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Abstract— The swinging motion of the arms plays a crucial
role in improving the dynamic movement of humans by
expanding their ability to control angular momentum, as viewed
through the lens of biomechanics. However, biped robot with
human morphological structures rarely take full advantage
of the swing arms, since there is no effective locomotion
control strategy combining swing arms modeling and control
reasonably suitable. In this paper, a control strategy is proposed
for bipedal robots that incorporates swing arms in the process
of achieving jumping motion. The strategy involves modeling,
planning trajectories, and tracking movements to enhance the
overall performance and stability of the robot. In this process,
in order to extract characteristics of swing arms, biped robot
is modeled as a flywheel-spring loaded inverted pendulum (F-
SLIP), and whole-body controller (WBC) is chosen as the
method of trajectory tracking to bring these characteristics
into play. Simulation of jumping motion is implemented on
a kind of biped robot Purple V1.0 designed for high explosive
locomotion, and an well-established evaluation method of biped
robot’s highly dynamic locomotion is proposed which includes
three aspects of agility, stability and energy consumption.
Experiment results show this control strategy’s effectiveness:
agility is increased by a maximum of 6%, stability is enhanced
by an average of 30%, and energy consumption is reduced by
an average of 15%.

I. INTRODUCTION
Due to its unique discrete ground support characteristic,

bipedal robots are better suited for navigating challenging
surroundings compared to customary tracked or mobilized
robots. Jumping motion is a fundamental aspect of enabling
highly dynamic locomotion in bipedal robots in various
contexts. Achieving a stable, agile, and efficient jumping
motion in bipedal robots has been a topic of long-standing
interest, but remains a challenging problem to address. Dur-
ing the 1980s, Raibert proposed a control strategy for legged
robots that enabled jumping motion. This strategy divided
jumping motion into three stages - hopping, moving forward,
as well as body rotation - each of which were controlled
independently [1] [2]. This control strategy is considered to
be pivotal in the development of legged robots. In recent
decades, numerous advanced control strategies have emerged
for legged robots, with a common approach being the use of
the simplified model of the spring-loaded inverted pendulum
(SLIP) [3] to plan the COM’s (center of mass) motion for
the bipedal robot, and this is then followed by the design
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of a joint controller that can track the COM trajectory to
complete some motion [4] [5]. In addition, there exist control
methods that utilize the momentum principle to directly plan
the trajectory of the joints, followed by the design of a
corresponding joint controller to ensure efficient tracking of
the joint trajectory [6] [7].

While classic control strategies for dynamic locomotion
are effective, they do not account for the role of swing
arms. Numerous investigations in biomechanics reveal that
the integration of swing arms may improve the efficacy of
jumping movements across three primary domains:

1) Increasing the jumping agility, which is caused by the
increase of plantar forces at the moment of takeoff due
to the release of energy stored in swing arms [8] [9].

2) Improving landing stability induced by the compen-
sation of body rotational angular momentum resulting
from swing arms [10] [11].

3) Lowering energy consumption due to the introduction
of swing arms, which reduce the load of lower limbs
[11] [12].

In light of these effects of swing arms, some research
teams begin to design human-like biped robot and study
swing arms effects. However, most of them just conduct the
study based on non-highly dynamic locomotion [13] [14],
such as keeping posture stability and increasing movement
speed. Regardless of a few of groups of researchers analyzing
what swing arms do in highly dynamic locomotion, swing
arms are still not given sufficient consideration in modeling,
and swing arm trajectories are created manually. [15]. As
a result, the impacts of swing arms during biped robots’
highly dynamic locomotion have not yet been thoroughly or
systematically examined.

To sum up, considering the importance of swing arms in
biped robot motion and the lack of exploration in this field,
this paper introduces the following key contributions:
• A kind of control strategy of biped robot locomo-

tion that is extremely dynamic utilizing swing arms
is proposed. In modeling, by considering swing arms
as equivalent to a flywheel, we can derive a simplified
representation of F-SLIP [16] that effectively captures
the unique features of swing arms. In trajectory plan-
ning, by utilizing F-SLIP as the underlying model, we
developed a trajectory planning approach for jumping
motions that fully integrates the effects of swinging
arms. In trajectory tracking, we opted for the Whole
Body Control (WBC) method, which enables us to track
the complete motion trajectory, generating appropriate
joint control inputs that are intelligent and tailored to
different control tasks [17].



• A kind of evaluation method of biped robot’s highly
dynamic locomotion which includes agility and stability
indicators, which are firstly proposed by us, as well as
energy consumption indicator.

The paper’s rest will be structured as follows. Section II
provides this overview of the F-SLIP and dynamics model of
the biped robot Purple V1.0. Section III discusses the desired
planning of the robot’s jumping motion trajectory, which is
based on the F-SLIP model. Section IV describes the design
of the WBC to monitor the trajectory of the jumping motion.
Section V displays the simulation’s results and corresponding
analyses. Finally, Section VI provides the conclusions and
outlines areas for future research.

II. MODELING

This section introduces both the simplified planning
model, F-SLIP, and the comprehensive dynamics model of
Purple V1.0.

A. The F-SLIP Model

The F-SLIP model is an extension of the existing SLIP
model [3] that includes a flywheel which is set on the mass,
as illustrated in Figure 1. The F-SLIP model incorporates a
flywheel into its centroidal dynamics, which maintains the
point mass dynamics and can effectively capture the hopping
characteristics of robot’s COM. A detailed description of the
dynamics is provided below:

mẍ = −F g +
τ

r
[−cosβ, sinβ]T + F s (1)

||F s|| = k (r0 − r) (2)

Iθ̈ = τ (3)

where x = [x, z]T , x and z represents the horizontal and
vertical position of COM respectively; F g = [0,mg]T ,
m represents robots’ overall weight, g represents gravita-
tional constant; F s = [Fsx , Fsz ]

T , Fsx , Fsz represent the
horizontal and perpendicular components of spring force
respectively; k is the stiffness of the spring; I represents
flywheel’s rotational inertia; τ represents the torque acting on
the flywheel; θ represents the flywheel’s angular position; β
represents the angle of biped robot’s leg length; r represents
the length of the leg; r0 represents the natural robot’s leg
length.

B. The Robot Model

Our experimental setup involves the use of a biped robot,
specifically the Purple V1.0 model shown in Figure 2, which
possesses 22 degrees of freedom. We denote the robot’s
configuration as q ∈ SE(3) × R16 and note that its arm
has two joints: the upperarm and shoulder joints. The Euler-
Lagrange equation is utilized to present the equations of
motion for the robot, as explained in the following:

M(q)q̈ + V (q, q̇) +G(q) = ST
a τ + JT

s,pF f (4)

Fig. 1. The F-SLIP model.

where M(q) is the robot mass matrix ; V (q, q̇) is the
Coriolis; centrifugal term; G(q) is the gravitational term; Sa

is the matrix representing robot actuation ability; τ ∈ R16 is
the motor torque vector; F f is the foot contact force vector.

Fig. 2. Purple V1.0.

III. TRAJECTORY PLANNING

For the jumping and landing phase, the general form of
trajectories optimization problems is shown below:

min
{x,u}

J = min
{x,u}

∫ tN

t0

L(x(t),u(t), t)dt (5)

s.t. ẋ = F (x(t),u(t), t) (6)
g(x(t),u(t), t) ≤ 0 (7)
ψ(x(t),u(t), t) = 0 (8)

where x is the state vector belonging to X which is the
set of feasible states; u is the control vector belonging to
U which is the set of feasible input controls; scalar t is
time, t0, tN are start and end time of a phase; L is run-
ning cost function; F (x(t), u(t), t) is dynamical function;
g(x(t),u(t), t); ψ(x(t),u(t), t) are respectively inequation
and equation constraints appied on different phases, which
will be defined in the below subsections.

The program above is described by direct transcription
method [18] and solved off-line using Interior Point OPTi-
mizer (IPOPT) [19]. As for the flight phase, we plan the leg



angle according to the landing angle chosen properly.

A. Jumping Phase

In this context, the jumping phase is defined as the period
of time during which the biped robot contacts with the
ground until the foot leaves the ground as is [tJ0 , t

J
N ], J is

for jumping phase. The dynamical function F J of jumping
phase is derived from Eq. (1),(2),(3), state vector xJ =
[xJ , ẋJ , ẍJ , θJ , θ̇J , θ̈J ]T , control vector uJ = [τJ ,F J

s ]
T ,

the constraints gJ , ψJ and cost functions JJ are constructed
in the bellow.

1) Constraints: The velocity constraints are given by
ẋJ(tF ) = ẋd and żJ(tF ) = żd, where ẋd and żd are
final desired COM velocities respectively that are calculated
according to the ballistic equation of motion.

The given swing arm constraints determine the limitations
of robot arm joints rotation, which is given by:

θ̇u > θ̇J > θ̇l (9)

θ̈u > θ̈J > θ̈l (10)

where the flywheel’s maximal rotational speed and accelera-
tion are denoted by θ̇u and θ̈u respectively, while the swing
arms’ minimal rotational speed and acceleration are given by
θ̇l and θ̈l respectively.

The formulation of the stability constraint, which is aimed
at preventing the robot from falling, is presented below:

−µF J
sz ≤ F J

sx ≤ µF J
sz (11)

0 < F J
sz (12)

where µ is the friction coefficient.
2) Cost: To fully utilize the energy-saving benefits of

swing arms [20], we have chosen to minimize the virtual
energy as our optimization objective for the jumping phase:

JJ =

∫ tJN

tJ0

(
c1r̈

J(t) + c2τ
J(t)

)
dt (13)

where the cost proportions are indicated by the variables c1
and c2.

B. Flight Phase

The period of time between take-off and when the foot
touches the surface of the earth is called the flight phase
(F ), which is defined as [tF0 , t

F
N ]. During this phase, the

objective is to modify the body’s orientation and ensure a
right foothold upon landing.

We make the landing angle equal to the take-off angle
βL(t0) = βF (tF ) according to the symmetry of motion
which is the base of continuous stable motion of legged
robots [1]. L is for the landing phase. Then the flight
trajectory of leg angle βF (t) can be calculated from Eq.
(1),(2),(3) by keeping rF (t) = rJ(tF ).

C. Landing Phase

The duration of the jumping motion’s landing phase is
described as [tL0 , t

L
N ], L is for landing phase, from the time

of landing which is confirmed by foot contact detection to the

time when the robot reaches a state of rest, and the duration
is equal to the shortest stability time when the solver can
successfully solve landing optimal program.

In landing phase, it is necessary that introducing the Diver-
gent Component of Motion (DCM) into dynamical function
in order to get the desired trajectory which can rest to the
balance state finally [21]. Therefore the dynamical function
of landing phase FL consists of Eq. (1),(2),(3) and Eq.
(14),(15). state vector xL = [xL, ẋL, ẍL, θL, θ̇L, θ̈L, ϵ, ϵ̇]T ,
control vector uL = [τL,FL

s ]
T

F s = s(x− recmp) (14)

ϵ̇ = −1

b
x+

1

b
ϵ+

b

m
F s (15)

where ϵ = [ϵx, ϵy]
T is DCM; recmp = [pf , 0]

T is Enhanced
Centroidal Moment Pivot point (eCMP) [21], which is the
landing foot position in this paper; s = m

b2 ; b =
√

h
g ; h =

zJ(t0) is desired final height of landing phase.
The landing phase shares the same stability and swing

arm constraints, as well as costs, as the jumping phase. We
have only presented the constraints pertaining to the static
configuration.

1) Constraints: To ensure that the robot stays in place
above the foot as it completes the landing phase, we establish
the following static configuration constraints [21] as follows:

xL(tLN ) = recmp + [0, h]T (16)

ẋL(tLN ) = θ̇L(tLN ) = 0 (17)

IV. TRAJECTORY TRACKING

In this section, we construct the WBC described as
quadratic programming (QP) and solve it on-line using
IPOPT [19] to track the jumping motion trajectory, and the
general form of WBC is demonstrated below:

min
{q̈, τ ,F f}

k∑
j=1

∥Äj
p − Äj

c,p∥W j
p

(18)

s.t. M(q)q̈ + V (q, q̇) +G(q) = ST
a τ + JT

s,pF f (19)

Js,p(q)q̈ + J̇s,p(q)q̇ = 0 (20)

blf < Af,pF f < buf (21)

τ l < Aτ,pτ < τu (22)

ḃarm,p < Aarm,pq̇ < ḃarm,p (23)

where k is number of tasks; Äj
p and Äj

c,p are respectively
actual and commanded acceleration of the j-th controller
task in phase p = J, F, L which refers to jumping, flight or
landing phase; W j

p is the weight of j-th task of p phase. Eq.
(19) is same as Eq. (??); Eq. (20) is foot contact constraint;
the Jacobian matrix J̇s,p relates to the foot contact force; Eq.
(21) is friction cone constraint; Eq. (22) is torque constraint;
Eq. (23) is arms constraint restricting the motion of arm
joints, which has two kinds of comparison experiments’
designs in the following Section V, Aarm,p is the arm
velocity Jacobian matrix.



A. Jumping Phase
1) 1-th task COM trajectory tracking: To achieve accu-

rate tracking of COM trajectory during the jumping phase
discussed in Section III, we describe this task in terms of
joint space [22]. We relate the velocity of the COM, denoted
Ȧ1

J , to the rates at which the robot’s joints are rotating q̇
through the Jacobian dynamics equation: Ȧ1

J = Jcomq̇,
where Jcom is the COM velocity Jacobian. However, to
successfully track the task of COM trajectory, we need to
determine torques that lead to joint movement acceleration
q̈, with Ä1

J = Jcomq̈ + J̇comq̇, such that Ä1
J closely

matches the desired center of mass dynamic Ä1
c,J = Ä1,d

J +

KD,com

(
Ȧ1,d

J − Ȧ1
J

)
+ KP,com

(
A1,d

J −A1
J

)
with high

precision,where A1,d
J , Ȧ1,d

J and Ä1,d
J represent the target

values for position, speed, and acceleration of the COM
in the subsection jumping phase of Section III respectively;
KD,com is the robot’s velocity matrix of its COM ; KP,com

is the robot’s position matrix of its COM.
2) 2-th task Attitude rotation control: Similar to the task

of tracking robot’s COM trajectory,we establish the cen-
troidal pitch angular acceleration Ä2

J = Apitchq̈ + Ȧpitchq̇,
Apitch [23] is the pitch centroidal angular momentum matrix.
We aim to get the robot’s joints torque to achieve the target
joint acceleration q̇ which could lead Ä2

J approaches 0, and
doing so will prevent the robot from falling.

B. Flight Phase
During the robot’s flight phase, because the robot is at the

aerial state, we should remove Eq. (20),(21), and replace Eq.
(19) with Eq. (24).

M(q)q̈ + V (q, q̇) +G(q) = ST
a τ (24)

1) 1-th task foot trajectory tracking: In this task, we seek
to determine the joint torques that will cause the robot to
undergo the desired joint acceleration q̈, which make the
acceleration of the foot Ä1

F = Jf q̈ + J̇f q̇ to be highly
consistent with the intended movement pattern of the foot
for the tracking task Ä1

c,F = Ä1,d
F +KD,f

(
Ȧ1,d

F − Ȧ1
F

)
+

KP,f

(
A1,d

F −A1
F

)
, where Jf is the foot velocity Jacobian

matrix, Ä1,d
F , Ȧ1,d

F , and Ä1,d
F denote the target values for

the position, velocity, and acceleration of robot’s foot during
the flight phase discussed in Section III. The foot velocity
gain matrix is denoted as KD,f , while the foot position gain
matrix is denoted as KP,f .

2) 2-th task foot level control: For keeping the soles of
the feet level with the ground, calculation of joint torques is
necessary to determine the joint acceleration q̈ with Ä2

F =
Jfωq̈ + J̇fωq̇ such that Ä2

F most accurately reproduces
the desired task dynamics of foot level Ä2

c,F = Ä2,d
F +

KD,fω

(
Ȧ2,d

F − Ȧ2
F

)
+ KP,fω

(
A2,d

F −A2
F

)
, where Jfω

denote the foot angular Jacobian matrix,A2,d
F , Ȧ2,d

F , and Ä2,d
F

represent the desired posture, angular velocity, and angular
acceleration of the foot, the foot angular velocity gain matrix
is denoted as KD,fω, while the foot posture gain matrix is
denoted as KP,fω .

C. Landing Phase

1) 1-th task torso level control: In this task, we should
find joint torques causing proper joints acceleration q̈ , so
we could lead the torso level dynamics Ä1

L = J tωq̈+ J̇ tωq̇

close the desire value Ä1
c,L = Ä1,d

L +KD,tω

(
Ȧ1,d

L − Ȧ1
L

)
+

KP,tω

(
A1,d

L −A1
L

)
, where J tω is torso angular Jacobian

matrix, A1,d
L , Ȧ1,d

L and Ä1,d
L denote the intended values for

the posture, angular velocity, and angular acceleration of the
torso respectively , KD,tω is the torso angular velocity gain
matrix; KP,tω is the torso posture gain matrix.

2) 2-th task COM trajectory tracking: The task has al-
ready been explained in the jumping phase.

V. RESULTS AND DISCUSSION

To assess the efficiency of the suggested control method,
we conducted a simulation comparison experiment using the
biped robot Purple V1.0 (shown in Fig. 2). We performed
several types of jumping motions in two cases: without
arm-swing (NAS) and with arm-swing (AS), utilizing the
Drake simulation environment [24]. The results of the sim-
ulation experiment are presented in Fig. 3, and a video
of the simulations can be found at the following link:
https://www.youtube.com/watch?v=fDQmcIIE8Jc.

In NAS case, the arms are limited to be static by designing
Aarm,p of Eq. (23), and in AS case the arm can be moved
just by shoulder joints while the upperarm joints are set to
be Stationary through redesigning Aarm,p of Eq. (23).

(a) (b)

Fig. 3. Simulation images. (a) is the jumping motion in NAS
case, (b) is the jumping motion of in AS case.

A. Agility

In this section, we introduce the definition of the agility
of highly dynamic motion (AHDM), which bases itself on
the leaping vertically agility proposed by Haldane et al. [25].
The AHDM is defined as follows:

AHDM =

√
h2 + d2

tstance + tflight
(25)

Specifically, h stands for the vertical measurement of height
that the motion reaches, d represents the straight-line distance
that the motion covers, the length of the stance phase is
denoted by the variable tstance, which is the period during
which the earth is in touch with the robot, and tflight
represents the duration of the flight phase, this is the amount
of time the robot is in the air and away from the ground.

Firstly we calculate the AHDM of several kinds of jump-
ing motions in AS and NAS cases according to COM sagittal
velocity at takeoff (Fig. 4, Fig. 5) as shown in TABLE I. We

https://www.youtube.com/watch?v=fDQmcIIE8Jc


can see that compared to the NAS case, the agility in AS
case can be increased by a maximum of 6%.

Fig. 4. vx at takeoff.

Fig. 5. vz at takeoff.

TABLE I. AHDM

h,d
case

AS NAS

h=0.10m, d=0.10m 0.2733m/s 0.2719m/s
h=0.10m, d=0.15m 0.3809m/s 0.3807m/s
h=0.15m, d=0.10m 0.3312m/s 0.3101m/s
h=0.15m, d=0.15m 0.3701m/s 0.3502m/s
h=0.20m, d=0.10m 0.3966m/s 0.3950m/s
h=0.20m, d=0.15m 0.4369m/s 0.4156m/s

Next, we obtain plantar forces in AS and NAS cases (Fig.
6), it can be seen that plantar forces at the moment of takeoff
in AS case are higher than that in NAS case.

In summary, the result coincides with the human swing
arms effect 1, agility effect, during human jumping motion.

B. Stability

In this section, we define the mean peak of pitch momen-
tum (MPPM) which is equal to the sum of pitch momentum
peaks of the body divided by the number of pitch momentum
peaks during the landing phase as a stability indicator.

We acquire the pitch momentum of landing phase in AS
and NAS cases (Fig. 7), and then calculate the MPPM in

Fig. 6. Plantar forces at takeoff.

both AS and NAS cases (TABLE II), we can see that the
stability is improved by an average of 30%. It is clear that
in the AS scenario, the oscillation rate and intensity of pitch
momentum are substantially decreased.

In conclusion, arm-swing of biped robot does enhance
stability during jumping motion just like the human swing
arms effect 2.

Fig. 7. Pitch momentum.

TABLE II. MPPM

h,d
case

AS NAS

h=0.10m, d=0.10m 0.62N·m·s 0.43N·m·s
h=0.10m, d=0.15m 0.45N·m·s 0.25N·m·s
h=0.15m, d=0.10m 0.59N·m·s 0.32N·m·s
h=0.15m, d=0.15m 0.56N·m·s 0.40N·m·s
h=0.20m, d=0.10m 0.38N·m·s 0.27N·m·s
h=0.20m, d=0.15m 0.28N·m·s 0.19N·m·s

C. Energy consumption

The energy required for AS and NAS situations during
jumping motions is calculated in this section where energy
consumption is defined as the result of joints work. The
results are presented in Figure 8. We observe that the use
of arm-swing increases the overall energy consumption by
an average of 6%. However, the energy consumption of the



lower limbs is reduced by an average of 25%, resulting in
a total energy consumption reduction for the entire jumping
motion by an average of 19% when compared to the NAS
case. The increase of energy consumption caused by the
introduction of arm-swing is much smaller than energy
savings in the lower limbs, which has the same effect as
the human swing arms.

To sum up, we can conclude that the introduction of arm-
swing can significantly reduce load on lower limbs and lower
overall energy consumption. This effect is the same as the
human swing arms effect 3.

Fig. 8. Energy cost.

VI. CONCLUSION AND FUTURE WORK

The current work proposes a jumping motion control
method for a biped robot equipped with swing arms and
carries out multiple jumping motion experiments in both
NAS and AS cases. Our analysis of the experimental re-
sults focused on three aspects: agility, stability, and energy
consumption. The results suggest that introducing an arm-
swing can improve all three aspects of the jumping motion.
Specifically, arm-swing can enhance the agility and stability
of the robot, while reducing its overall energy consumption.
The proposed control strategy is able to fully utilize the
advantages of arm-swing, which is consistent with the role
that it plays in human motion.

In the future, we plan to further explore the theoretical
basis of the proposed control strategy and validate our results
on the physical robot, Purple V1.0. Additionally, we aim
to apply this control strategy to more complex and highly
dynamic motions such as running and continuous jumping.
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