averaged ensemble activities (top) and 
individual neuronal activities (middle and bottom). T0, the frame triggering 
optogenetic stimulation; T1, the frame at optogenetic stimulation offset. The 
error bands indicate s.e.m. i, Response map at T0. j, Response map at T1. Scale 
bars, 100 μm for e,f,i,j. The triple-transgenic zebrafish line Tg(HuC:H2B-GCaMP
6f);Tg(vglut2a:GAL4FF);Tg1(UAS:ChrimsonR-mKate2);nacre was employed and 
optogenetic stimuli were delivered by using a 589-nm laser.
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data stream bandwidth is extensible, thus it can be easily adapted 
to other large-scale neural recording setups. With the capacity of 
high-throughput analysis of ongoing neural dynamics, this system 
can serve as an excellent interface between large-scale internal dynam-
ics and external perturbations. Besides the closed-loop control of 
optogenetic and sensory stimulation, the system can also enable other 
closed-loop perturbations (such as photoconversion) through target-
ing functional ensembles on specific phases of neural dynamics. By 
looping and iterating the analyzing–perturbing–reanalyzing process 

in real time, models can be generated, tested and improved during the 
experiment1,2.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-024-01595-6.
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experiments of closed-loop sensory stimulation and VR. a, Experimental 
design of closed-loop sensory stimulation. A light flash (black traces) was 
delivered during the synchronous activation of LC-NE neurons (red trace). The 
synchronous activity of LC-NE neurons was computed in real time, compared 
with a preset threshold (dashed line), and used to trigger light flashes (closed-
loop stimulation). In a control experiment, light flashes were applied regardless 
of LC-NE activities (open-loop stimulation). b,c, Maps of activated neurons 
under open-loop (b) or closed-loop (c) delivery of flash stimulation. d,e, Map 
highlighting increased (d) and decreased (e) responses in the closed-loop  
mode compared with the open-loop mode. Scale bars, 100 μm for b–e.  
f, Cumulative amplitude distribution of flash-evoked neuronal responses under 
open-loop (blue) or closed-loop mode (red). g, Closed-loop stimulus-evoked 
sensory responses in a supralinear manner. For each neuron, its amplitude 
difference (ΔAmp) is calculated as ΔAmp = Rclosed-loop − (Ropen-loop + RLC-only), where 
a positive value indicates that the neuronal response evoked in the closed-loop 
mode is greater than the sum of response evoked by open-loop stimuli and 
the spontaneous activity of the same neuron when the LC-NE system is active. 
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visual stimulation. In the majority of neurons, the flash-evoked activity under 
closed-loop mode exceeds the summation of the spontaneous activity and the 
activity evoked in open-loop mode. h, Experimental design of a VR enabled by 
ensemble neuronal activity-triggered sensory feedback. Real-time activities 
were extracted from brain-wide neurons, and their weighted average was used to 
generate the ensemble activity of a swimming-related neuron cluster (red). This 
ensemble activity directly modulated the velocity of grating stimulus (black) 
according to a feedback gain that alternated between low and high levels. Whole-
brain imaging was performed on the transgenic zebrafish Tg(HuC:GCaMP8f) at 
5–6 d postfertilization. i–l, Gain adaptation in closed-loop control measured by 
neuronal activity (i,k) or locomotor drive (j,l). In the low-gain condition, both 
the frequency and amplitude/power of the neuronal ensemble activities (red) 
and locomotor drive in motor nerves in the trunk (cyan) were significantly larger 
compared with the high-gain condition. Example traces (i,j) and population 
data (k,l) are shown. ***P = 0.0027; ****P < 0.0001; two-sided paired t-test; n = 148 
trials from 11 fish in k, n = 129 trials from 9 fish in l. In the box plots, the central 
lines mark the medians, the box limits mark the upper and lower quartiles, and 
the whiskers mark ±1.5 × interquartile range. Data from each individual trial were 
marked with filled circles and connected with a line. EMG, motor nerve signals.
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