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Abstract. Currently, there are mainly three kinds of Transformer
encoder based streaming End to End (E2E) Automatic Speech Recog-
nition (ASR) approaches, namely time-restricted methods, chunk-wise
methods, and memory-based methods. Generally, all of them have limita-
tions in aspects of linear computational complexity, global context mod-
eling, and parallel training. In this work, we aim to build a model to take
all these three advantages for streaming Transformer ASR. Particularly,
we propose a shifted chunk mechanism for the chunk-wise Transformer
which provides cross-chunk connections between chunks. Therefore, the
global context modeling ability of chunk-wise models can be significantly
enhanced while all the original merits inherited. We integrate this scheme
with the chunk-wise Transformer and Conformer, and identify them
as SChunk-Transformer and SChunk-Conformer, respectively. Experi-
ments on AISHELL-1 show that the SChunk-Transformer and SChunk-
Conformer can respectively achieve CER 6.43% and 5.77%. And the lin-
ear complexity makes them possible to train with large batches and infer
more efficiently. Our models can significantly outperform their conven-
tional chunk-wise counterparts, while being competitive, with only 0.22
absolute CER drop, when compared with U2 which has quadratic com-
plexity. A better CER can be achieved if compared with existing chunk-
wise or memory-based methods, such as HS-DACS and MMA. Code is
released. (see https://github.com/wangfangyuan/SChunk-Encoder.).

Keywords: Shifted Chunk Transformer · Shifted Chunk Conformer ·
Streaming ASR · Transformer · End-to-End ASR

1 Introduction

In the past decades, ASR with E2E models has achieved great progress, and has
become a popular alternative to the hybrid ASR models equipped with conven-
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tional Hidden Markov Model (HMM)/Deep Neural Network (DNN). Currently,
Connectionist Temporal Classification (CTC) [1,2], Recurrent Neural Network
Transducer (RNN-T) [3], and Attention based Encoder-Decoder (AED) [5,6] are
the three mainstream E2E systems. Also, efforts to conduct performance com-
parisons [7] or the combination [8,9] of these models have been made. Recently,
Transformer [10] has become a prevalent architecture, outperforming RNN [11]
in AED systems [7]. Furthermore, Transformer can also use as an encoder with
CTC [1] or Transducer [4]. And very recently, the Conformer [6] has been pro-
posed which augments Transformer with convolution neural networks (CNN).
Both Espnet [12] and WeNet [13] have shown that Conformer can bring signifi-
cantly performance gains on a wide range of ASR corpora.

Fig. 1. (a) The architecture of SChunk-Transformer, N is set to 6 by default; (b) two
successive blocks (notation presented with Eq. (3)).

The great success of Transformer and its variants urge people to explore its
adaption for streaming ASR. However, two issues make vanilla models imprac-
tical for streaming ASR. First, the calculation of self-attention depends on
the entire input sequence. Second, the computation and memory usage grow
quadratically to the length of the input sequence. Actually, several methods have
been proposed to alleviate these issues. 1) Time-restricted methods [14–17,27,28]
where the attention computation only uses past input vectors and limited future
inputs. However, the time and memory complexities of these methods are still
quadratic, which may introduce a significant latency for long inputs. 2)Chunk-
wise methods [4,18,26] typically evenly partition the input into chunks and then
calculate attention only within these chunks as monotonic chunk-wise attention
(MoChA) [19]. They have linear complexities but usually suffer dramatic per-
formance drops as the reception field of attention is limited within local chunks.
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3)Memory-based methods [20–22] utilize the solution of chunk-wise methods to
reduce running time while employing an auxiliary contextual vector to memo-
rize the history information. However, these vectors break the parallel nature of
Transformer, typically requiring a longer training time.

In this paper, we aim to build a streaming Transformer which can compute
in linear complexity, capture global history context and parallel train simultane-
ously. Under the guidance of this goal, we find inspiration from Swin Transformer
[23] and introduce the idea of shifted windows into streaming ASR. In detail,
we propose a shifted chunk mechanism for chunk-wise Transformer models. This
mechanism allows the computation of attention to cross the boundary of chunks,
thus can significantly enhance the model power, while keeping linear complexity
and parallel training. We integrate the proposed mechanism into Transformer
and Conformer and get SChunk-Transofromer and SChunk-Conformer, respec-
tively. And we have conducted ablation studies and comparison experiments
on AISHELL-1 [24]. The results show that Schunk-Transformer and Schunk-
Conformer can respectively achieve CER 6.43% and 5.77% when set the chunk
size to 16, which significantly surpass their conventional chunk-wise counter-
parts. When compared with U2 [16], which is a strong baseline model using the
time-restricted method, our models can still be competitive with only an absolute
0.22 CER drop for SChunk-Conformer but be more efficient to train and infer.
Superior performance can achieve if compared with other existing chunk-wise or
memory-based methods, such as HS-DACS [26] and MMA [21].

2 Shifted Chunk Encoder

For convenience, we take SChunk-Transformer as an illustrative encoder to
describe the mechanism of the shifted chunk.

2.1 Overall Architecture

As illustrated in Fig. 1(a), our proposed encoder first processes the input audios
with SpecAug [25], convolution subsampling, and other frontend layers as con-
ventional Transformer ASR, and then with several consecutive chunk Trans-
former blocks and shifted chunk Transformer blocks. The distinctive feature of
our model is the use of chunk Transformer block and successively shifted chunk
Transformer block to replace chunk Transformer blocks.

2.2 Shifted Chunk Transformer Block

We build the SChunk-Transformer block by replacing the multi-head self atten-
tion (MSA) in a Transformer block with a module based on shifted chunks
(described in Sect. 2.3), with other layers kept the same, see Fig. 1(b). The
SChunk-Transformer block is composed of a shifted chunk based MSA module,
followed by a 2-layer Feed Forward Network (FFN) with GELU nonlinearity in
between. It applies a LayerNorm (LN) layer before each MSA and FFN module
and adds a residual connection after each module.
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Fig. 2. An illustration of the shifted chunk approach for computing self-attention. In
layer l (top), self-attention is computed in local chunks which are got by a regular chunk
partitioning scheme. In the next layer l+1 (bottom), the self-attention computations
are conducted in new chunks which cross the previous chunks in layer l and got by
shifting.

2.3 Shifted Chunk Based Self-attention

Chunk-Wise Self-attention. The vanilla Transformer [10] uses global MSA
to compute the dependencies between a frame and all the other frames. To be
efficient, we calculate self-attention within evenly partitioned non-overlapped
chunks. If an audio of L frames and each chunk has W frames, the complexities
of computing a global MSA and a chunk based MSA are1:

Ω(MSA) = 4L · C2 + 2L2 · C (1)

Ω(C-MSA) = 4L · C2 + 2N · L · C (2)

where C is the feature dimension, the former is quadratic to L, and the latter is
linear when W is a fixed value. Global MSA is generally unaffordable for a large
L, which may introduce a significant latency for time-restricted methods.

Shifted Chunk Partitioning in Successive Blocks. The chunk based MSA
lacks connections across chunks, which limits its modeling power. We propose
the shifted chunk partition approach to introduce cross-chunk connections while
maintaining the efficiency of chunk-wise computation. As shown in Fig. 2, we
use the regular partitioned chunks followed by the shifted partitioned chunks
consecutively. The regular chunk partitioning strategy starts from the audio,
and the feature sequence of 16 frames is evenly partitioned into 4 chunks of size
4 (W = 4). Then, the shifted partition is shifted from the preceding layer, by
displacing the chunks by �W/2� frames from the regularly partitioned chunks.

With the shifted chunk partitioning approach, the Chunk-Transformer block
and SChunk-Transformer block are computed as:

1 We omit softmax computation in determining complexity.



Shifted Chunk Encoder for Transformer Based Streaming End-to-End ASR 43

Fig. 3. An illustration of efficient batch computation for self-attention in shifted chunk
partitioning.

ẑl = C-MSA(LN(zl−1)) + zl−1,

zl = FFN(LN(ẑl)) + ẑl,

ẑl+1 = SC-MSA(LN(zl)) + zl,

zl+1 = FFN(LN(ẑl+1)) + ẑl+1

(3)

where ẑl and zl denote the outputs of the (S)C-MSA and the FFN for block l,
respectively; S-MSA and SC-MSA denote chunk based multi-head self attention
using regular and shifted chunk partitioning configurations, respectively.

Efficient Batch Computation for Shifted Chunks. The first issue of shifted
chunk partitioning for batch computation is the difference in audio lengths. To
be evenly partitioned, we pad audios in a batch to the same length, which is
a little longer than the longest one in the batch while can be evenly divided
by the chunk size. Another issue is that shifted chunk partitioning will result
in more chunks, and some chunks will be smaller than W, see Fig. 2. We use
a batch computation approach by cyclic-shifting the regular partitioned chunks
from head to tail to get the shifted partitioned chunks, and reverse cyclic-shifting
the shifted partitioned chunks from tail to head to re-get the regular partitioned
chunks, see Fig. 3. With the cyclic-shift, the number of batched chunks remains
the same as that of regular chunk partitioning, and thus is also efficient.

Shifted Chunk Attention Mask. As shown in Fig. 4(a), the chunk based self-
attention can compute using a chunk-wise attention mask to support streaming.
However, for the shifted chunks, we need to mask out some areas as shown in
Fig. 4(b) to make sure frames can only attend to their preceding ones when
calculating the chunk-wise attention of SC-MSA.

3 Streaming ASR with Shifted Chunks

3.1 Streaming Encoder and Decoder

The SChunk-Transformer equipped with an attention mask can also support the
streaming process as other chunk-wise methods. The casual convolution is used
in SChunk-Conformer to make the CNN modules support streaming as in [16].
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Fig. 4. Illustration of masks for chunk attention and shifted chunk attention.

We generally follow the decoder of U2 [16] that uses a hybrid CTC/Attention
decoder. The CTC decoder outputs the first pass hypotheses in a streaming way.
And then, the Attention decoder outputs the final results using full context to
rescore the first pass hypotheses.

3.2 Streaming Inference

In the inference stage, the encoder consumes the inputs chunk by chunk. There
is no shift in SC-MSA for the first chunk, and it degrades to behavior as C-
MSA in this case without any impact on the first word prediction. For the
subsequent chunks, we need to cache the past chunks and concatenate them with
the current chunk as the input for the encoder, like the time-restricted methods.
Once the CTC decoder receives the output of the encoder, it generates output
immediately. At the end of an utterance, the Attention decoder is triggered to
re-score the output of the CTC decoder to get a better utterance level result.

4 Experiments

4.1 Data

We evaluate the proposed models on AISHELL-1 [24], which contains 150 h of
the training set, 10 h of dev set and 5 h test set, the test set consists of 7176
utterances in total. The official vocabulary contains 4233 tokens.

4.2 Experimental Setup

We implement models using the WeNet toolkit [13] and verify on two NVIDIA
Gefore RTX 3090 GPUs (24G). For most hyper-parameters, we follow the recipes
of WeNet. (FBank) splice 3-dimensional pitch computed on 25 ms window with
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Table 1. Comparisons with different chunk size (CER%)

Model Architecture # Chunk Size

4 8 16 32

Chunk-Transformer 31.30 18.86 11.80 7.66

Chunk-Conformer 6.55 6.33 6.09 5.90

SChunk-Transformer 7.76 6.68 6.43 5.92

SChunk-Conformer 6.74 6.21 5.77 5.64

10ms shift as input feature. And speed perturbation with 0.9, 1.0, and 1.1 are
done to get 3-fold data. SpecAug [25] is applied with 2 frequency masks with a
maximum frequency mask (F = 50), and 2-time masks with a maximum time
mask (T = 50). Two convolution sub-sampling layers with kernel size 3 × 3
and stride 2 are used as the frontend. A stack of 4 heads SChunk-Transformer
or SChunk-Conformer layers (12 by default) is used as the encoder. We use a
CTC decoder and an Attention decoder of 6 transformer layers with 4 heads. The
attention dimension is 256 and the feed forward dimension is 2048. Accumulating
grad is used to stabilize training which updates every 4 steps. Attention dropout,
feed forward dropout, and label smoothing regularization are applied in each
encoder and decoder layer to prevent over-fitting. We use the Adam optimizer
with the peak learning rate of 0.002 and transformer schedule to train these
models for 80 epochs (batch size and warm-up steps are decided based on the
memory usage of a model, set to 40 and 25000 by default). And get the final
model by averaging the top 20 best models with the lowest loss on the dev set
in the training stage.

4.3 Baseline Systems

Chunk-Transformer. We take the Chunk-Transformer and Chunk-Conformer,
which we implemented using WeNet, as the first baseline models. The only dif-
ference between them and the proposed models is whether the shifted chunk
mechanism is used or not.

U2. We take U2 [16], a built-in solution in WeNet, as a strong baseline since
it’s a SOTA model of the time-restricted methods and our models use the same
decoder.

4.4 Ablation Studies

Chunk Size. First, we explore how chunk size affects performance. As shown in
Table 1, we can see that better CERs can be achieved as the chunk size gets larger
for both SChunk-Transformer and SChunk-Conformer. This implies large chunk
size is beneficial to capture more global context. However, we need to balance
the accuracy and latency and set the size to 16 for the following experiments.
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Table 2. Comparisons with different number of encoder layers (CER%)

Model Architecture # Encoder Layers

12 14 16 18

SChunk-Transformer 6.43 6.25 6.02 6.12

SChunk-Conformer 5.77 5.81 5.98 6.72

Fig. 5. The illustration of inference time cost of U2 and SChunk-Conformer. We con-
catenate each audio with itself several times in the test set of AISHELL-1 to imitate
different audio lengths. All the inferences conducted on CPU (Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz) with 1-thread, the y-axis indicates the average inference time
of 7176 audios.

#Encoder Layers. We also investigate using more encoder layers to allow suf-
ficient global context capturing. The results are shown in Table 2, the SChunk-
Transformer achieves the best CER with 16 layers, while SChunk-Conformer
achieves the best CER using 12 layers. We conjecture this is because the com-
plicated encoder is easier to overfit. We set the encoder layer to 12 by default to
make our models have similar parameters to others.

4.5 Comparisons with Baseline Systems

Chunk-Transformer: As shown in Table 1, the CER of Chunk-Conformer
is significantly improved compared with Chunk-Transformer, the reason is
attributed to the use of CNN to capture sequential history information. With
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Table 3. Comparisons with U2. max. batch (#) is the maximum batch size each model
can support on two RTX 3090 GPUs, training time is the total time cost of models
trained for 80 epochs with each maximum bath size.

Model Architecture max. batch (#) trn. time (h) CER (%)

U2 (static) [16] 48 29.13 5.55

U2 (dynamic) [16] 48 30.56 5.42

SChunk-Conformer 60 21.58 5.77

Table 4. Comparisons with other streaming solutions (CER%), �,†, and ‡ indicate
the solution is a time-restricted method, a chunk-wise method and a memory-based
method, respectively. Following [16], the latency is defined as the chunk size plus the
right context (if any). � is the additional latency introduced by rescoring.

Model Architecture Type Time Com-
plexity

Latency(ms) LM CER(%)

Sync-Transformer [18] † linear 400 8.91

SCAMA [20] ‡ linear 600 7.39

MMA-narrow [21] ‡ linear 960 7.50

MMA-wide [21] ‡ linear 1920 6.60

HS-DACS [26] † linear 1280 6.80

SChunk-Transformer(ours) † linear 640+� 6.43

U2++ (U2+BiDecoding) [17] � quadratic 640+� 5.05

WNARS(w/ rescoring) [27] � quadratic 640+� √
5.22

CUSIDE [28] � quadratic 400+2 5.47

CUSIDE(w/NNLM rescoring) [28] � quadratic 400+2
√

4.79

SChunk-Conformer(ours) † linear 640+� 5.77

the shifted chunk mechanism, our SChunk-Transformer can also significantly
improve the CER of Chunk-Transformer, which verifies the proposed mecha-
nism can help enhance the ability to model global context. The comparison of
SChunk-Conformer and Chunk-Conformer confirms the phenomenon with an
exception when the chunk size is 4. This may be because the shifted chunks
with attention mask cannot use the whole chunk to model will bring a negative
impact in the case of extremely small chunk size.

U2: As a strong baseline, U2 can achieve slightly better CER compared with our
SChunk-Conformer, see Table 3. This indicates that the time-restricted methods
using full context are beneficial to get better accuracy. However, the performance
gap between the SChunk-Conformer and U2 (static, train using static chunk size
[16]) is quite narrow, with only 0.22 absolute CER drop. On the other hand, our
models can use a much larger batch size to train, maxium batch size is 60 for
SChunk-Conformer while 48 for U2, which can significantly reduce the training
time as shown in Table 3. And the average inference time of SChunk-Conformer
is linear to the audio length while quadratic for U2, see Fig. 5, which is important
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to control system latency for streaming ASR. All in all, compared with U2, our
models not only can achieve competitive CER, but also can train and infer more
efficiently.

4.6 Comparisons with Other Streaming Solutions

Table 4 lists several recently published Transformer based streaming solutions.
We can see that the SChunk-Transformer can surpass all the chunk-wise or
memory-based models, with 0.37 and 0.17 absolute CER improvement compared
with HS-DACS [26] and MMA [21], respectively. Compared with the other time-
restricted models, which use sophisticated techniques (for example, language
model (LM) rescoring) to further boost performance compared with U2 [16],
it’s not surprise that our SChunk-Conformer fails to achieve superior CER as a
chunk-wise model. However, either U2 or other advanced time-restricted models
all have qudratic complexity, in contrast SChunk-Conformer can train and infer
more efficiently which is crucial for streaming ASR.

Compared with the other advanced time-restricted models [17,27,28], which
use sophisticated techniques to further boost performance compared with [16],
it’s no surprise that our SChunk-Conformer fails to achieve superior CER as a
chunk-wise model. However, either U2 or other advanced time-restricted models
all have quadratic time and memory complexities, in contrast, Schunk-Conformer
has linear complexity and can train and infer more efficiently which is crucial
for streaming ASR.

5 Discussion

Our work shows a way to build a single streaming E2E ASR model to achieve
the benefits of linear complexity, global context modeling, and parallel trainable
concurrently. Despite the time-restrict models can achieve slightly better CERs,
they cannot ensure a low latency in theory makes them impractical for scenarios
with long audios. As the shifted chunk based models can achieve competitive
CERs while be insensitive to audio length, they may have a great potential in
commercial systems.

6 Conclusions

We introduce a shifted chunk mechanism for chunk-wise Transformer and Con-
former models. This mechanism can significantly enhance the modeling power by
allowing local self-attention to capture global context across chunks while keep-
ing linear complexity and parallel trainable. Experimental results on AISHELL-1
show that both SChunk-Transformer and SChunk-Conformer can significantly
outperform Chunk-Transformer and Chunk-Conformer, respectively. And, the
SChunk-Transformer can surpass the SOTA models of both chunk-wise meth-
ods and memory-based methods. Compared with the time-restricted methods,
our SChunk-Conformer can achieve competitive CER while being able to train
and infer more efficiently. In the future, we plan to pay more attention to explor-
ing effective cross-chunk self-attention modeling methods to further improve the
performance of streaming ASR.
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