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Abstract: With the rapid development of traction motor, the mechanical health monitoring and fault diagnosis field have entered
the era of big data. Definite harmonic signals of the line current are located by a popular method known as motor current signature
analysis. Different faults of an induction motor such as rotor, stator, bearing, vibration, air gap eccentricity and their different
diagnosis techniques are also explored. In fact, the actual fault detection also has a deep development in the artificial intelligence.
It is truly evident that the scope of this area is vast. Hence, acknowledging the need for future research, this review paper presents
a birds eye view on different types of traction induction faults and their diagnostics schemes.
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1 Introduction

Traction induction motors are a critical component of
many industrial processes and are most widely used elec-
tric machines in various industrial sectors and home appli-
ances due to their compactness, ruggedness, and reliability
features. Therefore, assessments of the running conditions
and reliability of the induction motors is crucial to avoid un-
expected and catastrophic failures. Consequently, the issue
of preventive maintenance and fault diagnosis of the condi-
tion of these induction motors drives is of great concern, and
is becoming increasingly important [1] [2]. There are many
published techniques and many commercially available tool-
s to monitor induction motors to insure a high degree of
reliability uptime. In spite of these tools, many companies
are still faced with unexpected system failures and reduced
motor lifetime. Environmental, duty, and installation issues
may combine to accelerate motor failure far sooner than the
designed motor lifetimes.

The common faults of induction motors can be classified
as stator faults, rotor faults and bearing failures. Approxi-
mately 40-50% of faults of induction motors are bearing re-
lated faults, 30-40% are stator faults, and 5-10% are rotor
faults. Other possible faults can be external faults due to in-
correct connection of stator winding or utility supply. Main
failures of IM can widely be arranged as follows [3]:

1) Faults in the stator, due to opening or shorting of one or
more of a stator phase winding;

2) Improper stator windings connections;
3) Rotor field winding shorted;
4) Broken bar in the rotor or cracked rotor end rings;
5) Eccentricity (Static or dynamic air gap irregularities);
6) Bent shaft;
7) Bearing and gearbox failures.
For the purpose of detecting such fault-related signals,

many diagnostic methods have been developed so far. These
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methods to identify the above faults may involve several dif-
ferent types of fields of science and technology. They can be
divided into three fundamental categories [3]-[4]: 1) signa-
ture extraction based approach; 2) model based approach; 3)
knowledge-based approach. In this paper, an extensive liter-
ature review is conducted for state-of-the-art fault diagnosis
techniques for induction motors. The three fundamental cat-
egories are discussed in detail serving as the backbone of the
paper. These approaches are applied to detect several criti-
cal faults of induction motors including stator winding inter-
turn fault, broken rotor bar and bearing fault. The objec-
tive of this review is to strike a balance between accuracy of
methodology and implementation constraint with economic
advantage in view.

2 The model-based approach

The model based approach relies on machine’s mathemat-
ical modeling. Traditional approaches use the model to gen-
erate residuals with an observer, or with a parity space ap-
proach. The main practical difficulties result from the model
precision and unknown disturbances. This leads to a trade-
off between false alarm rate and missed detection rate. Var-
ious approaches have been proposed to model the behavior
of the induction motor under fault diagnosis.

In [5], the authors presented a unique parameter estima-
tion technique for the detection of stator winding short cir-
cuit fault detection in induction motors. In reference [6],
a new model-based diagnostic technique, which is the so-
called virtual current technique (VCT), for the diagnosis of
rotor faults in direct rotor field oriented controlled induction
motor drives. By measuring the amplitude of the oscillation-
s and having a knowledge of the controller and some motor
parameters, this model based approach can reconstruct the
oscillation that would appear in the reference magnetizing
current component which is quite independent of the control
parameters as a fault indicator. In reference [7], the authors
proposed a parameter estimation technique for fault detec-
tion simply by measuring the motor’s input and output sig-
nals. Comparing the nominal with the computed parame-
ters, faults can be detected. Similarly, [8] also gave a fault
diagnosis for the stator and rotor fault by using parameter
estimation. A weak point of model-based techniques is pa-
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Fig. 1: Residual based induction motor fault detection

rameter dependence. To overcome this problem, a method
to extract the component produced by the fault from the es-
timation error is proposed. [9] proposed a strategy based on
the generation of a vector of specific residual using a state
observer. This allows for a fast fault detection of incipient
faults, independently of the phase in which the fault occurs.
Fig. 1 shows the strategy which is the traditional innova-
tion based residual generation for fault diagnosis. To obtain
similar results, [10] proposed strategies need tree state ob-
servers, one for each motor phase. The classical estimation
approaches for the unknown disturbances can be used for
the induction motor in different environment [11] [12]. In
[13], authors proposed the model-based and wavelet-based
approaches for induction rotors, respectively. Both method-
s are applied to the same fault scenarios. The model-based
approaches can give a better performance in accurate model.
However, thermal effects make the parameter such as resis-
tance and inductance vary. Therefore, the wavelet transform
is very attractive approach to hierarchically extract informa-
tion from signals and detection and isolation the failures. In
[14], authors combined the advantage of both model-based
and fuzzy logic, and let them complement the deficiency of
each other. The residual generation is based on recursive
least square parameter estimation and the residual evaluation
is based on fuzzy inference.

3 Motor signature analysis

Modern measurement techniques in combination with ad-
vanced computerized data processing and acquisition show
new ways in the field of induction machines monitoring by
the use of spectral analysis of operational process parameters
(e.g., temperature, pressure, steam flow, etc.). Time-domain
analysis using characteristic values to determine changes by
trend setting, spectrum analysis to determine trends of fre-
quencies, amplitude and phase relations, as well as cepstrum
analysis to detect periodical components of spectra are used
as evaluation tools.

3.1 Stator Inter-turn Faults
Most induction motor stator faults is subjected to sever-

al stressful operating conditions like environmental, electri-
cal, thermal, and mechanical. Stator winding faults namely
open circuit, turn-to-turn, phase-to-phase, coil-to-coil, and
coil-to-ground, are the most frequent and potentially disas-
trous faults. If timely diagnosis is not done, then it may ulti-
mately cause terrible motor failure. Different methods used
for diagnosis are insulation failures, partial discharge, surge
testing, gas analysis, leakage current, air gap flux monitoring
using search coils, vibration, temperature, acoustic noise, in-

stantaneous angular speed, induced voltage, high frequency
signal injection, instantaneous power, air gap torque, zero
sequence voltage, negative sequence voltage, slot harmon-
ics, angular fluctuations of current’s space vector, negative
sequence impedance and impedance matrix. The frequency
components to detect in the axial flux component are given
by

fs = (k ± n(1− s)/p)f (1)

where is the number of pole pairs, f is the mains frequency,
k = 1, 3 and n = 1, 2, 3, ..., (2p− 1) and s is the slip.

Motor Current Signature Analysis (MCSA) has been uti-
lized for stator turn faults, and this technique is most fea-
sible, cheapest and non-invasive for any electrical fault de-
tection [15]. This method has been adopted by many re-
searchers for studying and characterizing signals and faults,
under different load conditions and abnormal operating con-
ditions like supply voltage unbalance. Spectral analysis of
stator currents, Negative and Zero sequence components of
line currents, Radio frequency components of neutral cur-
rents and shaft currents has been taken as the fault indica-
tors [16]. Classical Fast Fourier transform (FFT) is the most
common method for stator current monitoring contains four
processing sections: sampler, preprocessor, fault detection
algorithm and postprocess. Generally, not denying the diag-
nostic value of classical spectral analysis techniques, induc-
tion motor faults detection, via FFT-based stator current sig-
nature analysis, could be improved by decreasing the current
waveform distortions of the spectrum noisiness [17]. The
amount of information carried by the instantaneous power,
which is the product of the supply voltage and the motor
current, is higher than that deducible from the current alone.
Therefore, in some cases, the instantaneous power is used as
a medium for the motor signature analysis oriented toward
mechanical faults detection in a drive system [18]. Howev-
er, the power spectra are vulnerable to noise. Bispectrum is
defined in term of the two-dimensional Fourier transform of
the third-order moment sequence of a process. It is capa-
ble of revealing both the amplitude and phase information
of the signals. With these additional provided dimensions,
the fault detection and diagnostic process can be enriched
[19]. This technique should be particularly applied to de-
tect electrical-based faults, such as stator voltage unbalance,
because those faults do not have a well-identified harmon-
ic frequency component [20]. A main disadvantage of the
classical spectral estimation like FFT, is the impact of side
lobe leakage due to the inherent windowing of finite data set-
s. A class of spectral techniques based on an eigenanalysis
of the autocorrelation matrix has been promoted in the dig-
ital signal processing research literature. Two well-known
eigenanalysis-based frequency estimators have been used:
multiple signal classification (MUSIC) and ROOT-MUSIC
for stator voltage unbalance [20]. The Fourier analysis is
very useful for many applications where the signals are sta-
tionary. The Fourier transform is, however, not appropriate
to analyze a signal that has a transitory characteristic such as
drifts, abrupt changes, and frequency trends. To overcome
this problem, it has been adapted to analyze small sections
of the signal at a time. This technique is known as short-time
Fourier transform (STFT) [21]. The fixed size of the window



is the main drawback of the STFT. The wavelet transform
was then introduced with the idea of overcoming the diffi-
culties mentioned above [22].

Other signal processing approaches like Current envelope,
Multiple reference frame theory, Discrete Wavelet Transfor-
m (DWT), Continuous Wavelet Transform (CWT), Rough
set theory based classifier, Park’s Transform, Cross Wavelet
Transform (CWT) [23], Extended Parks Vector, Concordia
pattern [24], Empirical-Mode Decomposition (EMD) were
found in literature for fault diagnoses and severity evalua-
tion [25]. Of the above, the negative-sequence component
of the motor’s phase currents was widely used to study the
stator inter-turn faults [26]. Negative sequence currents can
also be caused by power supply unbalance and the intrinsic
asymmetry, which is slip dependent [27], and complicates
the diagnosis. The frequency components in the instanta-
neous power and air-gap torque analysis are basically same
as the negative-sequence component methods. Wireless sen-
sors for temperature and vibration measurement have been
shown to be inferior to wired sensors, due to interference
and conflict of electromagnetic fields between wireless de-
vices and motors [28]. Although MCSA can detect these
components, they may be confused with voltage unbalance
in some machines. Fortunately, they can be unambiguous-
ly detected at the terminal voltages of the machine just after
switching it off. In a healthy machine, the pole pair num-
ber associated with this time particular harmonic does not
match that of a symmetrical three-phase winding. Hence, it
is not detectable. Detection of stator voltage unbalances and
single phasing effects using traditional and advanced signal-
processing techniques have been described in [20].

3.2 Rotor Bar Faults
Unlike stator design, cage rotor design and manufacturing

has undergone little change over the years. As a result, rotor
failures now account for around 5%-10% of total induction
motor failures. The reasons for rotor bar are several, such as
thermal stresses, magnetic stresses, residual stresses and me-
chanical stresses. Since current cannot flow through broken
rotor bar, it results in an unbalanced rotor flux. The current
harmonics can be taken as the fault signature for rotor fault
diagnosis [36]. Load oscillation can also induce the current
harmonics at the same frequencies, which is the major prob-
lem of current spectrum-based methods [37].

[29]-[31] use MCSA to detect broken bar faults. They
investigated the sideband components fb around the funda-
mental for detecting broken bar faults.

fb = (1± 2s)f (2)

While the lower sideband is specifically due to a broken bar,
the upper sideband is due to consequent speed oscillation.
In fact, [31] shows that broken bars actually give rise to a
sequence of such sidebands given by

fb = (1± 2ks)f, k = 1, 2, 3... (3)

The motor-load inertia also affects the magnitude of these
sidebands. Other spectral components that can be observed
in the stator line current are given by

fb = (
k

p
(1− s)± s)f, k = 1, 2, 3... (4)

where fb are detectable broken bar frequencies. In [30], the
authors proposed to add a space dimension to the measured
signal by using an array of Hall Effect Flux Sensors installed
inside the motor air gap. Such an instrumentation brings sig-
nificant advantages for some classes of specialised induction
motors. [32] presents some experimental results obtained for
the diagnosis of the rotor broken bars in three identical squir-
rel cage induction generators by the analysis of stator cur-
rent signatures MCSA using Periodogram, Covariance, and
MUSIC techniques respectively. [33] proposed using pattern
recognition to detect broken rotor bars. The rotor speed is
estimated from stator current and then the featured vector is
extracted as an input to Baye’s classifier. The time-stepping
coupled Finite element-state space (TSCFE-SS) method has
been used in [34] to compute core losses and copper loss-
es with broken-bar faults in variable speed drives. Time-
series data mining (TSDM) in conjunction with the TSCFE-
SS method has been used to extract broken bar information
from torque data [35]. Interestingly, while literature abound-
s with MCSA-based fault detection, it is shown that spectral
components related to broken bar faults are stronger in per-
phase partial power and total power than in stator line cur-
rents. The best result is obtained with partial power. The
instantaneous power-based methods are capable of provid-
ing better sensitivity to broken rotor bar fault in [41].

Applications of current-based broken rotor detection algo-
rithms are limited by their detection sensitivity. The intrinsic
unbalance of the rotor also produces current harmonics at the
same frequency, and reliable detection is required to separate
those components. To assist the reliable detection of rotor
cage fault especially at earlier stage, different fault severity
techniques are proposed to estimate the number of broken
rotor bars to avoid false alarm caused by intrinsic rotor un-
balance [43]. For closed-loop drives, the current regulator
greatly reduces the current harmonics at the characteristic
frequencies and thus degrades the performance of current-
based methods. High-frequency signal injection method is
proposed to monitor rotor saliency [44]. However, the data
acquisition system requirements are high frequency signal.
Other approaches/indicators, used are the rotor resistance-
based method, parameter estimation-based method, swing
angle method, the startup current, the induced voltage after
switch off, but incapable of providing continuous monitor-
ing an protection. A scheme to detect broken rotor bars by
estimating the rotor position is also proposed [45]. Howev-
er, these methods still cannot discriminate broken rotor bar
faults from load oscillations. Experimentation with reconfig-
urable motor for detection of stator winding inter-turn and
broken bar faults using motor flux signature analysis [46],
and online monitoring technique detecting differences in the
flux spectrum are also identified [47].

3.3 Bearing fault
The majority of the electrical machines use ball or rolling

element bearings. Each bearing consists of two ringsłone in-
ner and the other outer. Bearing are the most affected com-
ponent of any other faults of three phase induction motor,
hence the possibility of its occurrence is also more. Local
defects on bearing can be on ball, inner raceway or outer
raceway and can be of crack, pit or spall in nature. The ball



bearing related defects can be categorized as outer bearing
race defect, inner bearing race defect, ball defect, and train
defect. The vibration frequencies to detect these faults are
given by [56]:

fo =
n

2
fr(1−

Db

Dp
cosϕ) (5)

for outer race frequency;

fi =
n

2
fr(1 +

Db

Dp
cosϕ) (6)

for inner race defect frequency;

fi =
Db

Dp
fr(1− (

Db

Dp
)2cos2ϕ) (7)

for ball defect frequency;

fc =
1

2
fr(1−

Db

Dp
cosϕ) (8)

for cage defect frequency. Where fr is the rotor speed in
revolutions/minute, n is the number of balls, Db is the ball
diameter, Dp is the pitch diameter of the bearing and ϕ is
the contact angle. Shaft rotational speed, fault location, and
bearing dimensions determine the amplitude and period of
these impulses.

Diagnostic studies of local defects are found more than
that of distributed effects. Distributed faults give broad-
band signatures, and may not give specific frequencies in
the harmonic spectrum. Advanced signal processing tech-
niques such as high resolution frequency analysis, prob-
abilistic models or enhanced wavelet decompositions are
needed for the diagnoses of distributed effects. A general
fault detection method based pattern recognition has three
processes: acquire physical signal and calculate numerical
features, feature reduction technique to compress data with-
out removing useful information and to extract the hidden
patters, which is the most important stage of any diagnos-
tic procedure and classification [50]. [48] have proposed an
adaptive, statistical time frequency method for the detection
of bearing faults. Experiments were conducted on defective
bearings with scratches on the outer races and bearing balls
and cage defects. It has been claimed that all defective mea-
surements were correctly classified as defective. However,
the detection procedure required extensive training for fea-
ture extraction. Vibration analysis found to be dominated
in the field of bearing fault detection [49]. A system which
applies a variant of Curvilinear component analysis for fea-
ture extraction and artificial neural network for classifica-
tion, found to be capable of diagnosing both local and dis-
tributed faults from the acquired vibration signal [50]. How-
ever, detection of bearing faults using vibration signals is
affected by machine speed. Thermal sensors, chemical anal-
ysis, acoustic emission monitoring and sound pressure mea-
surements are the other bearing failure detection methods.
However, their applications are limited by the requirement
of specialized devices and sensors [51].

It is reported that the bearing faults also will lead to ro-
tor eccentricity and hence additional harmonics will also be

present in the current spectrum [52]. Monitoring of gen-
eral roughness of the bearing is more important to detec-
t bearing faults at early stage in order to schedule mainte-
nance and repair proactive. Standard deviation of the current
spectrum can be used as fault signature. The current har-
monics caused by power supply harmonics, load oscillation,
broken rotor bar, rotor eccentricity etc., have to be removed
for proper diagnoses. To improve the signal-to-noise ratio, a
Wiener filter-based noise cancellation approach is proposed
[53]. Hybrid time and frequency domain analysis is also
used to obtain the bearing fault signature for inverter fed mo-
tors [54]. Methods which use the magnetic flux density in
proximity of induction motor as a diagnostic signal for the
detection of eccentricity and bearing faults are proposed in
[55]. Vibration and stator current analysis of motor with ex-
ternally induced vibration by an air cooled shaker shows that
MCSA is not affected by the excitation method but vibration
analysis is affected. But in this method MCSA is effective
only for fault characteristic frequency lower than supply fre-
quency like cage defect characteristic frequency [56]. Com-
bined faults of static/dynamic eccentricity and bearing, is ex-
perimented with multiple sensors such as vibration, current
and acoustic on a common wireless platform. The disad-
vantage of this system is data loss while transmitting [57].
Difficulties in fault signature extraction because of the fluc-
tuations in characteristic frequency due to load variations,
are reduced using an improved CLIQUE algorithm for fault
signature extraction from the frequency spectrum of stator
current signal [51].
4 Artificial Intelligence methods

Until recently, the prevalent fault detection technique has
been MCSA. Artificial Intelligence (AI) are now used exten-
sively for speed, torque estimation, and solid-state drive con-
trol of both dc and ac machines.. It can improve the robust-
ness and efficiency of the fault diagnosis. Machine learning,
deep machine learning, i.e. Artificial Neural Network (AN-
N), fuzzy logic and Particle Swarm Optimization (PSO) are
AI methods that have been used for motor fault diagnosis.

As the data is generally collected faster than diagnosti-
cians can analyze it, there is an urgent need for diagno-
sis methods that can effectively analyze massive amounts
of data and provide accurate diagnosis results automatical-
ly. These types of methods are called intelligent fault diag-
nosis methods. [59] proposed a motor fault analysis tech-
nique for acoustic signals using the Coiflet wavelet transfor-
m and K-nearest neighbor classifier. [60] used the wavelet
analysis method for decomposing the vibration acceleration
signal of the motor, to obtain the energy ratio of each sub-
frequency band. Then, they used the energy ratio to train the
optimized support vector machine (SVM). [61] proposed a
fault diagnosis method for an asynchronous motor, which
was based on kernel principal component analysis and par-
ticle swarm SVM. For other diagnostic objects, [62] utilized
wavelet packet transform and SVM to diagnose induction
motor multi-faults. [63] developed a fault classifier using
the fusion of vibration data and acoustic signals for plane-
tary gearboxes based on the Dempster-Shafer evidence the-
ory. However, some obvious deficiencies were discovered
by carrying out a literature review. The features input to
the classifiers were extracted and selected by diagnostician-



s from measured signals largely depending on prior knowl-
edge about signal processing techniques and diagnostic ex-
pertise. In addition, manual feature extraction often makes
raw signals lose a certain part. Thus, it is necessary to adap-
tively mine the characteristics hidden in measured signals to
reflect the different health conditions of the machinery, in-
stead of manually extracting and selecting features.

Deep learning has the potential to overcome the aforemen-
tioned deficiencies in current intelligent diagnosis methods.
In 2006, [64] proposed a deep learning method for the first
time, and it set off a wave of interest in deep learning, in
the academic and industrial fields. Presently, deep learning
shows a clear advantage in processing large data volumes of
images and speech [65]. Deep learning has also been ap-
plied in the field of mechanical fault diagnosis. [66] utilized
singular value decomposition and deep belief networks in
building a fault diagnosis system for rolling bearings. The
system achieved a satisfactory result. [67] proposed a new
method for gear fault diagnosis. Using this method, they es-
tablished a stacked autoencoder network and then utilized
the frequency domain as input, to train the network and re-
alize gear fault diagnosis. In [68], the raw signal was con-
verted into a time frequency map using STFT. Subsequently,
the time frequency map was used as input to a convolutional
neural network (CNN), where it utilized these preprocessed
samples for carrying out supervised training to realize motor
fault diagnosis.
5 conclusion

A brief review of bearing, stator, rotor, and eccentricity-
related faults and their diagnosis has been presented in this
paper. It is clear from various literature that noninvasive
MCSA is by far the most preferred technique to diagnose
faults. However, theoretical analysis and modeling of ma-
chine faults are indeed necessary to distinguish the relevant
frequency components from the others that may be present
due to time harmonics, machine saturation, etc. The differ-
ent techniques for the detection of induction machine fault-
s based on fuzzy-logic, genetic algorithm, neural networks,
wavelet technique, Vienna monitoring etc. have also been
discussed.
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