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In this paper, the controller design and stability analysis for the parameters time-varying model of 
spinning missiles are investigated. A mathematical model for the spinning missile considering the flight 
parameters varying with time is proposed. Based on tensor product (TP) model transformation for the 
spinning missile, the parallel distributed compensation (PDC) state feedback controller is designed, and 
the stability of the controlled system is analyzed with the tool of linear matrix inequalities (LMIs). 
Numerical simulations with time-varying parameters are conducted to demonstrate the effectiveness of 
the proposed controller. The given controller can not only guarantee the steady performance but also 
the decoupling performance between pitch and yaw channels when used in the flight parameters time-
varying spinning missiles.

© 2022 Elsevier Masson SAS. All rights reserved.
1. Introduction

Spinning is a technique widely used in axisymmetric tactical 
missiles and guided missiles for the advantages in interference 
suppression, such as thrust misalignment, mass eccentricity, aero-
dynamic asymmetry [1–4]. As is known to all, due to Magnus 
effect and gyroscopic effect, spinning missiles have coupling in 
pitch and yaw channels, which is different from non-spinning mis-
siles. In addition, due to the control coupling caused by actuators, 
the guidance and control systems of spinning missiles are more 
complex than non-spinning missiles. Thus, control decoupling is 
necessary to achieve ideal response performance. Many scholars 
pay attention to decoupling controller design for spinning missiles 
[5–8]. Moreover, flight parameters such as flight height, speed and 
spinning rate are time-varying during flight phase. Therefore, over-
coming the coupling effect, meanwhile, realizing precise control 
within the whole flight envelope is a very challenging task.

Before designing spinning missile controller, stability of the sys-
tem is analyzed commonly. There are many valuable literature 
reported in investigating the stability of spinning missiles with 
different control topologies in the last decades, and the related 
techniques mostly focus on complex summation method and state 
space method. Using complex summation method, the stability of 
spinning missiles controlled by different autopilot, e.g., rate loop, 
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attitude autopilot, acceleration autopilot, or guided by homing pro-
portional guidance law was studied in Refs. [9–15]. Also, com-
plex summation method is valid in missiles equipped with various 
seekers [16–19]. Koohmaskan investigated the stability of spinning 
missiles induced by hinge moment by expressing the spinning mis-
sile system in state space representation, and then checked the 
eigenvalues of the system to validate the asymptotic stability via 
an LMIs tool in Ref. [20]. The two aforementioned methods are 
useful in dealing with linear time invariant (LTI) systems, and the 
essence of the stability of LTI systems is equivalent to the system 
matrix eigenvalues symbol judgment. However, there will be great 
difficulties in deducing the stability condition of spinning missiles 
within the whole flight envelope, since the spinning missiles are 
parameter time-varying systems.

As for spinning missiles controller design, there are two main 
control techniques commonly used. One is based on classic autopi-
lot structure, adopting frequency domain design method, such as 
pole assignment. And static decoupling approach such as preset-
ting angle is used to guarantee the steady state response of the 
system [7,11,21–23]. Another is modern robust multi-variable con-
trol such as H2 or H∞ coupling with interpolation method [24–27]
or gain-scheduling control [28–30]. The interpolation method is 
linearly interpolating the scheduling vector through a number of 
pre-calculated controller parameters tables. It is simple and easy 
for engineering implementation. However, it is hard to guarantee 
the system performance within the whole flight envelope. More-
over, the aforementioned method even cannot guarantee the sta-
bility for parameters time-varying systems. The gain-scheduling 
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Nomenclature

ay , az acceleration of missile . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

m mass of missile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
V flight velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
h flight height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ρ atmospheric density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

q 1
2 ρV 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dynamic pressure

S reference area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

L reference length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
d reference diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
T thrust force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
α∗ full angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
α non-spinning angle of attack . . . . . . . . . . . . . . . . . . . . . . . rad
β non-spinning sideslip angle . . . . . . . . . . . . . . . . . . . . . . . . rad
θ , ϕ , γ pitch, yaw, roll angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
αt canted angle of tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
σy , σz non-spinning actuators angle . . . . . . . . . . . . . . . . . . . . . . rad
σcy , σcz command of non-spinning actuators angle . . . . . . . . rad

Cd drag force coefficient
CL lift force coefficient
C ′

L derivative of lift force coefficient
Cμ Magnus force coefficient
C ′′

μ derivative of Magnus force coefficient
Ix longitudinal inertial moment . . . . . . . . . . . . . . . . . . . kg · s2

It lateral inertial moment . . . . . . . . . . . . . . . . . . . . . . . . . . kg · s2

m′
x roll-induced moment coefficient

m′
xω roll damping moment coefficient

m′
σ x roll control moment coefficient

ms static moment coefficient
m′

s derivative of static moment coefficient
m′

σ control moment coefficient
m′

ω damping moment coefficient
mμ coefficient of Magnus moment
m′′

μ derivative of coefficient of Magnus moment
ωx , ωy , ωz angular rate of frame. . . . . . . . . . . . . . . . . . . . . . . . . . rad/s
control has many elegant applications on missile control, but the 
challenging work is how to reduce the conservatism in model es-
tablishment, and the numbers of LMIs to be solved increase the 
difficulty of applications.

There are many works on the stability analysis and controller 
design based on LTI model about spinning missiles. However, 
the work on spinning missiles flight control system design in-
volved with coupling effect and linear parameter-varying (LPV) 
systems model is rarely reported. Addressing the aforementioned 
issues, this paper adopts the TP model transformation proposed by 
Baranyi through a series of papers [31–35] to establish the connect 
between LTI and LPV models of spinning missiles. Then drawing 
lessons from Takagi-Sugeno (T-S) fuzzy controller design, the con-
troller constrained with decay rate is investigated, and stability of 
the system is analyzed. Finally, the tracking and decoupling con-
troller is given in the TP form.

The remainder of this paper is organized as follows. In sec-
tion 2, the LPV model of spinning missiles is given under some 
assumptions, and the actuator response is modeled by a second 
order system. In section 3, the principles and procedures of TP 
model transformation for the spinning missiles are presented. In 
section 4, the tracking and decoupling controller is designed, and 
stability of the controlled system is analyzed. In section 5, the sim-
ulation results compared with structured H∞ synthesis are given. 
Finally, the conclusions are given in section 6.

2. Model of spinning missile

Before establishing the model of spinning missile, some com-
mon assumptions are adopted.

A1. The gravity effect is generally excluded for it can be compen-
sated in the autopilots;

A2. The variables α∗ , α, β , ϕ , ψ , ψ̇ , ϑ̇ are small.

Under the small angle assumption, α∗ , α, β , ϕ , ψ are ap-
proximately zero, ψ̇ , ϑ̇ are small enough compared to the roll 
rate γ̇ , and the coefficients of the aerodynamic moments are 
linearized, namely, CL ≈ C ′

Lα
∗ , Cμ ≈ C ′′

μ (γ̇ d/V )α∗ , ms = m′
sα

∗ , 
mμ ≈ m′′

μ (γ̇ d/V )α∗ . According to reference [11,15], six degrees-
of-freedom dynamic equations of the spinning missiles can be 
written in the non-spinning frame as:
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ = (−qSCd + T )/m

θ̇ = qSC ′
L+T

mV α − qS
mV C ′′

μ (γ̇ d/V )β

ϕ̇ = qSC ′
L+T

mV β − qS
mV C ′′

μ (γ̇ d/V )α
γ̈ = (

qS Lm′
xαt − qS Lm′

xω (d/V )ωx + qS Lm′
σ xσx

)
/Ix

ϑ̈ − (Ix/It) γ̇ ψ̇ = (qS L/It)m′
sα − (qS L/It)m′′

μ (γ̇ d/V )β

− (qS L/It)m′
ω (L/V ) ψ̇ + (qS L/It)m′

σ σz

ψ̈ + (Ix/It) γ̇ ϑ̇ = (qS L/It)m′
sβ + (qS L/It)m′′

μ (γ̇ d/V )α
− (qS L/It)m′

ω (L/V ) ϑ̇ + (qS L/It)m′
σ σy

(1)

From observation in Eq. (1), the terms V and γ̇ are indepen-
dent with other four state variables. Along with the change of 
V and γ̇ , by defining a1 = qSC ′

L+T
mV , a2 = − qS

mV C ′′
μ (γ̇ d/V ), b11 =

(qS L/It)m′
s , b12 = (qS L/It)m′′

μ (γ̇ d/V ), b21 = (Ix/It) γ̇ , b22 =
(qS L/It)m′

ω (L/V ), and cσ = (qS L/It)m′
σ , and using the equa-

tions that θ = ϑ − α and ϕ = ψ − β , Eq. (1) can be reformulated 
as⎧⎪⎪⎨
⎪⎪⎩

α̇ = ϑ̇ − a1α − a2β

β̇ = ψ̇ − a1β + a2α
ϑ̈ = b11α + b12β + b21ψ̇ + b22ϑ̇ + cσ σz

ψ̈ = b11β − b12α − b21ϑ̇ + b22ψ̇ + cσ σy

(2)

Here V is determined by drag force and thrust, γ̇ is determined 
by canted angle of tails and rolling damping moment, which are 
independent with other state variables. Thus, Eq. (2) can be treated 
as an LPV system, and the scheduling parameters are the flight 
velocity and rolling rate. Moreover, the defined symbols such as 
a1, b11 are linear with the dynamic pressure q, which is a function 
about flight height. Therefore, the third scheduling parameter is 
flight height.

The measurement outputs are lateral accelerations expressed as{
ay = V (ϑ − α) = V (a1α + a2β)

az = −V (ψ − β) = −V (a1β − a2α)
(3)

And the actuators response is modeled by a second order system 
with natural frequency 1/Ts and damping ratio μs . The response 
of the actuators expressed in non-spinning frame can be borrowed 
from [9] as[

σz

σ

]
= kskr

[
cosγd sinγd

− sinγ cosγ

][
σcz

σ

]
(4)
y d d cy
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Fig. 1. Polytope LPV system conservatism with vertex selection.

where ks is the gain of the actuators, kr = 1√
(1−T 2

s γ̇ 2)
2+(2μs Ts γ̇ )2

is the dynamic gain of the actuators caused by spinning, γd =
arccos 1−T 2

s γ̇ 2√
(1−T 2

s γ̇ 2)
2+(2μs Ts γ̇ )2

+ τ γ̇ is steady-state deviation angle 

caused by the delay of the actuators dynamics.
Traditional method for the autopilot design is based on charac-

teristic point. However, decoupling controller of spinning missiles 
designed for the characteristic point can only guarantee good dy-
namic and decoupling performance at that point, since the flight 
velocity, height and rolling rate change along with flight trajectory. 
The method based on the characteristic point cannot guarantee 
good performance in the whole trajectory. Therefore, gain schedul-
ing is needed. Traditional robust multi-variable control techniques 
coupling with gain scheduling are conservative in the process of 
model establishment. As shown in Fig. 1, the parameters time-
varying system S(x, t) is generally represented by the polytope LPV 
system whose vertex systems are composed with A, B, C, D in the 
missile model, however, it can be represented by the polytope LPV 
system A, E, C, F with less conservatism. In the next section, the 
TP model transformation is used to find minimal numbers of ver-
tex systems such as ν̄1, ν̄2 and ν̄3 to approximate the parameters 
time-varying system S(x, t) with convex combination, which will 
greatly reduce conservatism in the model establishing.

3. TP model transformation

Consider the following system:{
ẋ(t) = A(p(t))x(t) + B(p(t))u(t)
y(t) = C(p(t))x(t) + D(p(t))u(t)

(5)

where u(t) ∈ Rk , y(t) ∈ Rl and x(t) ∈ Rm are the control input, 
system output and system state vector, p(t) represents the time-
varying parameter vector in the N-dimensional bounded space 
� = [

a1 b1
]×[

a2 b2
]×· · ·×[

aN bN
] ∈ RN . The system matrix 

is

S(p(t)) =
[

A(p(t)) B(p(t))
C(p(t)) D(p(t))

]
∈ R(m+k)(m+l) (6)

which can be stored as a system tensor. The TP model transfor-
mation aims to approximate system (5) with some LTI systems 
by high-order singular-value decomposition (HOSVD) over the dis-
crete hyperrectangular grid, so that it is possible to use the tech-
nique in fuzzy systems or robust gain scheduling.

The core of the TP model transformation is HOSVD. It is known 
that each matrix can be written as following using the singular 
value decomposition (SVD) [36]:

A = USVT (7)
3

where A is an m × n matrix, U is an m × m unitary matrix, V is an 
n × n unitary matrix, and S is an m × n rectangular diagonal ma-
trix with non-negative real numbers on the diagonal, which is so 
called singular values. Due to the character of SVD, it is efficient in 
matrix approximation by dropping some little singular values. In 
real systems, the system matrices are often shown as high order 
matrices, or recorded as high order tensors, since the time-varying 
parameter vector p(t) not only has one dimension. To approximate 
a high order tensor, SVD should be expanded to HOSVD. The first 
step is unfolding the system tensor into bidimensional space along 
one dimension to get a 2-dimensional matrix expression, then ap-
plying the SVD on the obtained 2-dimensional matrix. The next 
step is packing the result back into the tensor form. Finally, repeat 
the above steps along every dimension resulting in an HOSVD. For 
a tensor A , the result of HOSVD can be written as

A = S ×1U T
(1)×2U T

(2)×3 · · ·×N U T
(N) = S

N⊗
n=1

U T
(n) (8)

where S is the core tensor of A constructed from the vertex sys-
tem matrices S1, S2, · · · , SN , U (n) are unitary matrices, ×(n) sym-
bol means n-mode product of a tensor.

Applying HOSVD on the system matrix (6), system (5) can be 
expressed as(

ẋ(t)
y(t)

)
≈

(
S

N⊗
r=1

ωr p(t)

)(
x(t)
u(t)

)
(9)

where S is the core tensor of system (5), ωn is coefficient of the 
corresponding vertex systems. The above formula represents the 
approximation of the original system, and its error with the origi-
nal system is as follows

ε =
∥∥∥∥S(p(t)) − S

N⊗
r=1

ωr p(t)

∥∥∥∥ ≤
∑

k

σ 2
k (10)

where σk is small singular value dropped in the process of HOSVD. 
For more details about the singular value calculation process one 
can refer to Ref. [31].

Similar to SVD, the coefficient matrices U (n) are unitary matri-
ces, which do not satisfy the sum normalization (SN) and nonnega-
tive normalization (NN) conditions, thus the results of HOSVD can-
not guarantee convexity of the vertex systems. Moreover, polytopic 
systems have advantages in using LMIs, whose vertex systems sat-
isfy the SN and NN conditions. Therefore, to take advantage of LMIs 
in controller design for the TP model, it is necessary to normalize 
the result of HOSVD, which results in{
∀p(t) :

∑N

r=1
ωr(p(t)) = 1,∀r, p(t) : ωr(p(t)) ≥ 0

}
(11)

After that, system (5) can be expressed as⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) ≈
N∑

r=1
ωr(p(t))(Ar x(t) + Bru(t))

y(t) ≈
N∑

r=1
ωr(p(t))(Cr x(t) + Dru(t))

(12)

For further details about the TP model transformation and process 
of vertex system normalization, one can refer to Ref. [31,35]. Ac-
cording to the above analysis, the TP model transformation can be 
divided into the following steps:

• Define the scheduling space � of the time-varying vector p(t), 
where p(t) ∈ [

a1 b1
] × [

a2 b2
] × · · · × [

aN bN
]

holds;
• Divide the scheduling space � arbitrarily, where the method 

of average partition can be used;
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• Calculate the discrete system matrices in the divided schedul-
ing space and record in the form of high-order tensors;

• Apply HOSVD on the obtained high-order tensor, drop zero or 
small singular values according to the tolerable error of the 
model, which will result in a core tensor;

• Normalize the result of HOSVD, make the weight coefficients 
meet the SN and NN conditions so that the convex combina-
tion of the vertex systems can approximate the original sys-
tem.

There are three advantages in the TP model transformation: firstly, 
it greatly reduces the numbers of vertex systems, which is con-
ducive to solution of the controller; secondly, it highly restores the
original system matrices through the core tensor and weight co-
efficients, and the error between the original system and the TP 
model is given quantitatively; thirdly, it avoids the randomness of 
vertex system selection and reduces the conservatism of controller 
solution.

4. Controller design and stability analysis

Observing the process of the TP model transformation, the ver-
tex systems can approximate the original system through the con-
vex combination of the weight coefficients, and each vertex system 
is an LTI system. Thus, the equilibrium of the TP model (12) is 
globally asymptotically stable if there exists a common positive 
definite matrix P such that [37]

AT
r P + PAr < 0 r = 1,2, · · · , N (13)

Therefore, finding a common Lyapunov function for each vertex 
system satisfy the Lyapunov stability condition can ensure the sta-
bility of the original system. Notice that the continuous T-S fuzzy 
system is expressed as

IF p1(t) is Mi1 · · · and pn(t) is Min

THEN

{
ẋ(t) = Ai x(t) + Biu(t)
y(t) = Ci x(t)

(14)

where the premise variables p1(t), . . . , pn(t) are same as the time-
varying parameter vector p(t) in the TP model transformation, the 
membership degree of the fuzzy set Mij is similar to the coef-
ficients of the vertex systems of the TP model, and the system 
matrices Ai, Bi, Ci form the vertex systems. Thus the TP model is 
highly similar to the T-S model except the system matrix Di . Here 
the PDC state feedback controller commonly used in T-S fuzzy sys-
tems is considered in the follow:

Kr = P DC(Sr), r = 1,2, · · · , N (15)

Assuming that the PDC controller has the same weight coefficients 
as the TP model, the control input can be expressed as

u(t) = −
(

N∑
r=1

ωr(p(t))Kr

)
x(t) (16)

In model (12), Dr is not equal to zero, which will bring extra dif-
ficulties in state feedback controller design and stability analysis. 
Thus, model filtering is implemented. There are two methods, one 
is pre-filtering the origin control input u, that is{

ẋu = Au xu + Buũ
u = Cuxu

(17)

where ũ is the new control input. The other method is post-
filtering the measurement output y, that is
4

{
ẋy = Ayxy + By y
ỹ = Cy y

(18)

where ỹ is the new control measured output. Here the two meth-
ods are implemented meanwhile. Substituting Eq. (17) and (18)
into system (5) leads that⎡
⎣ ẋ

ẋu

ẋy

⎤
⎦ =

⎡
⎣ A(p(t)) B(p(t))Cu 0

0 Au 0
ByC(p(t)) ByD(p(t))Cu Ay

⎤
⎦

⎡
⎣ x

xu

xy

⎤
⎦ +

⎡
⎣ 0

Bu

0

⎤
⎦ ũ

ỹ = [
0 0 Cy

]⎡
⎣ x

xu

xy

⎤
⎦

(19)

After the process of filtering, the matrix D of the new model equals 
to zero. Therefore, without losing generality, here Dr = 0 can be 
assumed. Substituting the controller into the TP model (12), it ob-
tains that

ẋ(t) =
N∑

r=1

N∑
s=1

ωr(p(t))ωs(p(t))(Ar − BrKs)x(t) (20)

It is equivalent to

ẋ(t) =
N∑

r=1

ωr(p(t))ωr(p(t))Gr,r x(t)

+ 2
N∑

r=1

∑
r<s

ωr(p(t))ωs(p(t))
Gr,s + Gs,r

2
x(t) (21)

where Gr,s = Ar − BrKs holds. The above system is regarded as 
the sum of two subsystems. Defining the Lyapunov function of the 
system as V(x(t)) = x(t)T Px(t), according to Lyapunov stability, if 
there is a common positive definite matrix P satisfying

GT
r,rP + PGr,r < 0 r = 1,2, · · · , N (22)(
Gr,s + Gs,r

2

)T

P + P
(

Gr,s + Gs,r

2

)
≤ 0 r < s ≤ N,ωr × ωs �= 0

(23)

then the PDC controller ensures the quadratic stability of system 
(12). The above matrix inequalities do not represent LMIs condi-
tions for there is a product of Ks and P existing in the inequalities. 
Multiplying by P−1 on the left and right side of the inequali-
ties, defining X = P−1 and Mr = KrX, the above matrix inequalities 
yield Theorem 1.

Theorem 1. The sufficient condition for the controller (16) to make the 
system (12) quadratic stable is that there are a positive definite symmet-
ric matrix X and Mr(r = 1, 2 · · · , N) satisfying

−XAT
r − ArX + MT

r BT
r + BrMr > 0, r = 1,2 · · · , N (24)

−XAT
r − ArX − XAT

s − AsX + MT
s BT

r
+BrMs + MT

r BT
s + BsMr ≥ 0, r < s ≤ N,ωr × ωs �= 0

(25)

If there is a feasible solution to the above LMIs, then the feedback gains 
can be obtained as

Kr = MrX−1 (26)

Although Theorem 1 can guarantee the stability of system (12), 
it cannot guarantee the dynamic performance of the controlled 
system. Since spinning missiles control system requires fast re-
sponse, it should add the extra constraint that
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Fig. 2. The diagram of the structured H∞ synthesis for spinning missile.
V̇(x(t)) ≤ −2αV(x(t)) (27)

where α > 0 determines decay rate of the system. Therefore, α
is called decay rate factor. The condition (27) for the controlled 
system is equivalent to

GT
r,rP + PGr,r + 2αP < 0 r = 1,2, · · · , N (28)(
Gr,s + Gs,r

2

)T

P + P
(

Gr,s + Gs,r

2

)
+ 2αP ≤ 0

r < s ≤ N,ωr × ωs �= 0 (29)

Similar to the derivation of Theorem 1, it obtains the following 
theorem.

Theorem 2. The sufficient condition for the controller (16) to make the 
system (12) quadratic stable with a decay rate α is that there are a posi-
tive definite symmetric matrix X and Mr(r = 1, 2 · · · , N) satisfying

−XAT
r − ArX + MT

r BT
r + BrMr − 2αX > 0, r = 1,2 · · · , N (30)

−XAT
r − ArX − XAT

s − AsX + MT
s BT

r
+BrMs + MT

r BT
s + BsMr − 4αX ≥ 0, r < s ≤ N,ωr × ωs �= 0

(31)

If there is a feasible solution to the above LMIs, then the feedback gains 
can be obtained as

Kr = MrX−1 (32)

Although Theorem 2 can stabilize the spinning missiles system, 
special considerations must be given to the tracking of reference 
commands and the decoupling of the spinning missiles system. 
Assume that the reference input is v(t), the feedforward gain ma-
trices of the vertex systems are denoted as Lr . There are many 
ways to design the gain matrices Lr , but all of them should guar-
antee the steady-state gain of the system. For spinning missiles, 
the general reference input is lateral acceleration, that means the 
steady gain of the system is D̃ = diag(d11, d22), where the diagonal 
matrix decouples yaw and pitch channels, and d11 = d22 = 1 guar-
antees the gain of the system when the system reaches the steady 
response. Referring to the commonly used static decoupling algo-
rithm, the gain adjustment matrix at each vertex system can be 
calculated as

Lr = −[
Cr(Ar − BrKr)

−1Br
]−1

D̃ r = 1,2, · · · , N (33)

The feedforward gain matrices L1, · · · , LN form high order tensor 
L , and controller gain matrices form high order tensor K . Then 
the control can be given in the TP form as
5

Table 1
Spinning missile’s flight parameters.

Parameter Value Parameter Value

C ′
L 10.3 m′′

μ −0.168
m′

s −0.6589 C ′′
μ −0.0087

m′
ω 1.777 m′

σ 0.0546
Ix 5.23 It 1.65e3
γ̇ 6π m 465
L 6.54 d, m 0.15
ks 1.0 τ 0.005
μs 0.5 Ts 0.008

u(t) =
(

K
N⊗

n=1
ωn p(t)

)
x(t) +

(
L

N⊗
n=1

ωn p(t)

)
v(t) (34)

5. Simulation results

According to the analysis of the scheduling variables of spin-
ning missiles, it shows that the flight velocity, rolling rate and 
flight height are the key factors affecting the dynamic performance 
of spinning missiles. While the mass and thrust of spinning mis-
siles generally remain unchanged in the controlled phase, and the 
rolling rate does not change much. Therefore, the scheduling vari-
ables selected in this section are flight velocity and height. Table 1
lists the spinning missile’s flight parameters.

Because Magnus forces have very little influence comparing 
with other dynamic terms, a2 will be ignored in this section for 
the controller design convenience, that means a2 ≡ 0. The atmo-
spheric density is fitted by polynomial as ρ = 1.219 − 1.123 ×
10−4h + 3.448 × 10−9h2 − 3.33010−14h3. In this section, the spin-
ning missile flight velocity varies in [600, 1000] m/s, and flight 
height varies in [0, 10000] m. Before implementing the PDC con-
troller, as a contrast, here structured H∞ synthesis is adopted to 
control and decouple the spinning missile. Refer to Ref. [38], the 
diagram of the structured H∞ synthesis for the spinning missiles 
is shown in Fig. 2. The reference model is selected as

Gref (s) =

⎡
⎢⎢⎣

ω2
n

s2 + 2ξωns + ω2
n

0

0
ω2

n

s2 + 2ξωns + ω2
n

⎤
⎥⎥⎦ (35)

with ξ = 0.8 and ωn = 3. The diagonal form of Gref guarantees the 
decoupling performance. To validate the structured H∞ synthesis, 
here we select two points V = 600 m/s, h = 10000 m and V =
1000 m/s, h = 0 m, and the controlled system step response is 
shown in Fig. 3 and 4. The results show that the structured H∞
controller performances well at the character point and decouples 
the yaw and pitch channels when the controlled system reaches 
steady-state.
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Fig. 3. Step responses of H∞ synthesis controller at V = 600 m/s, h = 10000 m.

Fig. 4. Step responses of H∞ synthesis controller at V = 1000 m/s, h = 0 m.

Here we apply the structured H∞ controller to the parame-
ters time-varying spinning missile system, where the flight velocity 
changes from 600 m/s to 1000 m/s, and flight height changes from 
10000 m to 0. To realize the spinning missile control along the 
flight envelope while flight velocity and height vary, here we di-
vide the flight velocity into 10 equal parts, and divide flight height 
into 10 equal parts. Hence we obtain 100 character points, and cal-
culate the control parameters with interpolating the flight velocity 
and height. Fig. 5 shows the system step response along the time-
varying flight trajectory. Fig. 6 shows the responses of the angle of 
attack and angle of sideslip.

Fig. 5 shows that, with flight velocity and height changing, 
the interpolated structured H∞ controller can realize the com-
mand following approximately along flight envelope, but the per-
formances are not as good as the performances on the character 
points, especially when the flight velocity grows. In addition, it 
can be seen from Fig. 6 that at the beginning of the simulation, 
when the flight velocity is low and the flight height is high, the 
angle of sideslip required to generate the unit lateral acceleration 
is large. With the increase of the flight velocity and the decrease of 
the flight height, the dynamic pressure increases, and the angle of 
sideslip required to generate the unit lateral acceleration gradually 
decrease.
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Fig. 5. Step responses of interpolated H∞ synthesis controller along flight trajectory.

Fig. 6. α, β variations of interpolated H∞ synthesis controller.

Table 2
Parts of singular values of system tensor.

Modes 3 mode 4 mode

Singular values

55468.1174 55468.0978
64.1112 79.2811
3.0150 1.4234e-11
4.9581e-11 7.3962e-12

In the second part, the TP model transformation and the PDC 
controller with decay rate factor are employed. In the first step, 
divide the flight speed into 100 equal parts, and divide flight 
height into 100 equal parts. Then we obtain the system tensor 
S (V ,h)6×6×100×100 which is formed by the system matrices. Ap-
plying HOSVD on the obtained high-order tensor, parts of singular 
values are list in Table 2. It can be seen that after dropping the 
small singular value, the vertex systems are only 3 ∗ 2 = 6, which 
greatly simplifies the amount of calculation and reduces the dif-
ficulty of controller design. The weight coefficients of the vertex 
systems are shown in the Fig. 7.

Take the character point V = 600 m/s, h = 10000 m as an ex-
ample. Here the results of no decay rate constraint and with decay 
rate α = 1.5 are compared in Fig. 8.

It can be seen from Fig. 8 that if there is no decay rate con-
straint, the controller can make the system stable, but the response 
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Fig. 7. The weight coefficient of the vertex system.

Fig. 8. Step responses of TP controller with/without decay rate at V = 600 m/s, 
h = 10000 m.

time is too long, which limits its application in real systems. When 
the decay rate α = 1.5 holds, the system can be stable quickly, 
which is suitable for practical application.

Applying the TP model transformation and the designed con-
troller to the parameters time-varying spinning missile system, 
where the simulation conditions are the same with the structured 
H∞ synthesis. The following simulation results Fig. 9 and 10 show 
the performance and decoupling effect of the designed TP con-
troller.

Compared with the results of interpolation in the structured 
H∞ synthesis controller, the dynamic decoupling performance of 
the proposed controller based on the TP model is better, and the 
decoupling effect between pitch and yaw channels is more obvious.
7

Fig. 9. Step responses of TP controller.

Fig. 10. α, β variations of TP controller.

To enhance the applicability of proposed method, the uncer-
tainties such as wind and control command delay are consid-
ered. Consider an external disturbance such as wind with velocity 
50 m/s acting on the spinning missile, the designed controller per-
forms as in the Fig. 11. The results reveal that the decoupling 
performance is guaranteed under the disturbance of wind, how-
ever, the steady gain of the controlled system becomes greater for 
it depends on the measurements of flight velocity. Moreover, the 
control command delay is tested on the controlled system, and 
it is found that the designed controller can maintain the perfor-
mance when the control command delay is no larger than 5 ms. 
Fig. 12 presents the response of the controlled system under 6 ms 
control command delay. As the velocity grows up in the terminal 
phase, the responses are getting unsteady, since the system with 
high speed is more sensitive to the control command delay.

6. Conclusion

By TP model transformation, the decoupling PDC state feedback 
controller is designed and the stability of the controlled system is 
analyzed for the parameters time-varying spinning missiles model. 
The simulation results compared with H∞ synthesis controller ver-
ify the effectiveness and benefits of the proposed methods. In the 
design of controllers for parameters time-varying spinning mis-
siles, the work in this paper can be considered for the reason that 
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Fig. 11. Step responses with/without wind.

Fig. 12. Step responses under command delay.

the proposed controller can ensure the system stability and dy-
namic performance under the condition of large-scale parameters 
time varying. Future work will take the model uncertainties and 
control command delay into consideration to design globally sta-
ble controllers for parameters time-varying spinning missiles.
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