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Abstract— In the current researches, artificial intelligence (AI)
plays a crucial role in resource management for the next
generation wireless communication network. However, traditional
RL cannot solve the continuous and high dimensional prob-
lems. To handle these problems, the concept of deep neural
network (DNN) is introduced into RL to solve high dimensional
problems. In this paper, we first construct an information inter-
action model among primary user (PU), secondary user (SU) and
wireless sensors in a cognitive radio system. In the model, the SU
is unable to get the power allocation information of the PU, and
needs to use the received signal strengths (RSSs) of the wireless
sensors to adjust its own power. The PU allocates transmit power
relying on its power control scheme. We propose an asynchronous
advantage actor critic (A3C)-based power control of SU that
is a parallel actor-learners framework with root mean square
prop (RMSProp) optimization. Multiple SUs learn power control
scheme simultaneously on different CPU threads, reducing neural
network gradient update interdependence. To further improve
the efficiency of spectrum sharing, the distributed proximal
policy optimization (DPPO)-based power control is proposed
which is an asynchronous variant of actor-critic with adaptive
moment (Adam) optimization. It enables the network to converge
quickly. After several power adjustments, the PU and the SU
meet quality of service (QoS) requirements and achieve spectrum
sharing.

Index Terms— Deep reinforcement learning (DRL), cognitive
radio network, spectrum sharing, power control.
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I. INTRODUCTION

AS THE rapid growth of data traffic, how to meet the
higher quality of service (QoS) of users with limited

spectrum has become a crucial problem [1], [2]. Artificial
intelligence (AI) is an important research topic for next gener-
ation wireless communication [3]–[5]. It has been widely used
for resource management in wireless communication, such as
spectrum sharing [6], access control [7], and transmit power
control [8]. However, there still exists several issues on spectral
efficiency, power efficiency, network convergence, etc., which
call for more efficient spectrum sharing technologies.

Meanwhile, in academia, the role of the primary user (PU)
is divided into active user model and passive user model for
the spectrum sharing. In the active model, there was a cooper-
ative [9] or non-cooperative [10] relationship between the PU
and the secondary user (SU). The information interaction was
performed to improve the system transmission performance.
However, the passive user model in literature, SU performed
spectrum sensing to find the idle spectrum or power allocation
[11], [12]. When PU played the role of the passive PU,
the PU allocates its transmit power relying on its power control
scheme.

In current works, there are many ways to address power
allocation and power control problem, such as optimization
theory, game theory and machine learning. Optimization-based
algorithms have been studied, including difference of convex
programming, interior point methods, Lagrangian multiplier.
In [13], the optimization problem was non-convex which was
transform into convex optimization problem using difference
of convex. In [14], the secure power allocation algorithm was
converted to a convex geometric programming problem, using
interior point method to solve it. In [15], the power optimiza-
tion problem was treated as mixed-integer programming prob-
lem that was solved by the Lagrangian dual decomposition.

Deep reinforcement learning (DRL) is the method that uses
policy function or deep neural network (DNN) approximation
function. The policy function includes policy gradient method
and DNN approximation function includes deep Q learning.
The agents learn policies and maximize their rewards during
the interaction with the environment. The DRL methods, such
as, deep Q network (DQN) [20], asynchronous advantage actor
critic (A3C) [21] and distributed proximal policy optimization
(DPPO) [22], are suitable for solving problems with high-
dimensional. The traditional DQN needs the memory replay
and fixed Q-target to work well. The A3C method is based on
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actor-critic mechanism and uses parallel computing to break
the data dependency. The DPPO method can limit the update
steps of the policy and operate on a multi-threaded CPU in a
distributed form. The objective functions of DRL are complex,
because they involve the sum of a large number of data
likelihood functions. To deal with these objective functions,
many optimization algorithms were investigated, including
stochastic gradient descent (SDG) [23], root mean square prop
(RMSprop) [24] and adaptive moment (Adam) [25].

Many resource management problems, such as, caching,
transmission scheduling, spectrum access and power man-
agement in wireless communication are modeled as markov
decision processes (MDPs). A novel DRL approach was
studied for cache-enabled wireless networks, which used
DQN to approximate Q value-action function [26]. A deep
learning (DL) transmission scheduling mechanism based on
Q learning was proposed to maximize system throughput
according to transmitting different buffer data packets through
multiple channels [27]. A distributed dynamic spectrum access
algorithm was proposed [28]. The current state of user was
mapped to the action of spectrum access to maximize network
revenue. For cloud resource allocation problem, a DRL based
power management strategy was proposed to reduce power
consumption [29].

Although several DRL-based researches have been studied
for resource management [6], [30]–[32]. However, there are
continuous and high dimensional problems in the wireless
communication network model, and the Q-Learning algorithm
cannot solve the continuous domain problems since the state
is infinite. Besides, the gradient update of neural network
depends on each other in DQN method, the network cannot
achieve the expected learning purpose. The power control for
spectrum sharing is related to continuous domain. Therefore,
we focus on DRL algorithms based on the actor-critic frame-
work for the power control, such as, A3C and DPPO, com-
bining the methods of policy-based and value-based. Power
control with A3C and DPPO can significantly reduce the
relevance of updates and improve network convergence.

The contributions of this paper mainly have the following
aspects:

• The power control is investigated in cognitive radios for
spectrum sharing, guaranteeing the QoS requirements of
PU and SU. We first construct an information interaction
model among PU, SU and wireless sensors. In the model,
the RSSs of the wireless sensors are spatially distributed
to help the PU obtain the power allocation information
of SU.

• The A3C-based power control is proposed where PUs
and SUs share the same spectrum according to adjusting
the power allocation. The proposed scheme is a paral-
lel actor-learners framework with RMSProp optimiza-
tion. Multiple SUs learn simultaneously power allocation
scheme on different CPU threads. It reduces the relevance
of update and has a stabilizing process for power control.

• The DPPO-based power control is investigated. It opti-
mizes the power allocation function using Adma opti-
mization. The traditional policy gradient method performs
a gradient update for each data sample, whereas the

Fig. 1. System model.

proposed scheme can achieve minibatch updates for mul-
tiple epochs. It enables the network to converge quickly
and meet the QoS of users.

The rest of this paper is organized as follows. The system
model of cognitive radio network is discussed in Section II.
Section III describes the A3C-based power control and the
DPPO-based power control schemes for the system. The
simulation results are presented in Section V, and finally
the paper is concluded in Section VI.

II. SYSTEM MODEL

A. Problem Formulation

We investigate a power control mechanism between PU
and SU in the underlay access mode for the cognitive radio
network. The system model includes a primary transmitter
(PT), a primary receiver (PR), a secondary transmitter (ST)
and a secondary receiver (SR). The system model is shown
in Fig. 1. The aim of the PU is to share the same spectrum
resource with the SU, both of them can transmit their signals
successfully with the demand of QoS.

The transmit power of them synchronously update on a time
frame. The transmit power for the primary transmitter and
secondary transmitter is divided into the set of discrete powers,
which is represented as

P = {p1
i , p

2
i , . . . , p

L
i }, (1)

where i ∈ {1, 2}, p1
i < p2

i < . . . < pL
i and L is the number of

the power level. Suppose there exists at least a pair of transmit
power {pl1

1 , pl2
2 } can make the PU and the SU meet their QoS

requirements, where pl1
1 ⊂ P and pl2

2 ⊂ P .
The PU and the SU work in non-cooperative ways. The

transmit power of the PU is adjusted by its own power control
policy. However, the SU is not aware of the power allocation
of the PU. Obviously, the SU needs to obtain the information
of the PU power allocation. In order to get the information,
we utilize the received signal strengths (RSSs) for the set of
spatially distributed wireless sensors. The RSSs are related
to the transmit power of the PU and the SU, which reflects
the channel state information. The SU can get the timely
feedback information of the RSSs from the wireless sensors
by conventional technologies [16].

We assume signal-to-interference-plus-noise ratios (SINR)
can represent the QoS of the users. The SINR for the receiver i
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at the kth slot is

SINRi(k) =
|hii|2pi(k)∑

j �=i

|hij |2pj(k) + σ2
, (2)

where i ∈ 1, 2, j ∈ 1, 2, p1(k) ⊂ P and p1(k) ⊂ P . The
powers for the transmitter i and the transmitter j at the kth
slot are pi(k) and pj(k), respectively. hii and hij represent the
channel gains from the transmitter i to the receiver i and j,
respectively. The noise variance of the system is σ2

0 .
For the PU, there are two power control schemes investi-

gated. The PU allocates its transmit power relying on its power
control scheme. In the first strategy, the formulation of the PU
power update is given by

p1(k) = f(
SINRmin

1 p1(k − 1)
SINR1(k − 1)

), (3)

where f(.) is a discretization operation which maps continuous
powers into a set of discrete powers. f(x) is equal to the
nearest discrete power which means it is not more than x and
f(x) = pl

1 if x > pl1
1 , where l1 ⊂ {1, 2, . . . , L}. The minimum

QoS requirements for the PU and the SU are SINRmin
1 and

SINRmin
2 . In the second strategy, t is defined as

t =
SINRmin

1 p1(k − 1)
SINR1(k − 1)

. (4)

The formulation of the PU power update is given by

p1(k) =

⎧⎪⎨
⎪⎩

pl1+1
1 pl1

1 ≤ t ≤ pl1+1
1 , l1 + 1 ≤ L

pl1−1
1 t ≤ pl1−1

1 , l1 − 1 ≥ 1
pl1
1 other.

(5)

The predicted SINR of PU at the kth slot is defined as:

SINRpre
1 (k) =

SINR1(k − 1)p(k)
p(k − 1)

. (6)

If SINRmin
1 ≥ SINR1(k− 1) and SINRpre

1 (k) ≥ SINRmin
1 ,

the power of PU should increase. If SINRmin
1 < SINR1

(k−1) and SINRpre
1 (k) ≥ SINRmin

1 , the power of PU should
decrease. Otherwise, the power of PU should stay the previous
level.

For the SU, it needs to learn an effective power control
scheme using the information of RSSs. The SU can satisfy
its own QoS requirements after several rounds of power
allocation adjustment. The wireless sensors are uniformly
deployed between the PU and the SU. The set of wireless
sensors is represented as N = {1, 2, . . . , N} and the SU
samples the RSSs information from the wireless sensors. The
receive power at the kth slot for wireless sensor n is given by

Pn(k) = p1(k)g1n + p2(k)g2n + zn(k), (7)

where g1n and g2n are the path loss from wireless sensor n
to primary transmitter and secondary transmitter, respectively.
zn(k) ∼ cN(0, σ2) represents the shadowing effect and esti-
mation errors for the system.

B. System Model Based on DRL Framework

The power control framework can be modeled as a markov
decision process (MDP). Proof : Please refer to Appendix A.
An agent-environment interaction modeling of the MDP is
constructed, including an agent, an environment, state S,
action A and a reward function R. In the model, the agent
is SU and the environment consists of the PU and wireless
sensors. The model is defined as below:

State Space: In the MDP model, the state of the environment
is the RSSs of the wireless sensors. The size of state space
is equal to the number of wireless sensors. The state of the
MDP is shown as

S(k) = [P1(k), P2(k), . . . , Pn(k)]. (8)

Action Space: The action of the MDP agent is the power
of the SU. The size of action space is equal to the number of
the power level L. The action of the MDP can be given by

A ⊂ {a|a ∈ {p1
2, p

2
2, . . . , p

L
2 }}. (9)

Reward: The reward of the system is related to whether the
QoS of the PU and the SU are satisfied. Both of them satisfy
QoS requirements that the reward is 10, otherwise the reward
is 0. The reward function of the MDP is defined as

r(k) =

⎧⎪⎨
⎪⎩

10
SINR1(k + 1) ≥ SINRmin

1 ,

SINR2(k + 1) ≥ SINRmin
2

0 other

(10)

The observations of the RSS is random variation and the
number of states is infinite. Therefore, it is not realistic for
the SU to control power using Q-learning scheme. In order to
handle this issue, the DNN is introduced in the RL framework.
The action value function can be approximated using the DNN
instead of using Q-table in the Q-learning. In value-based RL
framework, the action value function is approximated by DNN.
i.e., Q∗(s, a) ≈ Q(s, a; θ), θ is the weights of the DNN. The
parameters θ are updated according to minimizing the loss
function, which is defined as

Li(θi)=E(Q′(s(k),a(k); θi)−Q(s(k),a(k); θi))2, (11)

where Q′(s(k), a(k); θi) is the estimation value of the action.
The action value function converges to the optimal action
value function after taking some actions. For the Q-learning,
the action-value function is estimated according to the Q-table
for each state. The rows and columns separately represent the
number of states and the number of actions. For the one-step
Q-learning the Q′(s(k), a(k); θi) can be given by

Q′(s(k), a(k); θi)
= r(s(k), a(k))

+ γ max
a(k+1)

Q(s(k+1), a(k+1); θi−1). (12)

The drawback of one-step Q-learning is that the reward r(k)
only influences current state s(k) and current action a(k).
Other states and actions are influenced through updating the
action value Q′(s(k), a(k); θi). All the updates need to prop-
agate the rewards to the relevant previous states and actions,
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so the speed is quite slow. In the n−step Q-learning [18],
the Q′(s(k), a(k); θi) is shown as.

Q′(s(k), a(k); θi)

=
n−1∑
i=0

γirk+i + γn max
a(k+n)

Q(s(k + n), a(k + n); θi−1).

(13)

It can be seen from the formula that a single reward r(k) can
affect the values of n previous states and actions. Therefore,
the rewards are propagated to relevant states and actions should
be more effective in the n−step Q-learning. The optimal value
function is the maximum action value

Q∗(s(k), a(k); θi) = max
a(k)

Q(s(k), a(k); θi). (14)

In the training process, the SU constantly interacts with
the wireless sensors and the PU. The SU chooses a power
from the set of actions A with the largest action value
Q∗(s(k), a(k); θi) at the time slot k. The wireless sensors and
the PU receive the power allocation of the SU and update
its next state s(k +1) and provide reward r(k) to the SU.
The reward feedback mechanism can be used by the agent to
learn about the optimal policy. The agent aims to maximize

the cumulative rewards R(k) =
∞∑

k=0

r(k) in the process. This

process is terminated until the total reward is not growing.

III. ASYNCHRONOUS DRL FRAMEWORK

There exists many DRL algorithms which can perform user
power allocation. In this paper, there are two DRL frame-
works that are asynchronous variant of actor-critic, such as,
A3C-based power allocation scheme and DPPO-based power
allocation scheme.

There are differences between asynchronous DRL frame-
work and DQN. There exists a replay memory D in DQN
algorithm that stores the transition {s(k), a(k), r(k), s(k+1)}.
The training process will start once the replay memory has
sufficient transition. The collected transitions are first placed in
the replay memory, and then a minibatch transition is randomly
selected from the replay memory for the training network.
It breaks the association between the transitions and makes
the transitions independent of each other. For asynchronous
DRL algorithm, the parallel actor-learners learn power control
scheme in different threads, breaking the interdependence of
gradient updates. Therefore, the A3C and DPPO are online
algorithms, while DQN is an offline value-based algorithm.

For our power control model, the asynchronous DRL frame-
work with parallel computing is shown in Fig. 2. Unlike
DQN, where a single SU represented by a single neural
network (NN) interacts with a single PU and wireless sensors.
The asynchronous DRL schemes utilize multiple incarnations
of the above in order to learn more efficiently. From the Fig. 2,
there exists a global network, and multiple SUs (agents) that
each of them has their own network parameters. The SUs are
distributed on different CPU threads of the same machine to
learn the scheme. Each of SU interacts with it’s own copy
of the PU and wireless sensors (environment) at the same

Fig. 2. Asynchronous DRL framework.

Fig. 3. Actor-Critic Mechanism.

time as the other PUs are interacting with their environments.
The power allocation experience of each SU is independent
of the experience of the others. Therefore, the training of
asynchronous DRL becomes more diverse and faster.

There exists an actor-critic mechanism on each thread,
which is shown in Fig. 3. The actor-critic mechanism combines
the benefits of value-iteration methods and policy-iteration
methods. For the actor network, the input is the state and the
output is policy that is the probability of action. For the critic
network, the output is the action value function that represents
scores of all actions. The actor modifies the probability of an
action based on the score of the critic. Importantly, the PU uses
the value estimate (the critic) to update the power allocation
policy (the actor) more intelligently than traditional policy
gradient methods.

A. Asynchronous Advantage Actor-Critic

The A3C is a method for asynchronously parallel learning
of multiple actor-learners on multiple CPU threads. The prin-
ciple of RMSProp optimization is in Appendix B. Multiple
actor-learners are distributed on different CPU threads in the
same machine. The training method of A3C is similar to
Hogwild [23] that reduces the cost of network parameters.
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Another advantage of the method is that it can train the policy
more reliably and with small resource requirements.

The update rule tells the agent which behavior is “good”
and which behavior is “bad”. This update network can properly
encourage and discourage actions. Instead of using discounted
returns update rule in policy gradient, the A3C method utilizes
advantage estimates for updating. For update rule of A3C,
the agent not only learns how good the action is, but also
learn how much better than expected. The discounted returns
as an estimate of action value function to allow us to generate
an estimate of the advantage. The estimate of the advantage
function is given by.

A(s(k), a(k); θp, θv)=
n−1∑
i=0

γirk+i+γnV (s(k+n); θv)

−V (s(k); θv), (15)

where V (s(k + n); θv) and V (s(k); θv) are the state value
functions in the state s(k + n) and s(k), respectively.

All the actor-learners update the policy π(a(k), s(k); θp
′)

and the state value function V (s(k); θv) according to gradi-
ent loss. The gradient loss function is regarded as gradient
estimator that is given by

L(θp
′)=E[∇θp

′ log π(a(k)|s(k);θp
′)A(s(k),a(k);θp,θv)], (16)

where θp and θv are the policy parameters of the actor network
and action value parameters of the critic network. Both of them
are updated until the terminal state is reached. Ek[.] is the
expectation which shows the empirical average in the batch of
samples. The update formulas for θp and θv are

dθp = dθp+∇θp
′log π(a(k), s(k); θp

′)(R−V (s(k); θv
′)), (17)

dθv = dθv + ∇θv
′(R − V (s(k); θv

′)). (18)

B. Proximal Policy Optimization Algorithms

The proximal policy optimization (PPO) algorithm is a fam-
ily of the policy gradient methods. It optimizes the objective
function. The principle of Adam optimization is in Appen-
dix C. The traditional policy gradient method can only perform
a gradient update on a single sample, and the PPO objective
function can update multiple small batch gradients. It is easier
to implement and more general.

The probability ratio is defined as

rk(θp
′) =

π(a(k)|s(k); θp
′)

π(a(k)|s(k); θp)
. (19)

The clipped probability ratio that eliminates the motivation to
move rk(θp

′) outside the interval [1 − ε, 1 + ε]. The clipped
probability ratio is given by

clip(rk(θp
′), 1 − ε, 1 + ε)A(s(k), a(k); θp, θv). (20)

The gradient estimator with clipped objective function is given
by

LCLIP(θp
′)

= E[min(rk(θp
′),clip(rk(θp

′), 1−ε, 1+ε))A(s(k), a(k);θp, θv)].
(21)

Instead of using clipping for objective function, the penalty
on KL divergence can be used in the objective function. The
adaptive KL penalty coefficient is

βKL[πθp(.|s(k); θp), πθp
′(.|s(k); θp

′)]. (22)

The gradient estimator with KL-penalized objective function
is shown as

LKLPEN(θp
′)

= E[rk(θp
′)A(s(k), a(k); θp, θv) − βKL[πθp , πθp

′ ]], (23)

where β is the coefficient for the policy update.

C. Algorithm Description

The A3C and DPPO methods are based on the actor-critic
mechanism for the power control. The actor network optimizes
power control policy to make spectrum sharing better. The
critic network tries to estimate the value function to make
spectrum sharing more accurate. The actor-critic mechanism
is put in multiple threads for synchronous training. Each SU
performs power control at the same time, and power control
experience of SUs is simultaneously uploaded to a center.
Then SUs obtain the latest power control strategy from the
center. The center brings together the experience of each SU,
and SU can obtain information from the center and use it
in his own network. The center has global network and its
parameters, each SU has a global network and a copy of
local network, which can periodically push updates to global
network, and then periodically from global network to get the
comprehensive version of the update.

The A3C-based power control of the SU is given in
Algorithm 1. The detailed steps of the Algorithm 1 are as
follows. 1) We first initialize the global network parameters
θp and θv and thread parameters θp

′ and θv
′. 2) Each SU

interacts with wireless sensors and the PU. The SU gets r(k)
and s(k + 1) from environment and the environment obtains
a(k) from SU. The state is updated until the terminal s(k)
is reached or the number of iterations is greater than the
maximum number of iterations on the thread. 3) The SU
calculates update the policy π(a(k), s(k); θp

′) and the state
value function V (s(k); θv). 4) The SU gets gradients θp

′ and
θv

′ from the function (17) and (18), respectively. 5) The
gradients θp

′, θv
′ on each thread are passed to the global

network, and then the gradients of the global network θp, θv

are updated. The gradients θp, θv of the global network are
passed to each thread separately. 6) The network repeats the
above steps until the number of iterations reaches maximum
global shared counter Kmax. Finally, the SU learns an efficient
power control. The QoS of SU can be satisfied according to
adjusting its transmit power.

To further improve the efficiency of spectrum sharing,
the DPPO-based power control of the SU is described in detail
in Algorithm 2. 1) Similar to Algorithm 1, we initialize the
global network parameters θp and θv and thread parameters
θp

′ and θv
′. 2) Each actor-learner collects K time slots of

data. The policy π(a(k)|s(k); θp
′) is obtained from actor and

the state value function V (s(k), θv
′) and an estimation of

advantage A(s(k), a(k); θp, θv) are obtained from critic. 3) On
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Algorithm 1 A3C-Based for Power Control
1: Initialize the global parameters θp and θv and thread

parameters θp
′ and θv

′.
2: Initialize global shared counter K = 0.
3: Initialize maximum global shared counter Kmax and max-

imum thread counter kmax.
4: repeat
5: Reset the global gradients: dθp = 0, dθv = 0.
6: Reset the thread parameters: θp

′ = θp, θv
′ = θv .

7: Initialize thread counter k = 0.
8: tstart = t.
9: Get the RSSs of the sensors s(k).

10: repeat
11: Get power a(k) by policy π(a(k)|s(k); θp

′).
12: Get reward r(k) and next state s(k + 1).
13: k = k + 1, K = K + 1.
14: until terminal s(k) or kmax > k − kstart.

15: R =
{

0 terminal s(k)
V (s(k), θv

′) non − terminal s(k) .

16: Update π(a(k)|s(k); θp
′).

17: while k < kstart do
18: R = r(k) + γR.
19: Update thread parameters θp

′ using (17).
20: Update thread parameters θv

′ using (18).
21: end while
22: Asynchronous update global parameters θp according to

(17).
23: Asynchronous update global parameters θv according to

(18).
24: until K ≥ Kmax.

each thread, the thread parameters θp
′ and θv

′ are updated
according to minimizing the gradient estimator with clipped
objective function (21) or the KL-penalized objective function
(23). 4) The global network can get all threads parameters θp

′

and θv
′, and the global parameters gradients θp, θv are passed

to each thread separately. In this way, the overall experience
available for training becomes more diverse, assisting the SU
makes better decision. The Algorithm 2 eliminates excessive
changes in SU power values and also makes network functions
converge faster.

The A3C-based and DPPO-based power control schemes
both outperform existing DQN-based method. There are main
two reasons. Firstly, the A3C-based and DPPO-based methods
are based on actor-critic mechanism and DQN method is based
on Q-learning method. The actor-critic mechanism combines
the benefits of value-iteration methods and policy-iteration
methods. The action can be made by the actor network and
action values are produced by the critic network. Both of
them separate action selection from value estimation, avoid-
ing overestimation of value. However, Q-learning belongs to
value-iteration method. Secondly, multiple agents are consid-
ered in the A3C-based and DPPO-based schemes and single
agent is investigated in the DQN-method scheme. The parallel
agents learn the strategies in different threads and they can

Algorithm 2 DPPO-Based for Power Control
1: Initialize the global parameters θp and θv and thread

parameters θp
′ and θv

′.
2: Initialize global shared counter K = 0.
3: Initialize maximum global shared counter Kmax.
4: repeat
5: for thread = 1 to N do
6: for k = 1 to kmax do
7: Get a(k) by policy π(a(k)|s(k); θp

′).
8: Get advantage estimates A(s(k), a(k); θp, θv).
9: end for

10: Update thread parameters θp
′ and θv

′ according to
minimizing gradient estimator (21) or (23).

11: end for
12: Update global parameters θp and θv.
13: until K ≥ Kmax

obtain the learned information of each other from the global
network, breaking the interdependence of gradient updates.

IV. SIMULATION RESULTS

A. Simulation Setup

In this section, simulations verify the performance of the
A3C-based power control algorithm and the DPPO-based
power control algorithm scheme. For the simulation, the PU
adopts second strategy to update the power. The transmit
power of SUs is selected from the set of power P . We set
the noise power for receivers to 0.01 W , the minimum QoS
requirements for the PU and the SU are set to 1.2 bps/Hz and
0.7 bps/Hz. The wireless sensors are evenly distributed in a
circle with a radius of 300 m centered on the transmitters. The
Adam optimizer and the RMSProp optimizer are applied for
updating DPPO network and A3C network, respectively. The
proportion of success is the ratio of the number of successful
trials to the total number of trials. Assuming that the agent
adjusts the SU power to the target state within 20 time slots,
the test trial considered successful. The average exploration
step is the average time slot required to reach the target state
when the test is successful. The Hyperparameters for DQN,
A3C and DPPO are shown as

The proposed scheme is performed in Python 3.5 with
TensorFlow 1.8.0 with Intel(R) Core(TM)i7-7700@3.6GHz,
NVIDIA GeForce GTX 1050.

Fig. 4 shows the total reward versus the number of iter-
ation with DPPO, A3C and DQN. It can be observed that
the DPPO-based power control scheme can obtain higher
reward than A3C scheme and DQN scheme. The proposed
DPPO-based algorithm converges to the maximum value of
the reward within 100 iterations. In addition, the A3C-based
algorithm has better performance than the DQN-based algo-
rithm for power control. As expected, DPPO and A3C are
better than DQN power control since they reduce the strong
correlation and gradient dependence of neural network value
estimation.

Fig. 5 demonstrates the average exploration step versus the
number of iteration with DPPO, A3C and DQN. The average
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TABLE I

DRL HYPERPARAMETERS OF SYSTEM

Fig. 4. The total reward vs. iteration.

exploration step reflects the average time slot required to reach
the target state when the trail is successful. From Fig. 5, when
the number of iteration within 300, the average exploration
step is close to a steady level. Besides, the average exploration
step of the three algorithms is less than 6. Therefore, the agent
can quickly adjust the power of the SU to the target power.

Fig. 6 depicts the total reward versus the number of iteration
for different noise power σ2 in the receivers for the DPPO
algorithm. Fig. 7 depicts the total reward versus the number
of iteration for different noise power σ2 in the receivers for
the A3C algorithm. For the DPPO algorithm and the A3C
algorithm, when noise power is 3 or 10, their reward values
are very close.

Fig. 8 demonstrates the total reward versus the number of
iteration for different number of state for DPPO. Fig. 9 demon-
strates the total reward versus the number of iteration for
different number of state for A3C. When the state number of
the model uses different values, such as 5 or 10, the system
return value is still very close for the DPPO algorithm and
the A3C algorithm. Therefore, the proposed two algorithms

Fig. 5. Average exploration step vs. iteration for different Algorithms.

Fig. 6. The total reward vs. iteration for different σ2 for DPPO.

Fig. 7. The total reward vs. iteration for different σ2 for A3C.

are very robust, and the variables and state changes in the
model will hardly affect the performance of the system.

Fig. 10 shows the average exploration step versus the
number of iteration for DPPO scheme with different set of
actions A. The action of the agent is the power of the SU.
The dimension of the action is the number of power values
that the SU can adjust. The larger the action dimension,
the more average exploration steps the network needs to
reach the target power. Besides, the smaller action dimension,
the faster the DPPO network converges. Fig. 11 shows the
average exploration step versus the number of iteration for
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Fig. 8. The total reward vs. iteration for different S for DPPO.

Fig. 9. The total reward vs. iteration for different S for A3C.

Fig. 10. Average exploration step vs. iteration for different A.

A3C scheme with different set of actions A. Similar to Fig. 10,
the more power values a SU can choose, the more exploration
steps the A3C network needs.

Fig. 12 shows the proportion of success versus the number
of iteration for A3C scheme with different number of thread.
All threads learn the power control strategy in parallel and
then pass the learned parameters to the global network. The
global network issues instructions to each thread based on the
data of all threads. Therefore, multiple threads have a higher
success rate than a single thread. Normally the number of the
thread is, the better the neural network learns.

Fig. 11. Average exploration step vs. iteration for different A.

Fig. 12. Average exploration step vs. iteration for different threads.

Fig. 13. Proportion of success vs. iteration for different threads.

Fig. 13 shows the average exploration step versus the
number of iteration for PPO scheme with different number of
thread and different gradient estimator. In PPO-based power
control with single thread, the thread parameters θp

′ and θv
′

are updated according to minimizing the gradient estimator
with clipped objective function and the KL-penalized objective
function. For single thread PPO, both of them converge to
the same value almost, and the average exploration step
is less than 3 times. However, the gradient estimator with
clipped objective function converges faster and more stably
than the gradient estimator with clipped objective function.
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Fig. 14. The total reward vs. iteration for different threads.

Comparing DPPO-based power control with four threads and
PPO-based power control with single thread, DPPO method
requires more average exploration steps than PPO method.

Fig. 14 shows the total reward versus the number of iteration
for PPO scheme with different number of threads and differ-
ent gradient estimators. The PPO-based power control with
clipped objective function and the PPO-based power control
with KL-penalized objective function converge to the same
performance in system reward. Similar to Fig. 13, multiple
threads have better system reward than single threads.

V. CONCLUSION

The spectrum sharing problem was investigated in a cog-
nitive radio system consisting of a PU, a SU and wireless
sensors, according to adjusting their power. The PU and the
SU work in a non-cooperative way that PU cannot obtain the
power allocation about the PU. The PU adjusts its transmit
power relying on its power control scheme. The A3C-based
power control and DPPO-based power control were proposed
for the SU to learn how to adjust its transmit power. Both
of the schemes were asynchronous variant of actor-critic with
policy-based and value-based methods. Finally, the system can
meet the QoS of PU and SU. The results showed that the pro-
posed schemes have better performance than the DQN-based
power allocation in power efficiency and network convergence.

APPENDIX A

Proof: The power control framework can be modeled as
a MDP.

The SU selects an action a(k) = p2(k + 1) under the state
s(k), the environment gets the next state s(k + 1). The next
state s(k+1) only depends on the action a(k) and the current
state s(k) and is not relate to previous states and actions.
Therefore, the power control framework can be modeled as
a MDP.

APPENDIX B

Proof: The principle of RMSProp optimization
In the DRL-based asynchronous framework, RMSProp opti-

mization and Adma optimization algorithms are used to learn

power control scheme. The RMSProp algorithm uses a differ-
ential squared weighted average for the gradients of weight W
and bias b, which is represented as

W = W − α
dW√

gdw + ε

b = b − α
db√

gdb + ε
. (24)

The RMSProp algorithm calculates the differential squared
weighted average for the gradient. gdw and gdb are gradient
momentum which are accumulated by loss function. gradient
momentum gdw and gdb are given by

gdw = βgdw + (1 − β)dW 2

gdb = βgdb + (1 − β)db2. (25)

β is gradient accumulation index.

APPENDIX C

Proof: The principle of Adam optimization
Adam optimization not only calculates the first-order

moment of the gradient, but also makes full use of the
second-order moment. Specifically, it calculates the exponen-
tial moving average of the gradient, and the hyperparameters
β1 and β2 control the decay rate of these moving averages.
We can first calculate the parameter updates for first-order
moment and second-order moment of gradient:

cdw = β1gdw + (1 − β1)dW

cdb = β1gdb + (1 − β1)db. (26)

gdw = β2gdw + (1 − β2)dW 2

gdb = β2gdb + (1 − β2)db2. (27)

The average of the moving index is very different from the
initial value at the beginning of the iteration, so the deviations
of the several values obtained above are corrected as follows

cr
dw =

cdw

1 − βi
1

cr
db =

cdb

1 − βi
1

gr
dw =

gdw

1 − βi
2

gr
db =

gdb

1 − βi
2

. (28)

Next, the update of weights and bias are represented as.

W = W − α
cr
dw√

gr
dw + ε

b = b − α
cr
db√

gr
db + ε

. (29)
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