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Abstract—Document-grounded conversations are designed to
generate and engage in conversations based on specific documents
or texts provided as context. The ability to incorporate documents
into these conversations enables a deeper understanding of the
subject matter, fostering more informed and meaningful discus-
sions. However, prior approaches were predominantly rooted in
auto-regressive models, overlooking the need for a comprehensive
global perspective and the refinement of responses. In this
paper, we introduce an innovative Multi-Pass Decoding (MPD)
architecture, which iteratively updates background knowledge
and enhances responses in document-grounded conversations.
During each iteration, it starts by adaptively combining semantics
derived from the context, documents, and previous responses.
To address the issue of inadequate response quality, we have
also developed two modules dedicated to identifying and refining
inappropriate words or phrases in responses generated during
the previous iteration. Furthermore, MPD is model-agnostic,
enabling seamless integration with conventional sequence-to-
sequence frameworks. Our empirical experiments on three
document-grounded conversation datasets demonstrate that our
methods facilitate the production of more contextually accurate
and coherent responses.

Index Terms—dialogue system, document-grounded conversa-
tions, deliberation network, sequence-to-sequence framework

I. INTRODUCTION

Document-grounded conversations refer to a conversational
AI paradigm where the dialogue system leverages external
documents, such as articles, websites, or reference materi-
als, as a primary source of information and context during
interactions [1, 2]. In recent years, we have witnessed rapid
advancements in dialogue systems. Many of these models are
trained using the sequence-to-sequence framework in an end-
to-end fashion, utilizing extensive datasets of human-to-human
dialogues, and have achieved remarkable success.

However, there remains a significant journey ahead in
realizing the ultimate objective of dialogue systems, which is
the capability to engage in conversations that mimic human-
like fluency. A pivotal aspect of attaining this goal hinges on
the seamless integration of pertinent background knowledge in
alignment with the context and the response to be generated
[3, 1].

Existing techniques for incorporating background knowl-
edge can be categorized into two primary approaches: knowl-
edge selection and reasoning [4]. The former involves the

process of identifying and selecting relevant information from
external documents or sources that pertain to the ongoing con-
versation [3, 2]. Conversely, the latter endeavors to construct
an interpretable path of reasoning through the evidence within
the document [5]. However, these approaches are limited by
their reliance on one-pass decoding, which can result in the
loss of global information due to the auto-regression paradigm.
In simpler terms, during the generation of each word, the
model can only consider the words it has generated thus far
and not those that will follow in the future [6]. Furthermore,
they often fall short in fully harnessing background knowledge
without further refinement [7].

Inspired by the cognitive processes inherent in human
communication, some researchers have proposed deliberation
networks [6] equipped with a refining mechanism, which
reevaluates and potentially enhances the initial responses be-
fore delivering the final reply to the user. For example, [7]
devised a two-pass decoder to enhance context coherence and
ensure the accurate integration of knowledge. Nevertheless,
these approaches encounter challenges in the identification of
inappropriate words, potentially resulting in the retention of
erroneous terms while replacing the correct ones during the
deliberation process.

In this paper, we introduce a novel multi-pass decoding
(MPD) architecture to dynamically incorporate more compre-
hensive background knowledge and enhance response refine-
ment. On the one hand, MPD adaptively updates knowledge
based on the context and previously generated responses to
capture global information and maintain knowledge relevance.
On the other hand, MPD refines the responses by identifying
and addressing issues related to language fluency, context co-
herence, and factual correctness. This iterative process ensures
that the generated responses not only remain contextually
relevant but also exhibit improved linguistic quality and accu-
racy. MDP is a model-agnostic architecture, making it readily
adaptable and integrable with a wide array of sequence-to-
sequence frameworks.

Furthermore, we have observed that different responses may
necessitate varying degrees of complexity to refine, with more
challenging responses often requiring additional iterations for
improvement. For instance, responding to a question like
”How do you like Avengers?” is more intricate than addressing



a simpler query such as ”Do you like Avengers?”. Thus, we
incorporate curriculum learning into the training stage, which
gradually increases the complexity of the training examples
presented to the model. This structured learning process helps
the model develop skills to generate coherent responses across
various user queries.

To conclude, our contributions are in three-fold: (1) We
propose a novel multi-pass decoding (MPD) architecture to
generate more coherent and informative responses. To our
knowledge, this is the first attempt that introduces iterative
knowledge updates, as well as the identification and correc-
tion of erroneous responses within the domain of document-
grounded conversations. (2) MPD offers universal integra-
tion with existing sequence-to-sequence frameworks, ensuring
seamless cooperation and compatibility, thereby enhancing the
versatility of the system. (3) Extensive experimental results
demonstrate that the proposed multi-pass decoding architec-
ture significantly enhances response coherence and informa-
tiveness.

II. RELATED WORK

Our work is closely related to the field of deliberation
networks, which draws inspiration from common human be-
haviors in everyday text creation and comprehension. In the
process of writing or reading, humans often engage in iterative
thinking, editing, and refinement to ensure text accuracy,
fluency, and informativeness. Initially, this technology was
employed to boost the performance of non-autoregressive
machine translation models. Autoregressive models typically
generate translation results word by word, resulting in slower
generation. Non-autoregressive models can generate entire
sequences at once, albeit at the cost of translation accuracy. [8]
proposed to progressively improve the generated translation
results through multiple iterations. Each iteration enhances
the generated output, ultimately improving translation quality
while maintaining speed. Subsequently, [7] integrated the
deliberation network into dialogue generation, introducing an
incremental transformer with two-pass decoders to enhance
context coherence and ensure knowledge accuracy. However,
these previous works faced challenges in accurately identifying
erroneous words. Consequently, [9] made further advance-
ments by introducing a locator to identify incorrect words
and integrating a reviser into the deliberation process. This
innovation ensures the correction of erroneous words while
preserving the correctness of others.

III. METHODOLOGY

As shown in Figure 1, we will introduce the knowledge
enhanced seq2seq framework, LTD (Learning To Deliberate)
module and model training in this section.

A. Knowledge Enhanced Seq2Seq Framework

Given the dialogue context C and background documents
D, the knowledge-enhanced Seq2Seq framework decom-
poses the distribution over potential output sentence R =

Context  
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Fig. 1. Overview architecture of MPD. It consists of a knowledge enhanced
seq2seq framework (top) and a LTD module (bottom).

{ỹ1, ỹ2, · · · , ỹℓr} into a chain of conditional probabilities with
a left-to-right causal structure:

p(R|C,D) =

ℓr∏
i=1

p(ỹi|C,D, ỹ1, · · · , ỹi−1) (1)

Specifically, we firstly employ two encoders to convert the
dialogue context and background documents into hidden vec-
tors, hc and Hi

d, where hc is a fixed-size vector representing
the whole dialogue context, Hi

d = {hi
1,h

i
2, · · · ,hi

ℓi
} is a word

vector matrix corresponding to the i-th document. The two
encoders can be implemented by GRU, Transformer [10] or
pretrained language models (e.g., T5 encoder [11]). Then we
use hc to guide attention towards Hi

d to generate contextual
representation ki for each document:

ki =

ℓi∑
j=1

αi
j · hi

j (2)

αi
j =

exp(hc · hi
j)∑ℓi

u=1 exp(hc · hi
u)

(3)

In the decodig process, we utilize the context vector hc as
the decoder’s start token to avoid cold start problem at the
initial time step when there is no previous output word [12]:

st = GRU(yt−1, ct−1) (4)

ct−1 =

k∑
i=1

αi · ki (5)

αi =
exp(st−1 · ki)∑n
j=1 exp(st−1 · kj)

(6)

ỹt = argmax(softmax(WT
V st + bV )) (7)

where WV and bV are trainable parameters used to map
hidden states into probabilities over the vocabulary.

B. LTD Module

The LTD module is an iterative decoder that can be
seamlessly integrated into a standard Seq2Seq framework.
Its primary objective is to improve the quality of the raw
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Fig. 2. The illustration of MDP, which is composed of (a) KUNet, (b)
Discriminator and (c) Refiner.

responses generated by the encoder-decoder generative model
within a maximum of K iterations. In the τ -th iteration,
LTD takes the state vector sτ−1,t generated in the previous
iteration and updates it to sτ,t. Each word yt in the response
Y corresponds to a state vector sτ,t, which is utilized to
predict the response ỹτ,t in the current iteration, as illustrated
in Equation 7. The initial state vector s0,t for the first iteration
is initialized with the word embedding of the original response
ỹt.

As depicted in Figure 2, the LTD comprises three attention-
based modules: (a) a Knowledge Update Network (KUNet)
responsible for updating background knowledge based on the
context and the response generated in the previous itera-
tion, (b) a Discriminator tasked with identifying inappropriate
words or phrases in the previously generated response, and (c)
a Refiner that corrects the erroneous words pinpointed by the
Discriminator.

a) KUNet: When revising an academic paper, the author
needs to consider the semantic information throughout the
entire text and update relevant knowledge based on the mod-
ifications made. This ensures that the edited content remains
consistent with the overall focus of the paper. To this end,
we introduce the KUNet for updating background knowledge.
Formally, at the τ -th iteration, KUNet firstly obtains the global
information, denoted as gτ,t, by merging the context vector
hc and the previous decoding output state vector sτ−1,t.
gτ,t can be regarded as a synthesized representation of the
combined contextual and response information, which serves
as a foundation for subsequent knowledge refinement and
adaptation within the model. Subsequently, gτ,t is utilzed
to update the background knowledge information Kτ+1 =
{kτ+1,2,kτ+1,2, · · · ,kτ+1,n}:

gτ,t = tanh(WT
i ([h

c, sτ−1,t] + bi)) (8)
kτ+1,i = (1 + αi)kτ,i (9)

αi = tanh(WT
u ([g,kτ,i]) + bu) (10)

where Wi,bi,Wu,bu are trainable parameters, [·, ·] denotes
the concatenation operation. Finally, we utilize gt to calculate
attention over the updated knowledge information Kτ+1, re-
sulting in the intermediate word-level response representation

uτ,t:

uτ,t =

n∑
i=1

βikτ+1,i (11)

βi =
exp(g · kτ+1,i)∑n

j=1 exp(gt · kτ+1,j)
(12)

The KUNet effectively filters out irrelevant or redundant
knowledge, resulting in a more concise and refined knowledge
base. Consequently, it ensures that the background knowledge
used to reply remains aligned with the ongoing conversation.
This, in turn, facilitates the generation of responses that are
not only more relevant but also enriched with information.

b) Discriminator: The purpose of the discriminator is to
identify incorrect words within the entire sentence. Specifi-
cally, it categorizes each word into two types: revise or retain.
The revise category indicates that the word is inappropriate,
possibly not in alignment with the context, or may contain
errors, necessitating further examination and potential correc-
tion. On the other hand, the retain category designates that
the word is deemed correct, suitable, or harmonious with the
surrounding context, obviating the need for any modification.

Given the state vectors sτ−1,1∼ℓy generated in the previous
iteration as input, we employ N layers of multi-head atten-
tion [10] blocks to encode them into hidden layer vectors
Hd = [hd

τ,1,h
d
τ,2, · · · ,hd

τ,ℓy
] for capturing their contextual se-

mantic information. Subsequently, a classifier is meticulously
crafted to determine the category of each word, i.e., whether
it should be revised or retained:

pτ,t = sigmoid(WT
d h

d
τ,t + bτ,t) (13)

where Wd and bd are trainable parameters, pτ,t ∈ [0, 1]
indicates the likelihood of the word being classified as revise.

c) Refiner: The refiner is designed to make modifications
to the words identified as revise in the deliberate process.
Similarly, N layers of multi-head attention [10] blocks are
employed to encode uτ,1∼ℓy into hidden layer vectors Hr =
[hr

τ,1,h
r
τ,2, · · · ,hr

τ,ℓy
]. Each vector can be regarded as the

word-level response representation that integrates updated con-
textual and background knowledge information. [7] predicted
the current round’s response solely based on the output of
the previous round’s decoder (i.e., Hr). Nevertheless, it may
face challenges in discerning between accurate and erroneous
words from the preceding decoder output, potentially resulting
in alterations to accurate words while preserving the erroneous
ones. To address that issue, we introduce a planning approach
to enhance the precision of word-level correction in the
Refiner. Formally, it performs an adaptive integration of sτ−1,t

and hτ,t based on the result of the discriminator:

ho
t = pτ,t · hr

s + (1− pτ,t) · sτ−1,t (14)

sτ,t = tanh(WT
o h

o
t + bT

o ) (15)

where Wo and bo are trainable parameters. The planning
comprehensively incorporates information from both the cur-
rent and previous iterations, blending them based on the
discriminative outputs. It not only addresses glaring errors



but also implements subtle adjustments, even when it hasn’t
explicitly identified an issue with a specific word.

C. Model Training

We employ the cross entropy H loss between the model’s
predicted output ỹt and the true response label yt to train
the seq2seq framework, i.e., Lseq2seq = H(ỹt, yt). To facil-
itate training the multi-pass decoding network, we retain the
output representation of the discrimintor pτ,t and that of the
refiner sτ,t for each iteration. Then we construct two types
of supervised signals to instruct the training of these two
modules, specifically, for the discriminator, we calculate the
mean squared error (MSE) between the predicted probability
pτ,t and true label ydτ,t as the training objective:

Ld =
1

k · ℓy

k∑
τ=1

ℓy∑
t=1

(pτ,t − ydτ,t)
2 (16)

where ydτ,t is obtained by comparing the previously generated
token ỹτ,t and ground truth yτ,t:

ydτ,t =

{
1 ỹτ = yt

0 ỹτ ̸= yt
(17)

Similar to the seq2seq framework, the training objective
of the refiner is defined as the cross-entropy between the
predicted response and the ground truth:

Lr =
1

k · ℓy

k∑
τ=1

ℓy∑
t=1

(−yt log(pτ,t)) (18)

pτ,t = softmax(WT
V sτ,t + bV ) (19)

where k in equation (16) and (19) is the number of iterations.
During the τ -th iteration, if the discriminator determines that
all words in the previously generated response are correct (i.e.,
∀t ∈ [1, ℓy], pτ,t < 0.5), the iteration process terminates, and
we take the output for that iteration as the model’s final output,
with k = τ . If the termination condition is not met even after
reaching the maximum number of iterations K, the iteration
process is forcefully terminated, setting k = K. The training
loss is the sum of these three components:

L = Lseq2seq + Ld + Lr (20)

Furthermore, we employ curriculum learing [13] to train
the model to improve performance and convergence rate [14].
Formally, Lv = vi · L, where vi = I(k ≤ λ). If k is less than
the threshold λ, the sample is included as a training sample;
otherwise, it is excluded. In this paper, the value of λ is linearly
increased as training progresses. Considering that in the early
stages of training, the model’s capacity is relatively limited,
and the number of iterations is typically higher, setting a
smaller threshold may result in fewer samples participating in
training. Therefore, we introduce a warm-up training phase in
which the threshold is set to the maximum number of iterations
K, ensuring that all samples are included in training during
this phase. In summary, for a given current training step t and

the total number of training steps T , the definition of λ is as
follows:

λ =

K t ≤ t0

K · (λ0 +
1− λ0

T
· t) t > t0

(21)

where λ0 defines the initial value of λ. After conducting
multiple tests, we set λ0 to 0.3.

IV. EXPERIMENT

A. Datasets

We conduct experiments on three publicly avaliable
document-grounded conversation datasets, Wizard-of-
Wikipedia (WoW) [15], CMU DoG [16] and KdConv [17].
WoW is built around conversations that are grounded in
Wikipedia articles, which covers a wide range of topics,
reflecting the diversity of Wikipedia articles. CMU DoG
involves two interlocutors, with one participant selecting
a topic from 30 movie-related Wikipedia documents and
steering the conversation around that document. KdConv
focuses on knowledge-driven conversation modeling in the
context of Chinese dialogue, where both dialogue participants
have access to the knowledge graph during the conversation.

B. Baselines

We compare our methods with the following baseline mod-
els: GRU: an encoder-decoder architecture using GRU as the
backbone with global attention [18]. Transformer (Trans):
the standard paradigm for modeling long sequences based
on multi-head attention [10]. T5: state-of-the-art pretrained
language model that frames almost all NLP tasks as a text-
to-text problem. HRED: a hierarchical encoder-decoder model
that encodes dialogue context in both word level and utterance
level [19]. GPT2 [20]: a decoder-only Transformer architec-
ture capable of generating human-like text in response to a
given prompt. DialoGPT: an extension of the GPT architec-
ture, specifically designed for engaging in natural language
conversations [21]. Both GPT-2 and DialoGPT concatenate
the document and context, separated by a special token, as
their input.

C. Training Details

In this paper, our approach is integrated with various
seq2seq-based models, including GRU, Transformer [10], and
T5 [11], to showcase the model-agnostic superiority of MDP.
Specifically, The GRU model is configured with a dimension
of dm = 512 and ℓ = 3 layers. For the transformer, the number
of hidden nodes dm is set to 768 and number of layers ℓ is
set to 12. We employ the base version of T5 in this paper
with dm = 768, ℓ = 12, and the total number of parameters
is 220M. The dropout rate is set to 0.1 for all these models.
The maximum length for both dialogue history and external
knowledge is constrained to 512 tokens, with any exceeding
portions being truncated. The maximum length of response is
set to 128.



TABLE I
AUTOMATIC EVALUATION RESULTS OF ALL COMPARED MODELS. ALL METRICS ARE IN %. BEST RESULTS ARE MARKED IN BOLD, AND SECOND BEST

ARE UNDERLINED. YELLOW BACKGROUND NUMBERS INDICATE THAT THE BASELINE MODELS ARE SIGNIFICANTLY IMPROVED WHEN COMBINED WITH
OUR METHOD.

Model WoW CMU DoG KdConv

PPL BLEU-2/4 Dist-1/2 PPL BLEU-2/4 Dist-1/2 PPL BLEU-2/4 Dist-1/2

GRU 19.61 6.54 2.98 6.77 14.57 22.45 7.81 2.41 13.13 28.14 18.11 28.71 7.77 4.11 7.81
Trans 17.81 6.72 3.56 6.89 17.15 18.37 9.87 2.56 11.41 35.51 19.01 27.91 7.98 4.41 8.13

T5 16.66 7.91 3.79 6.77 16.11 15.76 16.77 2.95 14.71 38.43 21.78 26.09 6.91 4.79 8.95
HRED 20.57 6.34 2.58 5.98 12.91 19.91 8.91 2.31 12.41 25.66 18.39 27.01 7.35 3.91 7.51
GPT2 18.64 7.45 3.11 6.98 18.93 17.34 15.48 2.45 14.55 28.99 21.24 25.91 6.41 4.45 8.41

DialoGPT 15.14 8.17 3.67 7.43 20.91 16.01 15.41 3.21 15.67 39.12 20.47 26.17 6.91 5.49 8.89

GRU+MPD 17.18 6.77 3.05 6.99 17.77 20.11 7.97 2.45 14.17 33.77 18.45 27.91 7.74 4.78 8.31
Trans+MPD 16.98 7.01 4.01 7.14 18.19 17.17 11.01 2.77 13.68 35.71 19.07 30.12 9.08 4.79 8.37

T5+MPD 15.41 8.35 4.41 7.47 19.97 15.61 17.91 3.37 15.94 43.17 20.31 28.19 7.25 5.71 9.01

We utilize Adam optimizer [22] to train the models. The
learning rate for GRU and Transformer models anneals lin-
early in the range of [1e − 3, 1e − 4] and [1e − 4,1e − 5]
respectively. The learning rate for T5 is set to 1e − 5. Batch
size is set to 64, 16 and 8 for GRU, Transformer and T5
respectively. All models are trained for 10 epochs, and training
will be halted if the loss fails to decrease for 10 consecutive
steps. In the MDP model, the number of layers for both the
discriminator and corrector Transformers is configured as N
= 1, and the maximum number of iterations is set at 5.

D. Evaluation Metrics

a) Automatic metrics: : We adopt widely used metrics to
automatically evaluate the response generation performance,
including perplexity (PPL), BLEU and Distinct (Dist) [23].
PPL quantifies how well a model can predict a sequence of
words in a given text or language. Lower perplexity values
indicate that the model is better at predicting the text, suggest-
ing a better understanding of the language and context. BLEU
calculates the precision of n-grams in the generated response
compared to the golden response. In addition, we employ
Distinct-n (Dist, n=1, 2), which is the ratio of unique n-
grams among the generated responses, to evaluate the response
diversity.

b) Human evaluation:: We randomly select 100 conver-
sations from the test set for human evaluation in WoW and
KdConv dataset. Five professional annotators are invited to
assess the generated responses from three key perspectives:
(1) Fluency (Flu.): Assessing the naturalness and grammatical
correctness of the response; (2) Coherence (Coh.): Evaluating
the response’s alignment with the context and its ability
to guide subsequent utterances; (3) Informativeness (Inf.):
Gauging the extent to which the response provides valuable
information. Each annotator is asked to rate the response on
a scale of 1 to 5, with 5 indicating the highest quality and 1
representing the lowest. The final results are presented as the
average score given by all annotators.

E. Experiment Results

Table I reports the automatic evaluation results. From the ta-
ble, we have the following observations: (1) T5+MPD consis-
tently outperforms other baselines or ranks as the second-best
performer on WoW and CMU DoG in terms of all automatic
metrics. (2) When combined with MPD, all seq2seq generative
models show improved performance across nearly all datasets.
This underscores the effectiveness of our proposed method
in improving the coherence and informativeness of generated
responses. (3) Comparing the performance of three seq2seq
generative models, typically T5 outperforms Transformer and
GRU in WoW and CMU DoG datasets. However, in KdConv,
there is a significant drop in PPL and BLEU scores for
T5. This may be due to T5’s pretraining on a large English
corpus, which is less effective on Chinese datasets. A similar
observation can be made for GPT2 and DialoGPT.

Human evaluation results are presented in Table II. The
results clearly demonstrate that T5+MPD excels, particularly
in terms of fluency and coherence, on the WoW dataset, sur-
passing the second-best results by 0.22 and 0.27, respectively.
For the KdConv dataset, Trans+MPD generally delivers the
best performance. Overall, MPD significantly enhances the
performance of seq2seq models, aligning with our findings
from automatic evaluation.

TABLE II
HUMAN EVALUATION RESULTS ON ALL WOW AND KDCONV DATASETS.

Model WoW KdConv

Flu. Coh. Inf. Flu. Coh. Inf.

GRU 3.31 2.89 2.31 2.51 2.23 1.48
Trans 3.14 2.71 2.26 2.67 2.56 1.91

T5 3.61 3.04 2.91 2.63 2.31 1.71

GRU+MPD 3.41 2.71 2.81 2.54 2.49 1.76
Trans+MPD 3.65 2.49 2.51 2.71 3.01 2.01

T5+MPD 3.87 3.31 2.98 2.72 2.57 1.89



F. Ablation Study

To assess the effectiveness of each module within the
proposed MPD, we conducted ablation experiments on the
WoW test set. In particular, upon removal of the KUNet, the
input to the refiner shifts from uτ,t to sτ−1,t. Similarly, with
the discriminator removed, the refiner exclusively relies on the
output of the refiner to revise the response. Formally, Equation
15 becomes sτ,t = tanh(WT

o sτ−1,t + bT
o ).

TABLE III
ABLATION STUDY OF MPD ON THE WOW DATASET. ’W/O’ IS AN

ABBREVIATION FOR ’WITHOUT,’ INDICATING THE REMOVAL OF THE
CORRESPONDING MODULE. ’KUN.,’ ’DIS.,’ AND ’REF.’ STAND FOR
’KUNET,’ ’DISCRIMINATOR,’ AND ’REFINER,’ RESPECTIVELY. THE

NUMBER IN THE BOTTOM-RIGHT CORNER INDICATES THE PERFORMANCE
DECLINE IN COMPARISON TO MPD+T5.

Model WoW

PPL BLEU-4 Dist-2

MPD+T5 15.41 4.41 19.97
w/o CL. 15.57(+0.18) 4.31(−0.10) 18.97(−1.00)

w/o Kun. 15.79(+0.38) 4.39(−0.02) 18.77(−1.20)

w/o Dis. 16.41(+1.00) 4.13(−0.28) 18.41(−1.58)

w/o Dis. & Ref. 16.68(+1.27) 3.90(−1.51) 16.84(−3.13)

T5 16.66(+1.25) 3.79(−0.62) 16.11(−3.86)

The results are presented in Table III. We observe a slight
decline in performance after removing curriculum learning,
which demonstrates its capability to aid the model in its
gradual adaptation to more complex conversations, thereby
enhancing its overall performance. Furthermore, when the
refiner and discriminator are removed, a more substantial de-
cline in performance is observed. This highlights their role in
integrating knowledge and evaluating the generated responses,
consequently improving the informativeness and fluency of the
model’s output. Notably, in the last two rows of the table, it
is noticeable that removing more than one module results in a
performance decline that is either greater or comparable to the
cumulative decline caused by the three individual reductions
mentioned above. This observation underscores the interde-
pendence and collective impact of these modules, emphasizing
their essential roles in the model’s performance.

G. Case Study

Figure 3 lists some responses generated by different models
alongside the corresponding reference responses (Gold). It
is evident that T5+MPD consistently produces high-quality
responses, outperforming other baselines in terms of context
consistency and knowledge relevance. Specifically: (1) Trans-
former and GRU often generate generic and less informative
responses, such as ”Yes, it is” (Transformer in case 1) and
”I don’t know” (GRU in case 2). (2) Additionally, these two
models tend to produce grammatically erroneous (GRU: ”sorry
sorry” in case 2), factually incorrect responses (In case 2,
the Transformer mistakenly believed that the Batman movie
came out in 2008) and repetitive pieces. (3) Comparatively,
T5 excels in generating contextually relevant responses. Its
ability to understand and incorporate knowledge from a wide

range of sources makes it particularly adept at providing
insightful and informative replies. (4) When combined with
MPD, T5 is capable of producing more informative and
engaging responses, as can be inferred from the underlined
text.

Table IV presents the results from various iterations pro-
duced by GRU+MPD. It is evident that in the first few
iterations, the model struggles to generate fluent and coherent
responses. Specifically, the model tends to produce ungram-
matical responses with frequent word repetitions, which is
consistent with the experimental results discussed in previous
sections. In contrast, responses generated in the last two
iterations are notably more fluent and informative. Notably, in
iteration 5, a grammatical error present in iteration 4, where
”he” is used instead of ”her,” has been successfully rectified.

TABLE IV
RESPONSES GENERATED BY GRU+MPD IN MULTIPLE ITERATIONS ON

CMU DOG TEST SET.

Document Cast: Gal Gadot as Diana Prince / Wonder Woman

Context Hey there! What did you think of Wonder Woman?

Response

iter.=1: I think yes, yes, yes ...
iter.=2: I think it it yes ...
iter.=3: I think it is great, what about you yes yes ...
iter.=4: I think it is great, I think Gal Gadot is great,
I like he very much.
iter.=5: I think it is great, Gal Gadot is beatutiful, I
like her very much.

H. Analysis of the Maximum Number of Iterations

Additionally, we are intrigued by the potential impact of dif-
ferent choices for K, which represents the maximum number
of iterations, on the final results. In pursuit of this, we have
conducted experiments by adjusting different values of K in
the T5+MPD model on the WoW dataset. As illustrated in
Figure 4, the performance generally improves as K increases
from 1 to 5. This suggests that the quality of responses
can be enhanced through multi-pass refinements. However, as
K continues to increase, performance improvements become
marginal, highlighting the need for a careful exploration of the
optimal K value. Since larger values of K typically demand
more time and computational resources. In this paper, we
have set K = 5 to strike a balance between performance and
efficiency.

I. Performance Analysis of Different Iterations

To evaluate whether and how multiple iterations can im-
prove the quality of generated responses, we randomly se-
lected 100 responses generated by GRU+MPD from the
WoW test set, and assess the following metrics during multi-
pass decoding: the percentage of consecutive repetitive words
(rep.)[24], the length of the generated responses (len.) and the
BERTScore[25] in relation to the number of iterations (bs.).

The results are presented in Figure 5. As can be seen from
the figure, the word repetition decreases, and BERTScore
increases as the decoding iteration continues. This suggests



Case 2

Context:
u1: Hello! Have you ever seen Batman Begins?
u2: I’m not sure, is that the one that came out in 2008?

Response ( ):
GRU: Yes, it is not, do you like it it ...?
Trans: Yes, it is a super hero film based on the DC comics ...
T5: Christian Bale stars Batman, Michael Caine stars Alfred Pennyworth, Liam Neeson stars Henri Ducard ...
T5+MPD: No, it’s a 2005 superhero film starring Christian Bale as Batman. I am a big fan.
Gold: No, it actually came out in 2005.
---------------------------MULTIPLE TURNS-----------------------
Context: 

: Oh, then I definitely didn’t see it. Who’s in it?

Response ( ):
GRU: Sorry sorry, I don’t know, do you like like like ...
Trans: Christopher Nolan
T5: Christian Bale stars Batman, Michael Caine stars Alfred
Pennyworth, Liam Neeson stars Henri Ducard ...
T5+MPD: Christopher Nolan has directed this film, Christian Bale stars Batman, Michael Caine stars ...
Gold: It was one of the Christopher Nolan films. Christian Bale plays Batman and there’s also Michael Caine

Case 1

Context  
: Hello! how did you like the movie home

alone?

Response ( ): 
GRU: I think think this is good good good ... 
Trans: I like it very much very much ... 
T5: I think this movie is funny. 
T5+MPD: I think this is a funny movie,
what about you? 
Gold: It was entertaining, funny and moving.
How did you like it? 

Response ( ): 
GRU:  I like like it to to ... 
Trans: I think so, and you? 
T5: I think it was entertaining. 
T5+MPD: I think so, and I am a fan of
Kevin McCallister 
Gold: I though Culkin did a nice job as Kevin
McCallister. It was entertaining.

Fig. 3. Responses generated by different models on CMU DOG test set.

Fig. 4. Impact of the maximum number of iterations (K) on the Performance
of T5+MPD.

Fig. 5. Repetitions (rep.), BERTScore (bs.) and length (len.) variation with
respect to iterations.

that the iterative decoding process effectively mitigates the
issue of repetitive language patterns and enhances the overall
semantic coherence of the generated responses. Conversely,
a noticeable trend emerges in the distribution of response
lengths as the iterations progress. The response lengths become
progressively more tightly clustered. This can be attributed to
the reduction of repetitive words and a more precise alignment
between generated content and context.

Fig. 6. Attention visualization for KUNet.

J. Visual Analysis

Figure 6 illustrates how the attention weights in KUNet
change with respect to the related documents during the
iterative processes. Specifically, these attention weights are
determined by calculating γi = exp(1+αi)/

∑
j exp(1+αj),

where i and j represent document indices, and α is derived
from Equation 10. A higher value signifies that the correspond-
ing document is more relevant to the response. The ground
truth is manually evaluated by determining which document
is most related to the responses and context. As depicted in the
figure, the model initially distributes attention equally among
all the documents without differentiation. As the iterations
progress, the model gradually shifts its focus to the correct
document. This explains why our approach is capable of
generating responses with higher knowledge relevance

V. CONCLUSION

In this paper, we introduced a novel Multi-Pass Decoding
(MPD) architecture, iteratively conducting knowledge updates
and the identification and refinement of erroneous responses.
On the one hand, our method provides a versatile approach
to iteratively enhance the quality of generated responses. By
integrating this framework with various seq2seq models, we
effectively address the challenges of generating coherent and
contextually relevant text. Moreover, our approach incorpo-
rates a curriculum training strategy that further refines the
model’s performance during training. The results of extensive
experiments indicate the substantial improvement over several
seq2seq models.
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